PRODUCTS OF EXTRA STRONG ŚWIA̧TKOWSKI FUNCTIONS

Abstract

In this paper we characterize products of four or more extra strong Świạtkowski functions.

1 Preliminaries

We use mostly standard terminology and notation. The letters \mathbb{R} and \mathbb{N} denote the real line and the set of positive integers, respectively. The symbols $\mathrm{I}(a, b)$ and $\mathrm{I}[a, b]$ denote the open and the closed interval with endpoints a and b, respectively. For each $A \subset \mathbb{R}$ we use the symbols $\operatorname{int} A, \operatorname{cl} A$, and $\operatorname{bd} A$ to denote the interior, the closure, and the boundary of A, respectively. We say that a set $A \subset \mathbb{R}$ is simply open [1], if it can be written as the union of an open set and a nowhere dense set. The symbol $\operatorname{Ent}(x)$ denotes the greatest integer not larger than $x \in \mathbb{R}$.

Let $f: I \rightarrow \mathbb{R}$, where I is a nondegenerate interval. The symbol $\mathcal{C}(f)$ stands for the set of all points of continuity of f. We say that f is a Darboux function $(f \in \mathcal{D})$, if it maps connected sets onto connected sets. We say that f is quasi-continuous in the sense of Kempisty [2], if for all $x \in I$ and open sets $U \ni x$ and $V \ni f(x)$, the set $\operatorname{int}\left(U \cap f^{-1}(V)\right)$ is nonempty. We say that f is cliquish [7], if the set of points of continuity of f is dense in I. We say that f is a strong Świagtkowski function $[3]\left(f \in \mathcal{S}_{s}\right)$, if whenever $\alpha, \beta \in I$ and

[^0]$y \in \mathrm{I}(f(\alpha), f(\beta))$, there is an $x_{0} \in \mathrm{I}(\alpha, \beta) \cap \mathcal{C}(f)$ such that $f\left(x_{0}\right)=y$. We say that f is an extra strong Światkowski function $[6]\left(f \in \mathcal{S}_{e s}\right)$, if whenever $\alpha, \beta \in I, \alpha \neq \beta$, and $y \in \mathrm{I}[f(\alpha), f(\beta)]$, there is an $x_{0} \in \mathrm{I}[\alpha, \beta] \cap \mathcal{C}(f)$ such that $f\left(x_{0}\right)=y$. One can easily see that each strong Świa̧tkowski function is both Darboux and quasi-continuous and each extra strong Świa̧tkowski function is strong Świątkowski. The symbol $[f=a]$ stands for the set $\{x \in I: f(x)=a\}$. We say that a function f changes its sign in interval J, if there are points $x_{1}, x_{2} \in J$ such that $\operatorname{sgn} f\left(x_{1}\right) \neq \operatorname{sgn} f\left(x_{2}\right)$. The symbol \mathcal{M} denotes the class of all functions f such that f has a zero in each interval in which it takes on both positive and negative values.

2 Introduction

In 1996 A. Maliszewski proved the following theorem [4].
Theorem 2.1. For each function $f: \mathbb{R} \rightarrow \mathbb{R}$ the following conditions are equivalent:
i) f is a finite product of Darboux quasi-continuous functions,
ii) there are Darboux quasi-continuous functions g and h such that $f=g h$,
iii) $f \in \mathcal{M}, f$ is cliquish, and the set $[f=0]$ is simply open.

He showed also that products of two and three strong Świa̧tkowski functions are different, and asked for characterization of products of such functions. In 2006 I found the partial solution of this problem proving the following theorem [5].

Theorem 2.2. For each function $f: \mathbb{R} \rightarrow \mathbb{R}$ the following conditions are equivalent:
i) f is a finite product of strong Świagtkowski functions,
ii) there are strong Świgtkowski functions g_{1}, \ldots, g_{4} such that $f=g_{1} \ldots g_{4}$,
iii) the function f is cliquish, the set $[f=0]$ is simply open, and there exist $a G_{\delta}$-set $A \subset[f=0]$ such that $I \cap A \neq \emptyset$ for every interval I in which f takes on both positive and negative values.
Recently I found a bounded strong Świa̧tkowski function which cannot be written as the finite product of extra strong Świa̧tkowski functions [6, Proposition 4.2]. Moreover I presented a product of three extra strong Świa̧tkowski functions that cannot be written as a product of two such functions and a
product of four extra strong Świa̧tkowski functions that cannot be expressed as a product of three functions of that kind [6 , Propositions 4.4 and 4.5].

