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ABEL DERIVATIVE AND ABEL
CONTINUITY

Abstract

Abel derivative of order k is introduced and the first order Abel
derivative is studied. Using Abel derivative some monotonicity results
are obtained.

1 Introduction.

Abel derivative was in a dormant state in the work of Zygmund [8] and
Verblunsky [7]. Following them Abel derivative and Abel continuity were
introduced by S. J. Taylor in [5]. In [5] the author introduced Abel conti-
nuity and second order Abel derivative of a 2π-periodic Lebesgue integrable
function to define the Abel-Perron integral which is useful for Abel summable
trigonometric series. Since then Abel derivative and Abel continuity remain
unattended though some work is done in [2, 3]. We have introduced for k ≥ 1,
the kth order Abel derivative and studied the first order Abel derivative. It
helps to determine not only the monotonicity of a function f but also the
Abel summability of the Fourier series and the differentiated series of f . It
is shown that the Abel derivative is symmetric in nature (see [6]) and that
the first order Abel derivative is more general than the first order symmetric
derivative (Theorem 4). Some monotonicity theorems are obtained. It may be
noted that Estrada and Vindas [1] have recently obtained monotonicity results
which are related to our Theorems 10 and 11.
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2 Definitions and Notations

Let f be a 2π-periodic Lebesgue integrable function and let

an =
1

π

∫ π

−π
f(x) cosnxdx, bn =

1

π

∫ π

−π
f(x) sinnxdx

be the Fourier coefficients of f . So the series

1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx)rn (1)

converges uniformly and absolutely for 0 < r < 1. Let

f(r, x) =
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx)rn. (2)

Then by a standard calculation

f(r, x) =
1

π

∫ π

−π
f(x+ t)P (r, t)dt (3)

where P (r, t) is the Abel Poisson kernel defined by

P (r, t) = 1
2 +

∞∑
n=1

rn cosnt.

It is well known that

P (r, t) =
1

2

[
1− r2

1− 2r cos t+ r2

]
=

1

2

[
1− r2

(1− r)2 + 4r sin2 t
2

]
. (4)

It can be proved that for 0 < r < 1

P (r, t) ≥ 0, P (r,−t) = P (r, t), (5)

1

π

∫ π

−π
P (r, t)dt = 1, (6)

P (r, t) ≤ C 1− r
t2

if
1

2
≤ r < 1 and 0 <| t |≤ π,C being a constant. (7)

For proofs of (4) - (7) see [8; p.96].
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Let k be a fixed positive integer. Differentiating (2) term by term k times
with respect to x we have

∂kf(r, x)

∂xk
= (−1)

k
2

∞∑
n=1

(ann
k cosnx+ bnn

k sinnx)rn, if k is even

= (−1)
k+1
2

∞∑
n=1

(ann
k sinnx− bnnk cosnx)rn, if k is odd.

The upper and lower Abel derivates of f at x of order k are defined by

ADkf(x) = lim sup
r→1−

∂kf(r, x)

∂xk

ADkf(x) = lim inf
r→1−

∂kf(r, x)

∂xk

respectively. Thus ADkf(x) and ADkf(x) are the upper and lower Abel
sums of the k−times differentiated series of the Fourier series of f at x. If
ADkf(x) = ADkf(x) then this common value is called the Abel derivative of
f at x of order k and will be denoted by ADkf(x).

The kth symmetric de la Vallée Poussin (d.l.V.P.) derivative and upper
and lower (d.l.V.P.) derivates at a point x are defined in [2] and here we shall

denote them by f
(s)
(k) , f

(s)

(k) and f (s)

(k)
respectively. Throughout the paper < and

µ denote the set of real numbers and the Lebesgue measure respectively.

3 Main Results.

Theorem 1. If ADkf(x0) and ADkf(x0) are finite and k ≥ 2 then ADk−2f(x0)
exists and is finite.

Proof. Let k be even and let
u0 = 1

2a0

un = (−1)
k
2 (ann

k cosnx0 + bnn
k sinnx0), n ≥ 1.

So the power series

∞∑
n=0

unr
n has radius of convergence at least 1. Let

g(r) =

∞∑
n=0

unr
n, G(r) =

∞∑
n=1

un
n
rn.

