Abdallah El Farissi, Sciences and Technology Faculty, Bechar University, Algeria. email: elfarissi.abdallah@yahoo.fr
Maamar Benbachir, Sciences and Technology Faculty, Khemis Miliana University, Ain Defla, Algeria. email: mbenbachir2001@gmail.com
Meriem Dahmane, Sciences and Technology Faculty, Bechar University, Algeria. email: meriemdahmane1992@yahoo.com

AN EXTENSION OF THE HERMITE-HADAMARD INEQUALITY FOR CONVEX SYMMETRIZED FUNCTIONS

Abstract

In this work, we extend the Hermite-Hadamard inequality to a new class of functions which do not satisfy the convex property. This result will be applied to both Haber and Fejér inequalities.

1 Introduction

In all what follows, we denote by I the closed real interval $[a, b]$.
Definition 1. A real-valued function f is said to be convex on I if $f(\lambda x+$ $(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)$ for all $x, y \in I$ and $0 \leqslant \lambda \leqslant 1$. Conversely, if the opposite inequality holds, the function is said to be concave on I.

A function f that is continuous on I and twice differentiable on (a, b) is convex on I if and only if $f^{\prime \prime}(x) \geqslant 0$ for all $x \in(a, b)$. (f is concave if and only if $f^{\prime \prime}(x) \leqslant 0$ for all $\left.x \in(a, b)\right)$.

[^0]Proposition 2. Let $f: I \longrightarrow \mathbb{R}$, be a convex function, then the HermiteHadamard inequality [9]

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) d x \leqslant \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

holds.
It is obvious that the Hermite-Hadamard inequality gives us an estimate of the mean value of the convex function. Note that the first inequality in (1) was proved by Hadamard in 1893 [1]. The Hermite-Hadamard inequality is well-known but for more details on historical considerations, one can consult [3, 10, 11]. Generalizations, developments and refinements can be found in $[2,3,5,6,7]$.

In [6], A.El Farissi, proved the following theorem for a convex function.
Theorem 3. Assume that $f: I \rightarrow \mathbb{R}$ is a convex function on I. Then for all $\lambda \in[0,1]$, we have

$$
f\left(\frac{a+b}{2}\right) \leqslant l(\lambda) \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) d x \leqslant L(\lambda) \leqslant \frac{f(a)+f(b)}{2}
$$

where

$$
l(\lambda):=\lambda f\left(\frac{\lambda b+(2-\lambda) a}{2}\right)+(1-\lambda) f\left(\frac{(1+\lambda) b+(1-\lambda) a}{2}\right)
$$

and

$$
L(\lambda):=\frac{1}{2}(f(\lambda b+(1-\lambda) a)+\lambda f(a)+(1-\lambda) f(b)) .
$$

Corollary 4. Assume that $f: I \rightarrow \mathbb{R}$ is a convex function on I. Then we have the following inequality

$$
f\left(\frac{a+b}{2}\right) \leqslant \sup _{\lambda \in[0,1]} l(\lambda) \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) d x \leqslant \inf _{\lambda \in[0,1]} L(\lambda) \leqslant \frac{f(a)+f(b)}{2}
$$

where $l(\lambda), L(\lambda)$ are defined in Theorem (3).

2 Main results

The aim of our work is to extend these results to a new class of function, not necessarily convex. The following lemma will be used.

Let $f: I \longrightarrow \mathbb{R}$ be an arbitrary function, we define the new function:

$$
\begin{aligned}
& F:[a, b] \longrightarrow \mathbb{R} \\
& x \mapsto F(x)=f(a+b-x)+f(x)
\end{aligned}
$$

Definition 5. A real-valued function f is said to be with convex symmetrization on I if F is convex.

Theorem 6 (properties of F). Suppose that the function F is convex, then we have:

1. If f is a convex function then the function F is convex too. The converse is false.
2. The function F is symmetric to $\frac{a+b}{2}$ in the sense for all x on I, we have

$$
\forall x \in[a, b], F(a+b-x)=F(x)
$$

3. $\forall x \in[a, b], F\left(\frac{a+b}{2}\right) \leq F(x) \leq F(a)=F(b)=f(a)+f(b)$.
4. The function F is increasing on $\left[\frac{a+b}{2}, b\right]$ and decreasing on $\left[a, \frac{a+b}{2}\right]$.