In this paper I characterize products of four or more extra strong Świa̧tkowski functions. However, the following problem is still open.

Problem 2.3. Characterize the products of two extra strong Świa̧tkowski functions and the products of three extra strong Świa̧tkowski functions.

3 Auxiliary lemmas

The proof of Lemma 3.1 we can find in [6, Theorem 3.1].
Lemma 3.1. For each function $f: \mathbb{R} \rightarrow \mathbb{R}$ the following conditions are equivalent:
i) $f \in \dot{\mathcal{S}}_{e s}$,
ii) $f \in \mathcal{D}$ and $f[I]=f[I \cap \mathcal{C}(f)]$ for each nondegenerate interval $I \subset \mathbb{R}$,
iii) $f \in \mathcal{D}$ and $f(x) \in f[\mathrm{I}[x, t] \cap \mathcal{C}(f)]$ for each $x \in \mathbb{R}$ and each $t \in \mathbb{R} \backslash\{x\}$.

The next lemma is interesting in itself.
Lemma 3.2. Assume that $I \subset \mathbb{R}$ is an interval, $g: I \rightarrow \mathbb{R}$, and $h: \mathbb{R} \rightarrow \mathbb{R}$. If $g, h \in \mathcal{S}_{e s}$, then $h \circ g \in \dot{\mathcal{S}}_{\text {es }}$.
Proof. Let $x \in I$ and $t \in I \backslash\{x\}$. If $g \upharpoonright \mathrm{I}[x, t] \in \mathcal{C o n s t}$, then $(h \circ g) \upharpoonright \mathrm{I}[x, t] \in$ Const and

$$
(h \circ g)(x) \in(h \circ g)[\mathrm{I}[x, t] \cap \mathcal{C}(h \circ g)] .
$$

In the other case, since $g \in \mathcal{S}_{e s} \subset \mathcal{D}$, then $g[\mathrm{I}[x, t]]$ is a nondegenerate interval. Since $h \in \dot{\mathcal{S}}_{\text {es }}$, by Lemma 3.1 we have

$$
\begin{aligned}
(h \circ g)(x) & \in h[g[\mathrm{I}[x, t]]]=h[g[\mathrm{I}[x, t]] \cap \mathcal{C}(h)]=h[g[\mathrm{I}[x, t] \cap \mathcal{C}(g)] \cap \mathcal{C}(h)] \\
& \subset h[g[\mathrm{I}[x, t] \cap \mathcal{C}(h \circ g)]]=(h \circ g)[\mathrm{I}[x, t] \cap \mathcal{C}(h \circ g)] .
\end{aligned}
$$

Clearly $h \circ g \in \mathcal{D}$. By Lemma 3.1 we obtain that $h \circ g \in \mathcal{S}_{e s}$.
Lemma 3.3 is due to A. Maliszewski [4, Lemma III.1.1].
Lemma 3.3. Let $A \subset \mathbb{R}$ be nowhere dense and closed and \mathcal{I} be the family of all components of $\mathbb{R} \backslash A$. There are pairwise disjoint families $\mathcal{I}_{1}, \ldots, \mathcal{I}_{4} \subset \mathcal{I}$ such that for each $j \in\{1, \ldots, 4\}$ and $x \in A$ if x is not isolated in A from the left (from the right), then there is a sequence $\left(I_{j, n}\right) \subset \mathcal{I}_{j}$ with $\inf I_{j, n} \rightarrow x^{-}$ (with $\sup I_{j, n} \rightarrow x^{+}$, respectively).

