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AN EXTENSION OF THE
HERMITE-HADAMARD INEQUALITY FOR

CONVEX SYMMETRIZED FUNCTIONS

Abstract

In this work, we extend the Hermite-Hadamard inequality to a new
class of functions which do not satisfy the convex property. This result
will be applied to both Haber and Fejér inequalities.

1 Introduction

In all what follows, we denote by I the closed real interval [a, b].

Definition 1. A real-valued function f is said to be convex on I if f(λx +
(1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for all x, y ∈ I and 0 6 λ 6 1. Conversely,
if the opposite inequality holds, the function is said to be concave on I.

A function f that is continuous on I and twice differentiable on (a, b) is
convex on I if and only if f

′′
(x) > 0 for all x ∈ (a, b). (f is concave if and only

if f
′′
(x) 6 0 for all x ∈ (a, b)).
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Proposition 2. Let f : I −→ R, be a convex function, then the Hermite-
Hadamard inequality [9]

f

(
a+ b

2

)
6

1

b− a

∫ b

a

f (x) dx 6
f (a) + f (b)

2
(1)

holds.

It is obvious that the Hermite-Hadamard inequality gives us an estimate
of the mean value of the convex function. Note that the first inequality in (1)
was proved by Hadamard in 1893 [1]. The Hermite-Hadamard inequality is
well-known but for more details on historical considerations, one can consult
[3, 10, 11]. Generalizations, developments and refinements can be found in
[2, 3, 5, 6, 7].

In [6], A.El Farissi, proved the following theorem for a convex function.

Theorem 3. Assume that f : I → R is a convex function on I. Then for all
λ ∈ [0, 1], we have

f

(
a+ b

2

)
6 l (λ) 6

1

b− a

∫ b

a

f (x) dx 6 L (λ) 6
f (a) + f (b)

2
,

where

l (λ) := λf

(
λb+ (2− λ) a

2

)
+ (1− λ) f

(
(1 + λ) b+ (1− λ) a

2

)
and

L (λ) :=
1

2
(f (λb+ (1− λ) a) + λf (a) + (1− λ) f (b)) .

Corollary 4. Assume that f : I → R is a convex function on I. Then we
have the following inequality

f

(
a+ b

2

)
6 sup
λ∈[0,1]

l (λ) 6
1

b− a

∫ b

a

f (x) dx 6 inf
λ∈[0,1]

L (λ) 6
f (a) + f (b)

2
,

where l (λ) , L (λ) are defined in Theorem (3).

2 Main results

The aim of our work is to extend these results to a new class of function, not
necessarily convex. The following lemma will be used.
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Let f : I −→ R be an arbitrary function, we define the new function:

F : [a, b] −→ R
x 7→ F (x) = f(a+ b− x) + f(x).

Definition 5. A real-valued function f is said to be with convex symmetriza-
tion on I if F is convex.

Theorem 6 (properties of F ). Suppose that the function F is convex, then
we have:

1. If f is a convex function then the function F is convex too. The converse
is false.

2. The function F is symmetric to a+b
2 in the sense for all x on I, we have

∀x ∈ [a, b], F (a+ b− x) = F (x).

3. ∀x ∈ [a, b], F

(
a+ b

2

)
≤ F (x) ≤ F (a) = F (b) = f(a) + f(b).

4. The function F is increasing on [a+b2 , b] and decreasing on [a, a+b2 ].

Proof. The proof is left to the reader or one can consult [4]

Example 7. The function f : [a, b] −→ R : x 7→ f(x) = α3x
3+α2x

2+α1x+α0

such that a < 0 < b, α2,α3 > 0 and a+ b > 0 is not necessarily convex on I,

but F (x) = f(a+ b− x) + f(x) is convex. (F
′′
> 0).

Example 8. The function f : [a, b] −→ R : x 7→ f(x) = shx =
ex − e−x

2
such

that a < 0 < b and a+b > 0 is not convex on I, but F (x) = f(a+b−x)+f(x)

is convex, (F
′′
(x) = 2sh

(
a+ b

2

)
ch

(
a+ b

2
− x
)
> 0.

In Theorem 9, we establish the Hermite-Hadamard inequality for a class
of functions, which are not necessarily convex.

Theorem 9. Let f be an integrable function defined on I with convex sym-
metrization F, then the function f satisfies Hermite-Hadamard inequality.

Proof. Hermite-Hadamard inequality holds for F :

F

(
a+ b

2

)
≤ 1

b− a

∫ b

a

F (x)dx ≤ F (a) + F (b)

2
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substituting F

f

(
a+ b− a+ b

2

)
+f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

(f(a+ b− x) + f(x)) dx ≤ 2f(b) + 2f(a)

2

using simple techniques of integration in particular
∫ b
a
f(a + b − x)dx =∫ b

a
f(x)dx, we obtain

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(b) + f(a)

2
.

Theorem 10. Let f be an integrable function defined on I with convex sym-
metrization F, then for all λ ∈ [0, 1], we have

f

(
a+ b

2

)
6 h (λ) 6

1

b− a

∫ b

a

f (x) dx 6 H (λ) 6
f (a) + f (b)

2
, (2)

where

h (λ) :=
λ

2

[
f

(
(2− λ)b+ λa

2

)
+ f

(
λb+ (2− λ) a

2

)]
+

(1− λ)

2

[
f

(
(1 + λ) a+ (1− λ) b

2

)
+ f

(
(1− λ) a+ (1 + λ) b

2

)]
and

H (λ) :=
1

4
[f(a) + f(b) + f (λb+ (1− λ) a) + f (λa+ (1− λ) b)] .