Proof. The proof is left to the reader or one can consult [4]
Example 7. The function $f:[a, b] \longrightarrow \mathbb{R}: x \mapsto f(x)=\alpha_{3} x^{3}+\alpha_{2} x^{2}+\alpha_{1} x+\alpha_{0}$ such that $a<0<b, \alpha_{2}, \alpha_{3}>0$ and $a+b>0$ is not necessarily convex on I, but $F(x)=f(a+b-x)+f(x)$ is convex. $\left(F^{\prime \prime}>0\right)$.

Example 8. The function $f:[a, b] \longrightarrow \mathbb{R}: x \mapsto f(x)=s h x=\frac{e^{x}-e^{-x}}{2}$ such that $a<0<b$ and $a+b>0$ is not convex on I, but $F(x)=f(a+b-x)+f(x)$ is convex, $\left(F^{\prime \prime}(x)=2 \operatorname{sh}\left(\frac{a+b}{2}\right) \operatorname{ch}\left(\frac{a+b}{2}-x\right)>0\right.$.

In Theorem 9, we establish the Hermite-Hadamard inequality for a class of functions, which are not necessarily convex.

Theorem 9. Let f be an integrable function defined on I with convex symmetrization F, then the function f satisfies Hermite-Hadamard inequality.

Proof. Hermite-Hadamard inequality holds for F :

$$
F\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} F(x) d x \leq \frac{F(a)+F(b)}{2}
$$

substituting F
$f\left(a+b-\frac{a+b}{2}\right)+f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b}(f(a+b-x)+f(x)) d x \leq \frac{2 f(b)+2 f(a)}{2}$
using simple techniques of integration in particular $\int_{a}^{b} f(a+b-x) d x=$ $\int_{a}^{b} f(x) d x$, we obtain

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(b)+f(a)}{2}
$$

Theorem 10. Let f be an integrable function defined on I with convex symmetrization F, then for all $\lambda \in[0,1]$, we have

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leqslant h(\lambda) \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) d x \leqslant H(\lambda) \leqslant \frac{f(a)+f(b)}{2} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
h(\lambda) & :=\frac{\lambda}{2}\left[f\left(\frac{(2-\lambda) b+\lambda a}{2}\right)+f\left(\frac{\lambda b+(2-\lambda) a}{2}\right)\right] \\
& +\frac{(1-\lambda)}{2}\left[f\left(\frac{(1+\lambda) a+(1-\lambda) b}{2}\right)+f\left(\frac{(1-\lambda) a+(1+\lambda) b}{2}\right)\right]
\end{aligned}
$$

and

$$
H(\lambda):=\frac{1}{4}[f(a)+f(b)+f(\lambda b+(1-\lambda) a)+f(\lambda a+(1-\lambda) b)]
$$

Proof. Let F be a convex function on I. Applying (1) on the subinterval $[a, \lambda b+(1-\lambda) a]$, with $\lambda \neq 0$, we get

$$
\begin{align*}
F\left(\frac{\lambda b+(2-\lambda) a}{2}\right) & \leqslant \frac{1}{\lambda(b-a)} \int_{a}^{\lambda b+(1-\lambda) a} F(x) d x \tag{3}\\
& \leqslant \frac{F(a)+F(\lambda b+(1-\lambda) a)}{2}
\end{align*}
$$

Applying (1) again on $[\lambda b+(1-\lambda) a, b]$, with $\lambda \neq 1$ we get

$$
\begin{align*}
F\left(\frac{(1+\lambda) b+(1-\lambda) a}{2}\right) & \leqslant \frac{1}{(1-\lambda)(b-a)} \int_{\lambda b+(1-\lambda) a}^{b} F(x) d x \tag{4}\\
& \leqslant \frac{F(b)+F(\lambda b+(1-\lambda) a)}{2}
\end{align*}
$$