The proof of Lemma 3.4 is similar to the proof of [5, Lemma 3.4].
Lemma 3.4. Assume that $F \subset C$ are closed and \mathcal{J} is a family of components of $\mathbb{R} \backslash C$ such that $C \subset \operatorname{cl} \bigcup \mathcal{J}$. There is a family $\mathcal{J}^{\prime} \subset \mathcal{J}$ such that
i) for each $J \in \mathcal{J}$, if $F \cap \operatorname{bd} J \neq \emptyset$, then $J \in \mathcal{J}^{\prime}$,
ii) for each $c \in F$, if c is a right-hand (left-hand) limit point of C, then c is a right-hand (respectively left-hand) limit point of the union $\bigcup \mathcal{J}^{\prime}$,
iii) $\mathrm{cl} \bigcup_{J \in \mathcal{J}^{\prime}}\{\inf J\} \subset F \cup \bigcup_{J \in \mathcal{J}^{\prime}}\{\inf J\}$ and $\mathrm{cl} \bigcup_{J \in \mathcal{J}^{\prime}}\{\sup J\} \subset F \cup \bigcup_{J \in \mathcal{J}^{\prime}}\{\sup J\}$.

Proof. Let \mathcal{P} be the family of all components of $\mathbb{R} \backslash F$ and $P \in \mathcal{P}$. One can easily see that there is a family $\mathcal{J}_{P} \subset \mathcal{J}$ such that $\bigcup \mathcal{J}_{P} \subset P$ and the following conditions hold:

$$
\begin{gather*}
\text { if } P \cap C \neq \emptyset \text {, then } \mathcal{J}_{P} \neq \emptyset, \tag{1}\\
\text { for each } J \in \mathcal{J}, \text { if } J \subset P \text { and } \operatorname{bd} P \cap \operatorname{bd} J \neq \emptyset, \text { then } J \in \mathcal{J}_{P}, \tag{2}\\
\text { if } \inf P \in \operatorname{cl}(P \cap C) \text {, then } \inf P \in \operatorname{cl} \bigcup \mathcal{J}_{P}, \tag{3}\\
\text { if } \sup P \in \operatorname{cl}(P \cap C), \text { then } \sup P \in \operatorname{cl} \bigcup \mathcal{J}_{P}, \tag{4}\\
\operatorname{cl} \bigcup_{J \in \mathcal{J}_{P}}\{\inf J\} \subset \operatorname{bd} P \cup \bigcup_{J \in \mathcal{J}_{P}}\{\inf J\}, \tag{5}\\
\operatorname{cl} \bigcup_{J \in \mathcal{J}_{P}}\{\sup J\} \subset \operatorname{bd} P \cup \bigcup_{J \in \mathcal{J}_{P}}\{\sup J\} . \tag{6}
\end{gather*}
$$

Define $\mathcal{J}^{\prime}=\bigcup_{P \in \mathcal{P}} \mathcal{J}_{P}$. Clearly $\mathcal{J}^{\prime} \subset \mathcal{J}$. We will show that \mathcal{J}^{\prime} satisfies the conditions i)-iii) of the lemma.

Assume that $F \cap \operatorname{bd} J \neq \emptyset$ for some $J \in \mathcal{J}$. Since $F \subset C$, there is a $P \in \mathcal{P}$ with $J \subset P$. Then by (2), $J \in \mathcal{J}_{P} \subset \mathcal{J}^{\prime}$. This proves condition i).

To prove condition ii) assume that $c \in F$ is a right-hand limit point of C. We consider two cases.

If there is a $P \in \mathcal{P}$ with $c=\inf P$, then by (3),

$$
c \in \operatorname{cl} \bigcup \mathcal{J}_{P} \subset \operatorname{cl}\left((c, \infty) \cap \bigcup \mathcal{J}^{\prime}\right)
$$

In the opposite case fix a $d>c$. Since $C \subset \operatorname{cl} \bigcup \mathcal{J}$, we obtain $(c, d) \cap$ $\bigcup \mathcal{J} \neq \emptyset$. By our assumption, there is a $J \in \mathcal{J}$ such that $J \subset(c, d)$ and $(\sup J, d) \cap F \neq \emptyset$. Choose $P \in \mathcal{P}$ with $J \subset P$. Clearly $P \subset(c, d)$.

If $P \cap C=\emptyset$, then $P=J \in \mathcal{J}$, and by (2), $P \in \mathcal{J}_{P} \subset \mathcal{J}^{\prime}$. Consequently $(c, d) \cap \bigcup \mathcal{J}^{\prime} \neq \emptyset$.

If $P \cap C \neq \emptyset$, then by (1), $\mathcal{J}_{P} \neq \emptyset$. Since $\bigcup \mathcal{J}_{P} \subset P$, we obtain that $(c, d) \cap \bigcup \mathcal{J}^{\prime} \neq \emptyset$. This completes the proof of ii).