So,
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∫ r

0

g(t)− u0

t
dt =

∫ r

0

∞∑
n=1

unt
n−1dt =

∞∑
n=1

un
n
rn.

Since ADkf(x0) and ADkf(x0) are finite, g(r) is bounded as r → 1−, and so
g(t)−u0

t is bounded as t→ 1− . Hence for 0 < r1 < r2 < 1

| G(r2)−G(r1) |=
∣∣∣∣∫ r2

r1

g(t)− u0

t
dt

∣∣∣∣→ 0 as r1, r2 → 1− .

So, lim
r→1−

G(r) exists finitely which shows that

lim
r→1−

∞∑
n=1

un
n
rn is finite.

Repeating this argument, we conclude that

lim
r→1−

∞∑
n=1

un
n2
rn is finite.

Since

ADk−2f(x0) = lim
r→1−

∂k−2f(r, x)

∂xk−2

∣∣∣∣
x=x0

= lim
r→1−

(−1)

∞∑
n=1

un
n2
rn

the proof is complete in this case. When k is odd the proof is similar.

While the finiteness of ADkf(x) and ADkf(x) imply the existence of
ADk−2f(x) finitely, nothing can be said about the existence of ADk−1f(x).
For let f be defined by

f(x) = 1
2 (π − x) , for 0 < x < 2π

= 0 , for x = 0, 2π
and f is 2π-periodic. Then f being odd, an = 0 while bn = 1

n for all n.
Therefore (2) becomes

f(r, x) =

∞∑
n=1

sinnx

n
rn

and so
∂f(r, x)

∂x
=

∞∑
n=1

cosnx rn,
∂2f(r, x)

∂x2
= −

∞∑
n=1

n sinnx rn

and hence

AD2f(0) = lim
r→1−

∂2f(r, 0)

∂x2
= 0.

But

AD1f(0) = lim
r→1−

∂f(r, 0)

∂x
= lim
r→1−

∞∑
n=1

rn =∞.

So, Abel derivative behaves as a symmetric derivative. From Theorem 1 it
follows that if ADkf(x) and ADkf(x) are finite then AD0f(x) or AD1f(x)
exist finitely according as k is even or odd where
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AD0f(x) = lim
r→1−

f(r, x).

Definition. Let f be 2π-periodic Lebesgue integrable function. If for some
x

lim
r→1−

f(r, x) = f(x)

then f is said to be Abel continuous at x (see [5]).
So, f is Abel continuous at x if and only if the Fourier series of f is Abel

summable at x to f(x).

Theorem 2. If f is 2π-periodic and Lebesgue integrable then for a point x

lim inf
h→0

f(x+ h) + f(x− h)

2
≤ lim inf

r→1−
f(r, x) ≤ lim sup

r→1−
f(r, x)

≤ lim sup
h→0

f(x+ h) + f(x− h)

2
.

Proof. We prove the right hand side. We may suppose that

lim sup
h→0

f(x+ h) + f(x− h)

2
<∞. Choose M such that

lim sup
h→0

f(x+ h) + f(x− h)

2
< M <∞.

Then there is δ, 0 < δ < π, such that
f(x+ h) + f(x− h) < 2M for 0 < h < δ.

So, from (5) and (6)

1

π

∫ δ

0

[
f(x+ t) + f(x− t)

]
P (r, t)dt ≤ 2M

π

∫ δ

0

P (r, t)dt <
M

π

∫ π

−π
P (r, t)dt = M.

(8)

Also from (7) taking 1
2 ≤ r < 1∣∣∣∣ 1π

∫ π

δ

[
f(x+ t) + f(x− t)

]
P (r, t)dt

∣∣∣∣
≤ 1

π

∫ π

δ

| f(x+t)+f(x−t) | P (r, t)dt ≤ C 1− r
π

∫ π

δ

|f(x+ t) + f(x− t)|
t2

dt

and hence

lim
r→1−

1

π

∫ π

δ

[f(x+ t) + f(x− t)]P (r, t)dt = 0. (9)

From (3) and (5)

f(r, x) =
1

π

∫ π

−π
f(x+ t)P (r, t)dt

=
1

π

∫ π

0

[f(x+ t) + f(x− t)]P (r, t)dt
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=
1

π

(∫ δ

0

+

∫ π

δ

)
[f(x+ t) + f(x− t)]P (r, t)dt.