Multiplying (3) by λ, (4) by $(1-\lambda)$, and adding the resulting inequalities, we get

$$
\begin{equation*}
h(\lambda) \leqslant \frac{1}{b-a} \int_{a}^{b} F(x) d x \leqslant H(\lambda) \tag{5}
\end{equation*}
$$

Using the fact that F is a convex function, we obtain

$$
\begin{align*}
& F\left(\frac{a+b}{2}\right)=F\left(\lambda \frac{(\lambda b+(2-\lambda) a)}{2}+(1-\lambda) \frac{(1+\lambda) b+(1-\lambda) a}{2}\right) \\
& \quad \leqslant \lambda F\left(\frac{\lambda b+(1-\lambda) a+a}{2}\right)+(1-\lambda) F\left(\frac{\lambda b+(1-\lambda) a+b}{2}\right) \\
& \quad \leqslant \frac{1}{2}(F(\lambda b+(1-\lambda) a)+\lambda F(a)+(1-\lambda) F(b)) \leqslant \frac{F(a)+F(b)}{2} \tag{6}
\end{align*}
$$

Then by (5) and (6) we get (2).

The following Theorem is a generalization of Theorem 3 to a large class of integrable functions with convex symmetrization. The calculus result is inspired by [6].

Corollary 11. Assume that $f: I \rightarrow \mathbb{R}$ is an integrable function defined on I with convex symmetrization F, then we have the following inequality

$$
f\left(\frac{a+b}{2}\right) \leqslant \sup _{\lambda \in[0,1]} h(\lambda) \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) d x \leqslant H\left(\frac{1}{2}\right) \leqslant \frac{f(a)+f(b)}{2}
$$

where $h(\lambda), H\left(\frac{1}{2}\right)$ are defined in Theorem 10.
In the following theorem we will extend the Fejér inequality to the new class of functions. In what follows we assume that the function $f: I \longrightarrow \mathbb{R}$ is an integrable function defined on I with convex symmetrization F. Suppose that $g: I \longrightarrow\left[0,+\infty\left[\right.\right.$ is integrable and symmetric to $\frac{a+b}{2}$.

Theorem 12. Let f, g be two functions defined on I as above. Then we have

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x \leqslant \int_{a}^{b} g(x) f(x) d x \leqslant \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \tag{7}
\end{equation*}
$$

Proof. The Fejér inequality was established for $f: I \longrightarrow \mathbb{R}$ convex and $g: I \longrightarrow\left[0,+\infty\left[\right.\right.$ integrable and symmetric to $\frac{a+b}{2}$. Here we have the same conditions with F and g, so we obtain

$$
F\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x \leqslant \int_{a}^{b} g(x) F(x) d x \leqslant \frac{F(a)+F(b)}{2} \int_{a}^{b} g(x) d x
$$

Substituting F in the above formulae transforms the inequality into

$$
2 f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x \leqslant \int_{a}^{b} g(x) F(x) d x \leqslant \frac{2(f(a)+f(b))}{2} \int_{a}^{b} g(x) d x
$$

The change of variable $x=a+b-x$ transforms $\int_{a}^{b} g(x) f(a+b-x) d x$ into $\int_{a}^{b} g(a+b-x) f(x) d x$. The fact that g is symmetric to $\frac{a+b}{2}$, gives

$$
\int_{a}^{b} g(a+b-x) f(x) d x=\int_{a}^{b} g(x) f(x) d x
$$

Using the last identity, we derive (7).

3 Applications

1. Let a, b be two real numbers such that $a+b>0$. The function

$$
\begin{aligned}
& f_{n}:[a, b] \longrightarrow \mathbb{R} \\
& x \mapsto x^{n}
\end{aligned}
$$

is in general not convex for all integers, but the function F is convex

$$
\begin{aligned}
F_{n} & :[a, b] \longrightarrow \mathbb{R} \\
x & \mapsto f_{n}(a+b-x)+f_{n}(x)
\end{aligned}
$$

This can be proved by induction on n.
According to the Theorem 9, we have.

$$
\begin{equation*}
\left(\frac{a+b}{2}\right)^{n} \leq \frac{1}{b-a} \int_{a}^{b} x^{n} d x \leq \frac{a^{n}+b^{n}}{2} \tag{8}
\end{equation*}
$$