Finally we will show iii). Note that by (5),

$$
\begin{aligned}
\operatorname{cl} \bigcup_{J \in \mathcal{J}^{\prime}}\{\inf J\} & =\operatorname{cl} \bigcup_{P \in \mathcal{P}} \bigcup_{J \in \mathcal{J}_{P}}\{\inf J\} \subset \operatorname{cl} \bigcup_{P \in \mathcal{P}}\left(\operatorname{bd} P \cup \bigcup_{J \in \mathcal{J}_{P}}\{\inf J\}\right) \subset \\
& \subset \operatorname{cl} F \cup \bigcup_{P \in \mathcal{P}}\left(\bigcup_{J \in \mathcal{J}_{P}}\{\inf J\} \cup \operatorname{bd} P\right)=F \cup \bigcup_{J \in \mathcal{J}^{\prime}}\{\inf J\} .
\end{aligned}
$$

Similarly, using condition (6) we can prove that $\operatorname{cl} \bigcup_{J \in \mathcal{J}^{\prime}}\{\sup J\} \subset F \cup$ $\bigcup_{J \in \mathcal{J}^{\prime}}\{\sup J\}$. This completes the proof of the lemma.

Lemma 3.5. Let $I=(a, b)$ be an open interval and assume that $y_{1}, y_{2} \in[0,1]$. There is an extra strong Światkowski function g : $\operatorname{cl} I \rightarrow[0,1]$ such that
i) $g(a)=y_{1}, \quad g(b)=y_{2}$,
ii) $g[I]=(0,1]$,
iii) bd $I \subset \mathcal{C}(g)$,
iv) if $y_{1} \neq 0$, then $g[[a, a+\delta)]=\left\{y_{1}\right\}$ for some $\delta>0$,
v) if $y_{2} \neq 0$, then $g[(b-\delta, b]]=\left\{y_{2}\right\}$ for some $\delta>0$.

Proof. Define the function $\bar{g}: \mathbb{R} \rightarrow(0,1]$ by

$$
\bar{g}(x)=\left\{\begin{array}{cl}
\min \left\{1, \sin x^{-1}+|x|+1\right\} & \text { if } x \neq 0 \\
2^{-1} & \text { if } x=0
\end{array}\right.
$$

Then clearly $\bar{g} \in \dot{\mathcal{S}}_{\text {es }}$. Choose elements $a<x_{1}<\cdots<x_{7}<b$ and define continuous functions $\varphi, \psi: \operatorname{cl} I \rightarrow[0,1]$ as follows:

$$
\begin{aligned}
& \varphi(x)= \begin{cases}y_{1} & \text { if } x \in\left[a, x_{1}\right], \\
y_{2} & \text { if } x \in\left[x_{7}, b\right], \\
1 & \text { if } x \in\left[x_{2}, x_{6}\right], \\
\text { linear } & \text { in intervals }\left[x_{1}, x_{2}\right] \text { and }\left[x_{6}, x_{7}\right],\end{cases} \\
& \psi(x)= \begin{cases}y_{1} & \text { if } x=a, \\
y_{2} & \text { if } x=b, \\
1 & \text { if } x \in\left[x_{2}, x_{6}\right], \\
\text { linear } & \text { in intervals }\left[a, x_{2}\right] \text { and }\left[x_{6}, b\right] .\end{cases}
\end{aligned}
$$

Now define the function $g: \operatorname{cl} I \rightarrow[0,1]$ by the formula:

$$
g(x)= \begin{cases}\bar{g}\left(x-x_{4}\right) & \text { if } x \in\left[x_{3}, x_{5}\right] \\ \varphi(x) & \text { if } x \in\left[a, x_{2}\right] \text { and } y_{1} \neq 0 \text { or } x \in\left[x_{6}, b\right] \text { and } y_{2} \neq 0 \\ \psi(x) & \text { if } x \in\left[a, x_{2}\right] \text { and } y_{1}=0 \text { or } x \in\left[x_{6}, b\right] \text { and } y_{2}=0 \\ \text { linear } & \text { in intervals }\left[x_{2}, x_{3}\right] \text { and }\left[x_{5}, x_{6}\right]\end{cases}
$$

Clearly $\mathcal{C}(g)=\operatorname{cl} I \backslash\left\{x_{4}\right\}$. So, condition iii) holds and $g \in \mathcal{S}_{e s}$. Now assume that $y_{1} \neq 0$ and put $\delta=x_{1}-a>0$. Then obviously $g[[a, a+\delta)]=\left\{y_{1}\right\}$. Similarly we can show that condition v) is fulfilled. The other requirements of the lemma are evident.