From this and from (8) and (9)

lim sup
r→1−

f(r, x) ≤M .

Since M is arbitrary,

lim sup
r→1−

f(r, x) ≤ lim sup
h→0

f(x+ h) + f(x− h)

2
.

The left hand inequality is similar.

Corollary 3. If f is continuous at x, then f is Abel continuous at x.

The converse is not true. For let

f(x) = 1, for 0 < x < π,

f(x) = −1, for −π < x < 0,
and f(x) = 0, for x = 0, π; f(x+ 2π) = f(x).
Then f is not continuous at x = 0 but by Theorem 2

lim
r→1−

f(r, 0) = 0 = f(0)

and therefore f is Abel continuous at x = 0.

Remark. Theorem 2 generalizes a well-known result [8; p.97, Theorem
6.11].

Theorem 4. If f is 2π-periodic and Lebesgue integrable then for all x

f (s)

(1)
(x) ≤ AD1f(x) ≤ AD1f(x) ≤ f (s)

(1)(x)

where f (s)

(1)
(x) and f

(s)

(1)(x) denote the first order lower and upper symmetric

derivates of f at x, respectively.

Proof. We prove the right hand inequality with x = x0; the proof for left
hand inequality being similar.

We may suppose that f
(s)

(1)(x0) <∞. Let

1
2a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

be the Fourier series of f . For convenience we shall write

1− 2r cos t+ r2 = ∆(r, t)
and when there is no confusion ∆(r, t) will be written ∆ or ∆(t). Then we
have from (4)

P (r, t) = 1
2

(
1−r2

∆

)
.
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Hence writing P ′(r, x) = ∂
∂xP (r, x) we have

P ′(r, x) =
−r(1− r2) sinx

∆2(x)
. (10)

We shall use this notation for differentiation with respect to the second variable
of P . Then as in (2)

f(r, x) = 1
2a0 +

∞∑
n=1

(an cosnx+ bn sinnx)rn.

So, by (3)

f(r, x) =
1

π

∫ π

−π
f(x+ t)P (r, t)dt =

1

π

∫ π

−π
f(t)P (r, t− x)dt. (11)

Hence from (11) and (10)

1

r

∂

∂x
f(r, x)

∣∣∣∣
x=x0

= − 1

πr

∫ π

−π
f(t)P ′(r, t− x0)dt

= − 1

πr

∫ π

−π
f(x0 + t)P ′(r, t)dt

=
1

πr

∫ π

−π
f(x0 − t)P ′(r, t)dt (12)

= − 1

πr

∫ π

−π

f(x0 + t)− f(x0 − t)
2

P ′(r, t)dt

=
1

π

∫ π

−π
g(t)K(r, t)dt

where

g(t) = gx0
(t) =

f(x0 + t)− f(x0 − t)
2 sin t

and

K(r, t) =
−P ′(r, t) sin t

r
=

(1− r2) sin2 t

∆2(t)
.

Since g(t) = g(−t) and K(r, t) = K(r,−t) we have from (12)

1

r

∂

∂x
f(r, x)

∣∣∣∣
x=x0

=
2

π

∫ π

0

g(t)K(r, t)dt. (13)

The relation (13) holds for all 2π− periodic Lebesgue integrable functions and
for all choices of x0 and hence we can put f(x) = sinx and x0 = 0 and so in
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this case g(t) = 1 for all t. Hence for this substitution in (13) we get

2

π

∫ π

0

K(r, t)dt =
1

r

∂

∂x
(r sinx)

∣∣∣∣
x=0

= 1. (14)

Let ε > 0 be arbitrary. Since lim sup
t→0

g(t) = f
(s)

(1)(x0), there is δ, 0 < δ < π,

such that

g(t) < f
(s)

(1)(x0) + ε for t ∈ (0, δ). (15)

Since K(r, t) > 0, by (14) and (15)

2

π

∫ δ

0

g(t)K(r, t)dt ≤ 2

π

(
f

(s)

(1)(x0) + ε
)∫ δ

0

K(r, t)dt

≤ 2

π

(
f

(s)

(1)(x0) + ε
)∫ π

0

K(r, t)dt (16)

= f
(s)

(1)(x0) + ε.