We mentioned here that we can obtain this inequalities using Theorem 2.2 of [2].
2. We can verify easily the following identity

$$
\begin{equation*}
b^{n+1}-a^{n+1}=(b-a) \sum_{k=0}^{k=n} a^{k} b^{n-k} \tag{9}
\end{equation*}
$$

Replacing the identity (9) in inequality (8), we derive

$$
\left(\frac{a+b}{2}\right)^{n} \leq \frac{1}{n+1} \sum_{k=0}^{k=n} a^{k} b^{n-k} \leq \frac{a^{n}+b^{n}}{2}
$$

which is a generalization of Haber inequality [8]

$$
\left(\frac{a+b}{2}\right)^{n} \leq \frac{1}{n+1} \sum_{k=0}^{k=n} a^{k} b^{n-k}
$$

for $n \in \mathbb{N}$ and a, b two positive real numbers.
3. Let $a, b \in \mathbb{R}$ be such that $a+b>0$. The function

$$
\begin{aligned}
& f:[a, b] \longrightarrow \mathbb{R} \\
& x \mapsto a_{0}+a_{1} x^{1}+\ldots+a_{n} x^{n}
\end{aligned}
$$

where $a_{k}>0$, for $k>1$, is not necessarily convex, but the function

$$
\begin{aligned}
F & :[a, b] \longrightarrow \mathbb{R} \\
x & \mapsto f(a+b-x)+f(x)
\end{aligned}
$$

is convex.
According to Theorem 9 and in the case where all the coefficients are equal to $1\left(a_{k}=1\right)$, we have:

$$
\sum_{k=0}^{k=n}\left(\frac{a+b}{2}\right)^{k} \leq \frac{1}{b-a} \sum_{k=0}^{k=n} \int_{a}^{b} x^{k} d x \leq \frac{1}{2} \sum_{k=0}^{k=n}\left(a^{k}+b^{k}\right)
$$

Remark 13. The particular case where $a<0, n=5$, is an example where the result of [2] does not apply.

Acknowledgment. This paper is supported by l'ANDRU, Agence Nationale pour le Developpement de la Recherche Universitaire; (PNR Projet 20112013).

The authors thank the referee for insightful comments and suggestions.

References

[1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc., 54 (1948), 439-460.
[2] P. Czinder and Z. Pales, An extension of the Hermite-Hadamard inequality and an application for Gini and Stolarsky means, JIPAM. J. Inequal. Pure Appl. Math. 5(2) (2004), Article 42, 8 pp.
[3] S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications,RGMIA Monographs, Victoria University, 2000. (ONLINE:http://ajmaa.org/RGMIA/monographs.php/).
[4] S. Dragomir, A refinement of Hadamard's inequality for isotonic linear functionals, Tamkang J. Math. 34(1) (1993), 101-106.
[5] A. El Farissi, Z. Latreuch, B. Belaidi, Hadamard-Type Inequalities for Twice Differentiable Functions, RGMIA Research Report collection, vol 12 (1), Art.6, 2009.
[6] A. El Farissi, Simple proof and refinement of Hermite-Hadamard inequality, J Math. Inequal 4(3) (2010), 365-369.
[7] A. M. Fink, A best possible Hadamard inequality, Math.. Inequal. Appl., 1, 2 (1998), 223-230.
[8] H. Haber, An elementary inequality, Internat. J. Math. and Math. Sci., 2 (3) (1979), 531-535.
[9] J. Hadamard, 'Etude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171-215.
[10] D. S. Mitrinovic and I. B. Lackovic, Hermite and convexity, Aequationes Math., 28 (1985), 229-232.
[11] C. P. Niculescu, L.-E. Persson, Old and New on the Hermite-Hadamard Inequality, Real Anal. Exchange, 29(2) (2004), 663-685.

[^0]: Mathematical Reviews subject classification: Primary: 52A40, 52A41
 Key words: convex function, Hermite-Hadamard integral inequality, Haber inequality, Fejér inequality

 Received by the editors September 12, 2012
 Communicated by: Alexander Olevskii