Lemma 3.6. Let $E \subset \mathbb{R}$ be a compact interval and $f: E \rightarrow \mathbb{R}$. Assume that $I=(a, b) \subset E$ is an open interval such that $I \subset[f=0]$. Moreover, suppose that $c, d \in[-1,1]$ such that $c \neq 0$ if $f(a) \neq 0$ and $d \neq 0$ if $f(b) \neq 0$. There are extra strong Światkowski functions $g_{1}, g_{2}: \operatorname{cl} I \rightarrow[-1,1]$ such that $\operatorname{sgn} \circ\left(g_{1} g_{2}\right)=\operatorname{sgn} \circ f\lceil\operatorname{cl} I$ and for $i \in\{1,2\}$, we have:
i) $g_{i}(a)=c(\operatorname{sgn} f(a))^{i+1}, \quad g_{i}(b)=d(\operatorname{sgn} f(b))^{i+1}$,
ii) $g_{i}[I]=[-1,1]$,
iii) if $f(a) \neq 0$, then $g_{i}\left[(a, z) \cap \mathcal{C}\left(g_{i}\right)\right]=[-1,1]$ for each $z \in(a, b)$,
iv) if $f(a)=0$, then $[a, a+\delta) \subset\left[g_{i}=0\right]$ for some $\delta>0$,
v) if $f(b) \neq 0$, then $g_{i}\left[(z, b) \cap \mathcal{C}\left(g_{i}\right)\right]=[-1,1]$ for each $z \in(a, b)$,
vi) if $f(b)=0$, then $(b-\delta, b] \subset\left[g_{i}=0\right]$ for some $\delta>0$.

Proof. Choose $t \in(a, b)$ and a strictly decreasing sequence $\left(x_{n}\right) \subset(a, t)$ such that $x_{n} \rightarrow a^{+}$. Put $x_{0}=t$. Define the function $h:(a, t] \rightarrow[-1,1]$ by the formula:

$$
h(x)= \begin{cases}0 & \text { if } x=x_{n-1}, n \in \mathbb{N} \\ (-1)^{n-1} & \text { if } x=\left(x_{n-1}+x_{n}\right) / 2, n \in \mathbb{N} \\ \text { linear } & \text { in each interval of the form }\left[x_{n},\left(x_{n-1}+x_{n}\right) / 2\right] \\ & \text { or }\left[\left(x_{n-1}+x_{n}\right) / 2, x_{n-1}\right], n \in \mathbb{N}\end{cases}
$$

Then h is continuous on $(a, t]$ and $h[(a, t]]=[-1,1]$. Now fix an $i \in\{1,2\}$ and define two functions $\varphi_{i}, \psi_{i}:[a, t] \rightarrow[-1,1]$ as follows:

$$
\varphi_{i}(x)= \begin{cases}h(x) & \text { if } x \in \bigcup_{n=1}^{\infty}\left[x_{4 n-2 i+2}, x_{4 n-2 i}\right] \\ 0 & \text { if } x \in \bigcup_{n=1}^{\infty}\left[x_{4 n+2 i-4}, x_{4 n+2 i-6}\right] \\ c(\operatorname{sgn} f(x))^{i+1} & \text { if } x=a\end{cases}
$$

$$
\psi_{i}(x)=\left\{\begin{array}{cl}
h(x) & \text { if } x \in\left[x_{6-2 i}, x_{4-2 i}\right], \\
0 & \text { if } x \in\left[x_{2 i}, x_{2 i-2}\right] \cup\left[a, x_{4}\right] .
\end{array}\right.
$$