Also

2

π

∣∣∣∣∫ π

δ

g(t)K(r, t)dt

∣∣∣∣ ≤ 2

π
sup
δ≤t≤π

K(r, t)

∫ π

δ

|g(t)|dt. (17)

For δ ≤ t ≤ π, (∆(t))−1 ≤ (1− 2r cos δ + r2)−1 and so

|P ′(r, t)| =
∣∣∣−r(1−r2) sin t

∆2(t)

∣∣∣ ≤ r(1−r2)
(1−2r cos δ+r2)2 .

Hence

sup
δ≤t≤π

|K(r, t)| = sup
δ≤t≤π

∣∣∣∣P ′(r, t) sin t

r

∣∣∣∣ ≤ 1− r2

(1− 2r cos δ + r2)2
. (18)

Since δ is independent of r, from (18)

lim
r→1−

sup
δ≤t≤π

|K(r, t)| = 0. (19)

From (17) and (19)

lim
r→1−

2

π

∫ π

δ

g(t)K(r, t)dt = 0. (20)

From (13), (16) and (20)
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lim sup
r→1−

1

r

∂

∂x
f(r, x)

∣∣∣∣
x=x0

≤ f (s)

(1)(x0) + ε.

Since ε is arbitrary,

lim sup
r→1−

1

r

∂

∂x
f(r, x)

∣∣∣∣
x=x0

≤ f (s)

(1)(x0)

which implies AD1f(x0) ≤ f (s)

(1)(x0) completing the proof.

The following corollary gives Fatou’s Theorem (see [8; Vol.I, p.99]) in our
context.

Corollary 5. Let f be 2π-periodic Lebesgue integrable function. If f
(s)
(1) (x0)

exists then AD1f(x0) exists and equals f
(s)
(1) (x0).

But the converse is not true. For, if

f(x) = 1
n , if x = 1

n , n = 1, 2, 3, ...

= 0, otherwise

then f
(s)
(1) (0) does not exist but AD1f(0) exists and equals to 0.

Theorem 4 has not been extended to higher order for Abel and d.l.V.P.
derivates. Rajchman and Zygmund proved that AD2f(x0) ≥ f (s)

(2)
(x0) and

AD2f(x0) ≤ f
(s)

(2)(x0) (see [8, p.353] and [7, p.445]). However it is known

that if the d.l.V.P. derivative of order k,f
(s)
(k)(x) exists finitely then the Abel

derivative ADkf(x) also exists finitely and equals f
(s)
(k)(x) [2; Corollaries of

Theorems 1 and 2].

Theorem 6. Let f be 2π-periodic and Lebesgue integrable. Then for a point
x

lim inf
h→0+

f(x+ h)− f(x− h)

2
≤ π

2
lim inf
r→1−

(1− r)∂f(r, x)

∂x

≤ π

2
lim sup
r→1−

(1−r)∂f(r, x)

∂x
≤ lim sup

h→0+

f(x+ h)− f(x− h)

2
.
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Proof. From (10) we have P ′(r,−t) = −P ′(r, t) and so as in (12)

∂f(r, x)

∂x
= − 1

π

∫ π

−π

f(x+ t)− f(x− t)
2

P ′(r, t)dt

= − 1

π

∫ π

0

f(x+ t)− f(x− t)
2

P ′(r, t)dt− 1

π

∫ 0

−π

f(x+ t)− f(x− t)
2

P ′(r, t)dt

(21)

= − 1

π

∫ π

0

f(x+ t)− f(x− t)
2

P ′(r, t)dt− 1

π

∫ π

0

f(x+ t)− f(x− t)
2

P ′(r, t)dt

= − 2

π

∫ π

0

f(x+ t)− f(x− t)
2

P ′(r, t)dt.