Proof. Let F be a convex function on I. Applying (1) on the subinterval
[a, λb+ (1− λ) a], with λ 6= 0, we get

F

(
λb+ (2− λ) a

2

)
6

1

λ (b− a)

∫ λb+(1−λ)a

a

F (x) dx (3)

6
F (a) + F (λb+ (1− λ) a)

2
.

Applying (1) again on [λb+ (1− λ) a, b], with λ 6= 1 we get

F

(
(1 + λ) b+ (1− λ) a

2

)
6

1

(1− λ) (b− a)

∫ b

λb+(1−λ)a
F (x) dx (4)

6
F (b) + F (λb+ (1− λ) a)

2
.
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Multiplying (3) by λ, (4) by (1− λ) , and adding the resulting inequalities, we
get

h (λ) 6
1

b− a

∫ b

a

F (x) dx 6 H (λ) . (5)

Using the fact that F is a convex function, we obtain

F

(
a+ b

2

)
= F

(
λ

(λb+ (2− λ) a)

2
+ (1− λ)

(1 + λ) b+ (1− λ) a

2

)

6 λF

(
λb+ (1− λ) a+ a

2

)
+ (1− λ)F

(
λb+ (1− λ) a+ b

2

)

6
1

2
(F (λb+ (1− λ) a) + λF (a) + (1− λ)F (b)) 6

F (a) + F (b)

2
. (6)

Then by (5) and (6) we get (2).

The following Theorem is a generalization of Theorem 3 to a large class
of integrable functions with convex symmetrization. The calculus result is
inspired by [6].

Corollary 11. Assume that f : I → R is an integrable function defined on I
with convex symmetrization F, then we have the following inequality

f

(
a+ b

2

)
6 sup
λ∈[0,1]

h (λ) 6
1

b− a

∫ b

a

f (x) dx 6 H

(
1

2

)
6
f (a) + f (b)

2
,

where h (λ) , H
(
1
2

)
are defined in Theorem 10.

In the following theorem we will extend the Fejér inequality to the new
class of functions. In what follows we assume that the function f : I −→ R is
an integrable function defined on I with convex symmetrization F . Suppose

that g : I −→ [0,+∞[ is integrable and symmetric to
a+ b

2
.

Theorem 12. Let f, g be two functions defined on I as above. Then we have

f

(
a+ b

2

)∫ b

a

g (x) dx 6
∫ b

a

g(x)f (x) dx 6
f (a) + f (b)

2

∫ b

a

g (x) dx. (7)
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Proof. The Fejér inequality was established for f : I −→ R convex and

g : I −→ [0,+∞[ integrable and symmetric to
a+ b

2
. Here we have the same

conditions with F and g, so we obtain

F

(
a+ b

2

)∫ b

a

g (x) dx 6
∫ b

a

g(x)F (x) dx 6
F (a) + F (b)

2

∫ b

a

g (x) dx.

Substituting F in the above formulae transforms the inequality into

2f

(
a+ b

2

)∫ b

a

g (x) dx 6
∫ b

a

g(x)F (x) dx 6
2(f (a) + f (b))

2

∫ b

a

g (x) dx.

The change of variable x = a + b − x transforms
∫ b
a
g(x)f (a+ b− x) dx into∫ b

a
g(a+ b− x)f (x) dx. The fact that g is symmetric to

a+ b

2
, gives

∫ b

a

g(a+ b− x)f (x) dx =

∫ b

a

g(x)f(x)dx.

Using the last identity, we derive (7).

3 Applications

1. Let a, b be two real numbers such that a+ b > 0. The function

fn : [a, b] −→ R
x 7→ xn

is in general not convex for all integers, but the function F is convex

Fn : [a, b] −→ R
x 7→ fn(a+ b− x) + fn(x).

This can be proved by induction on n.

According to the Theorem 9, we have.(
a+ b

2

)n
≤ 1

b− a

∫ b

a

xndx ≤ an + bn

2
. (8)

We mentioned here that we can obtain this inequalities using Theorem
2.2 of [2].
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2. We can verify easily the following identity

bn+1 − an+1 = (b− a)

k=n∑
k=0

akbn−k. (9)

Replacing the identity (9) in inequality (8), we derive(
a+ b

2

)n
≤ 1

n+ 1

k=n∑
k=0

akbn−k ≤ an + bn

2

which is a generalization of Haber inequality [8](
a+ b

2

)n
≤ 1

n+ 1

k=n∑
k=0

akbn−k

for n ∈ N and a, b two positive real numbers.

3. Let a, b ∈ R be such that a+ b > 0. The function

f : [a, b] −→ R
x 7→ a0 + a1x

1 + ...+ anx
n

where ak > 0, for k > 1, is not necessarily convex, but the function

F : [a, b] −→ R
x 7→ f(a+ b− x) + f(x)

is convex.

According to Theorem 9 and in the case where all the coefficients are
equal to 1 (ak = 1), we have:

k=n∑
k=0

(
a+ b

2

)k
≤ 1

b− a

k=n∑
k=0

∫ b

a

xkdx ≤ 1

2

k=n∑
k=0

(ak + bk).

Remark 13. The particular case where a < 0, n = 5, is an example where
the result of [2] does not apply.
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