Since $h\left(x_{n}\right)=0$ for each $n \in \mathbb{N} \cup\{0\}$, functions φ_{i} and ψ_{i} are well defined and ψ_{i} is continuous. Moreover the function $\varphi_{i} \in \mathcal{S}_{e s}$ and $t \in \mathcal{C}\left(\varphi_{i}\right) \cap \mathcal{C}\left(\psi_{i}\right)$. Proceeding similarly we construct functions $\bar{\varphi}_{i}, \bar{\psi}_{i}:[t, b] \rightarrow[-1,1]$ having the same properties as φ_{i} and ψ_{i}, respectively. Define the function $g_{i}: \operatorname{cl} I \rightarrow$ $[-1,1]$ by the formula:

$$
g_{i}(x)= \begin{cases}\varphi_{i}(x) & \text { if } x \in[a, t] \text { and } f(a) \neq 0, \\ \psi_{i}(x) & \text { if } x \in[a, t] \text { and } f(a)=0, \\ \bar{\varphi}_{i}(x) & \text { if } x \in[t, b] \text { and } f(b) \neq 0, \\ \bar{\psi}_{i}(x) & \text { if } x \in[t, b] \text { and } f(b)=0 .\end{cases}
$$

Since $\varphi_{i}(t)=\psi_{i}(t)=\bar{\varphi}_{i}(t)=\bar{\psi}_{i}(t)=0$, the function g_{i} is well defined. Moreover, $t \in \mathcal{C}\left(g_{i}\right)$, whence $g_{i} \in \mathcal{S}_{e s}$. Now assume that $f(a)=0$ and put $\delta=x_{4}-a>0$. Then

$$
g_{i}[[a, a+\delta)]=\psi_{i}[[a, a+\delta)]=\{0\} .
$$

So, $[a, a+\delta) \subset\left[g_{i}=0\right]$. Similarly we can show that condition vi) holds.
Finally, sgn $\circ\left(g_{1} g_{2}\right) \mid I=0=\operatorname{sgn} \circ f \upharpoonright I$ and $\left(\operatorname{sgn} \circ\left(g_{1} g_{2}\right)\right)(x)=(\operatorname{sgn} \circ$ $f)(x)$ for each $x \in \operatorname{bd} I$. Consequently, sgn $\circ\left(g_{1} g_{2}\right)=\operatorname{sgn} \circ f \upharpoonright \operatorname{cl} I$. The other requirements of the lemma are evident.

4 Main results

Theorem 4.1. Assume that $E \subset \mathbb{R}$ is a compact interval, the function $f: E \rightarrow \mathbb{R}$ is cliquish, the set $[f=0]$ is simply open, and there is a $G_{\delta}-$ set $A \subset[f=0]$ such that $I \cap A \neq \emptyset$ for each interval I in which the function f changes its sign. Then there are functions $g_{1}, \ldots, g_{4} \in \dot{\mathcal{S}}_{\text {es }}$ such that $f=g_{1} \ldots g_{4}$.

Proof. First we will show that

$$
\begin{equation*}
\text { there are functions } g_{1}, g_{2} \in \dot{\mathcal{S}}_{e s} \text { with sgn } \circ\left(g_{1} g_{2}\right)=\operatorname{sgn} \circ f \text {. } \tag{7}
\end{equation*}
$$

Define $C \stackrel{\mathrm{df}}{=} \mathrm{bd}[f=0]$. Observe that the set C is closed and since $[f=0]$ is simply open, C is nowhere dense. Let \mathcal{I} be the family of all components of $\mathbb{R} \backslash C$. By Lemma 3.3 there are pairwise disjoint families $\mathcal{I}_{1}, \ldots, \mathcal{I}_{4} \subset \mathcal{I}$ such that for each $j \in\{1, \ldots, 4\}$ and $x \in C$ if x is not isolated in C from the left
(from the right), then there is a sequence $\left(I_{j, n}\right) \subset \mathcal{I}_{j}$ with $\inf I_{j, n} \rightarrow x^{-}$(with $\sup I_{j, n} \rightarrow x^{+}$, respectively). Observe that, since $[f=0]$ is simply open, we have only $I \cap[f=0]=\emptyset$ or $I \subset[f=0]$ for each $I \in \mathcal{I}$. Now define

$$
\begin{equation*}
P \stackrel{\text { df }}{=}\left\{x \in C: x \in \operatorname{bd} I \cap \operatorname{bd} I^{\prime} \text { for some } I, I^{\prime} \in \mathcal{I} \text { such that } I^{\prime} \neq I\right\} . \tag{8}
\end{equation*}
$$