We prove the right hand inequality. We may suppose that lim sup
h→0+

f(x+ h)− f(x− h)

2
<

∞. Choose lim sup
h→0+

f(x+ h)− f(x− h)

2
< M < ∞, where M is arbitrary.

Then there is δ, 0 < δ < π, such that
f(x+ h)− f(x− h)

2
< M for 0 < h < δ.

Then since by (10) P ′(r, t) < 0 for t ∈ (0, π), we have using (4)

− 2

π

∫ δ

0

f(x+ t)− f(x− t)
2

P ′(r, t)dt

≤ −2M

π

∫ δ

0

P ′(r, t)dt ≤ −2M

π

∫ π

0

P ′(r, t)dt

= −2M

π
(P (r, π)− P (r, 0)) = −M

π

[
1− r
1 + r

− 1 + r

1− r

]
.

Hence

lim sup
r→1−

[
(1− r)

(
− 2

π

)∫ δ

0

f(x+ t)− f(x− t)
2

P ′(r, t)dt

]
≤ 2M

π
. (22)

Also since for δ ≤ t ≤ π, 1
∆(t) ≤

1
1−2r cos δ+r2 from (10) we have

|P ′(r, t)| ≤ r(1− r2)

(1− 2r cos δ + r2)2
for δ ≤ t ≤ π

and hence∣∣∣∣− 2

π

∫ π

δ

f(x+ t)− f(x− t)
2

P ′(r, t)dt

∣∣∣∣ ≤ 2

π

r(1− r2)

(1− 2r cos δ + r2)2

∫ π

δ

∣∣∣∣f(x+ t)− f(x− t)
2

∣∣∣∣ dt.
So,

lim sup
r→1−

[
(1− r)

(
− 2

π

)∫ π

δ

f(x+ t)− f(x− t)
2

P ′(r, t)dt

]
= 0. (23)
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From (21), (22) and (23)

lim sup
r→1−

(1− r)∂f(r, x)

∂x
≤ 2M

π
.

Since M is arbitrary, the result follows.

Proposition 7. Let f be 2π-periodic Lebesgue integrable on [0, 2π]. Then if
f is Abel continuous at x0 ∈ (0, 2π) and

F (x) =

∫ x

0

(f(t)− 1

2
a0)dt

then AD1F (x0) exists and AD1F (x0) = f(x0)− 1
2a0, where 1

2a0 is the constant
term in the Fourier expansion of f .

Proof. Let

1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx) (24)

be the Fourier series of f . Since F is 2π-periodic and absolutely continuous,
the Fourier series of F converges to F everywhere. Let

F (x) =
1

2
A0 +

∞∑
n=1

(An cosnx+Bn sinnx). (25)

Then it can be verified that

A0 = 2

∞∑
n=1

bn
n
,An = −bn

n
,Bn =

an
n

.

So, from (24) and (25)

∂F (r, x)

∂x
=

∞∑
n=1

(an cosnx+ bn sinnx)rn = f(r, x)− 1

2
a0. (26)

Since f is Abel continuous at x0, letting r → 1−
AD1F (x0) = f(x0)− 1

2a0.

Proposition 8. If f is 2π-periodic and Lebesgue integrable and if the first
Abel derivative AD1f exists (possibly infinite) then AD1f is in Baire class 1.

Proof. Let
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx) be the Fourier series of f . Then

as in (2)
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f(r, x) = 1
2a0 +

∞∑
n=1

(an cosnx+ bn sinnx)rn.

So,

∂f(r, x)

∂x
= −

∞∑
n=1

(nan sinnx− nbn cosnx)rn.

Since AD1f(x) exists,

AD1f(x) = lim
r→1−

∂f(r, x)

∂x
= lim
ν→∞

[
−
∞∑
n=1

(nan sinnx− nbn cosnx)
(

1− 1

ν

)n]
.

Now ∣∣∣(nan sinnx− nbn cosnx)
(

1− 1
ν

)n∣∣∣ ≤ 2Mn
(

1− 1
ν

)n
, for all n

where M is a positive real number such that
|an| ≤M, |bn| ≤M, for all n,

and since

∞∑
n=1

n
(

1− 1

ν

)n
is convergent for fixed ν,

∞∑
n=1

(nan sinnx− nbn cosnx)
(

1− 1

ν

)n
converges uniformly for fixed ν, and so

is continuous and hence AD1f is in Baire class 1.

Remark. Theorem 4 and Proposition 8 give a short proof of a theorem
of Larson (see [6, p.263]), when f is Lebesgue integrable.

We need the following Lemma.

Lemma 9. (Rajchman and Zygmund). Let F be 2π-periodic and Lebesgue
integrable in [0, 2π] and let the Fourier series of F be Abel summable at x0 to
F (x0). Then

AD2F (x0) ≤ F (s)

(2)(x0), AD2F (x0) ≥ F (s)
(2)(x0)

where F
(s)

(2)(x0) and F
(s)
(2)(x0) are the second order upper and lower d.l.V.P.

derivates of F at x0.

For a proof see [7; p.445, Theorem II] and [8; p.353, Lemma 7.6].
The definition of approximate limit is in [8, p.323]. The definitions of

approximate lower and upper limits which are used in (iii) of the following
theorem are similar.

Theorem 10. Let f be 2π-periodic and Lebesgue integrable on [0, 2π] such
that
(i) AD1f ≥ 0 except on a countable set C ⊂ (0, 2π);

(ii) lim inf
r→1−

(1− r)∂f(r, x)

∂x
≥ 0 for x ∈ C.
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Then there exists a set E ⊂ (0, 2π) of measure zero such that f is non-
decreasing on (0, 2π) ∼ E.

Moreover if
(iii) lim inf

x→x0

ap f(x) ≤ f(x0) ≤ lim sup
x→x0

ap f(x), for every x0 ∈ (0, 2π)

then f is nondecreasing on (0, 2π).

Proof. Let the Fourier series of f be

1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

and let

F (x) =

∫ x

0

(f(t)− 1

2
a0)dt, x ∈ (0, 2π). (27)

Then as in Proposition 7 the Fourier series of F is

1

2
A0 +

∞∑
n=1

(An cosnx+Bn sinnx)

and as in (26)

∂2F (r, x)

∂x2
=
∂f(r, x)

∂x
. (28)

So,

AD2F (x) = AD1f(x), AD2F (x) = AD1f(x), for all x ∈ (0, 2π). (29)

By the given conditions (i) and (ii) and by (28) and (29)

AD2F ≥ 0 except on C (30)

lim inf
r→1−

(1− r)∂
2F (r, x)

∂x2
≥ 0 for x ∈ C. (31)

Since F is continuous, by Corollary 3 F is Abel continuous and so the Fourier
series of F is Abel summable to F and so by Lemma 9 and by (30)

F
(s)

(2) ≥ 0 except on C (32)

and by (31) and Lemma 8.5 of [8, p.357]

lim sup
h→0

F (x+ h) + F (x− h)− 2F (x)

h
≥ 0 for x ∈ C. (33)
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By (32) and (33) and by Lemma 3.20 of [8, p.328] F is convex on (0, 2π). So,
F ′ exists except on a countable set in (0, 2π) and is nondecreasing on the set
of its existence. So, F ′ + 1

2a0 exists and is nondecreasing on the set where F ′

exists. Since F ′ + 1
2a0 = f a.e., the first part follows.

For the second part, let E be the set outside which f is nondecreasing.
If possible suppose that there are points c, d, 0 < c < d < 2π such that,
f(c) > f(d). Choose k1, k2 such that f(c) > k2 > k1 > f(d). Then by the
given condition (iii)

lim sup
x→c

ap f(x) > k2 > k1 > lim inf
x→d

ap f(x). (34)

Choose δ, 0 < δ < d−c
2 such that (c − δ, d + δ) ⊂ (0, 2π). Then by (34) there

are sets E1 and E2 such that E1 ⊂ (c− δ, c+ δ), E2 ⊂ (d− δ, d+ δ), µ(E1) >
0, µ(E2) > 0 and f(x) > k2 for x ∈ E1, f(x) < k1 for x ∈ E2. Since E is of
measure zero, µ(E1∩ Ẽ) > 0 and µ(E2∩ Ẽ) > 0 where Ẽ is the complement of
E. So, there are points ξ ∈ E1 ∩ Ẽ, η ∈ E2 ∩ Ẽ, and so f(ξ) > k2 > k1 > f(η).
But ξ < η and therefore since f is nondecreasing on Ẽ, f(ξ) ≤ f(η) which is a
contradiction.

Theorem 11. Let f be 2π-periodic and Lebesgue integrable on [0, 2π]. If
(i) AD1f ≥ 0 except on a countable set C ⊂ (0, 2π);

(ii) lim sup
h→0

[
1

h

(∫ x+h

x

f(t)dt−
∫ x

x−h
f(t)dt

)]
≥ 0, for x ∈ C

then there exists a set E ⊂ (0, 2π) of measure zero such that f is non-decreasing
on (0, 2π) ∼ E.

If moreover
(iii) f is Abel continuous in (0, 2π);

(iv) lim
h→0

[
1

h

(∫ x+h

x

f(t)dt−
∫ x

x−h
f(t)dt

)]
= 0, for all x ∈ (0, 2π)

then f is continuous and nondecreasing on (0, 2π).

Proof. Proceeding as in Theorem 10 we have

AD2F = AD1f, AD2F = AD1f (35)

where F is as in (27). Therefore by condition (i) AD2F ≥ 0 except on C and
so by Lemma 9

F
(s)

(2) ≥ 0 except on C.
Also by condition (ii), (33) holds. So, the first part follows as the first part of
Theorem 10.



Abel derivative and Abel continuity 77

For the second part (iv) implies that

lim
h→0

F (x+ h) + F (x− h)− 2F (x)

h
= 0 for all x ∈ (0, 2π). (36)

Also by (35) and (i) and by Lemma 9 F
(s)

(2) ≥ 0 except on C and so by (36) and
Lemma 3.20 [8; p.328], F is convex on (0, 2π). So, the right hand and left hand
derivatives F ′+ and F ′− exist at each point x ∈ (0, 2π) and by (36) F ′+ = F ′−
i.e., F ′ exists for each point x ∈ (0, 2π). By Theorem 4 we have since F ′ exists,
F ′(x) = AD1F (x). So, by Proposition 7 F ′(x) = f(x)− 1

2a0 for all x ∈ (0, 2π).
Since F is convex, F ′ is nondecreasing and by the Darboux property of F ′, F ′

is also continuous. Hence f is nondecreasing and continuous.

Remark. The condition

(i)AD1f ≥ 0 except on a countable set C ⊂ (0, 2π)
in Theorem 10 and Theorem 11 can be relaxed by taking the following two
conditions together

(i)1 AD1f ≥ 0 a.e. in (0, 2π)

(i)2 AD1f > −∞ except on a countable set C ⊂ (0, 2π).
For, suppose that (i)1 and (i)2 hold. Let E = {x : x ∈ (0, 2π);AD1f(x) < 0}.
Then by (i)1 E is of measure zero. Let σ be a function defined on [0, 2π] such
that σ is continuous and nondecreasing on [0, 2π] and σ′(x) = +∞ for x ∈ E
(see [4, Vol. I, p.214]). We take σ on (0, 2π] and extend it to the whole of < by
defining σ(x+2π) = σ(x) for all x. Let ε > 0 be arbitrary and let gε = f + εσ.
Then it can be proved that

∂gε(r, x)

∂x
=
∂f(r, x)

∂x
+ ε

∂σ(r, x)

∂x
and hence

AD1gε(x) ≥ AD1f(x) + εAD1σ(x), for all x. (37)

Since σ is nondecreasing, by Theorem 4, AD1σ(x) ≥ 0 for all x. So, by the
property of σ and by (37) AD1gε ≥ 0 except on C. Since σ is continuous , by
Theorem 6 σ satisfies condition (ii) of Theorems 10 and 11 and so gε satisfies
condition (ii) of these theorems. By Corollary 3 σ satisfies condition (iii) of
Theorem 11 and so gε satisfies it. Hence by (37) gε satisfies the conditions of
Theorems 10 and 11 if f does so. Since ε is arbitrary, the result follows.

The authors wish to thank the referee for his careful study of the manuscript
and valuable comments.
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