Clearly, P is the set of all points which are bilaterally isolated in C. Let

$$
\begin{equation*}
A_{1} \stackrel{\mathrm{df}}{=}(A \cap C) \cup P . \tag{9}
\end{equation*}
$$

Since A is a G_{δ}-set, A_{1} is a G_{δ}-set, too. Then $C \backslash A_{1}$ is an F_{σ}-set, whence there is an increasing sequence $\left(F_{n}\right)$ consisting of closed sets such that

$$
\begin{equation*}
C \backslash A_{1}=\bigcup_{n \in \mathbb{N}} F_{n} \tag{10}
\end{equation*}
$$

Let $C_{1} \stackrel{\text { df }}{=} C \backslash P$. Then obviously C_{1} is closed, nowhere dense, and $C \backslash A_{1}=$ $C_{1} \backslash A_{1}$. So, $F_{n} \subset C_{1}$ for each $n \in \mathbb{N}$ and $C_{1} \subset \operatorname{cl} \bigcup \mathcal{I}_{j}$ for each $j \in\{1, \ldots, 4\}$.

Define $F_{0}^{\prime}=\emptyset$. For each $n \in \mathbb{N}$, use four times Lemma 3.4 to construct a sequence of sets $\left(F_{n}^{\prime}\right)$ and an increasing sequence of families of intervals $\left(\mathcal{J}_{n}^{\prime}\right)$ such that

$$
\begin{gather*}
\mathcal{J}_{n}^{\prime}=\bigcup_{j=1}^{4} \mathcal{J}_{j, n}^{\prime} \tag{11}\\
F_{n}^{\prime}=F_{n} \cup \bigcup_{k<n}\left(F_{k}^{\prime} \cup \bigcup_{I \in \mathcal{J}_{k}^{\prime}}\left(\operatorname{bd} I \backslash A_{1}\right)\right), \tag{12}
\end{gather*}
$$

and for $j \in\{1, \ldots, 4\}$,

$$
\begin{equation*}
\mathcal{J}_{j, n}^{\prime} \subset \mathcal{I}_{j} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\text { for each } I \in \mathcal{I}_{j} \text {, if } F_{n}^{\prime} \cap \mathrm{bd} I \neq \emptyset, \text { then } I \in \mathcal{J}_{j, n}^{\prime} \tag{14}
\end{equation*}
$$

for each $c \in F_{n}^{\prime}$, if c is a right-hand (left-hand) limit point of C_{1}, then c is a right-hand (left-hand) limit point of the union $\bigcup \mathcal{J}_{j, n}^{\prime}$,

$$
\begin{align*}
& \operatorname{cl} \bigcup_{J \in \mathcal{J}_{j, n}^{\prime}}\{\inf J\} \subset F_{n}^{\prime} \cup \bigcup_{J \in \mathcal{J}_{j, n}^{\prime}}\{\inf J\} \text { and } \tag{15}\\
& \operatorname{cl} \bigcup_{J \in \mathcal{J}_{j, n}^{\prime}}\{\sup J\} \subset F_{n}^{\prime} \cup \bigcup_{J \in \mathcal{J}_{j, n}^{\prime}}\{\sup J\} \tag{16}
\end{align*}
$$

Observe that for each $k<n$, the set $B_{k} \stackrel{\text { df }}{=} F_{k}^{\prime} \cup \bigcup_{I \in \mathcal{J}_{k}^{\prime}}\left(\mathrm{bd} I \backslash A_{1}\right)$ is closed. Indeed, fix a $k<n$ and let $x \in \operatorname{cl} B_{k}$. Then there is a sequence $\left(x_{m}\right) \subset B_{k}$ such that $x_{m} \rightarrow x$. If $\left(x_{m}\right) \subset F_{k}^{\prime}$, then $x \in \operatorname{cl} F_{k}^{\prime}=F_{k}^{\prime} \subset B_{k}$. In the opposite case, without loss of generality we can assume that $\left(x_{m}\right) \subset \bigcup_{I \in \mathcal{J}_{k}^{\prime}}\{\inf I\} \backslash A_{1}$, whence $x \in \operatorname{cl} \bigcup_{I \in \mathcal{J}_{k}^{\prime}}\{\inf I\}$. By (16), $x \in F_{k}^{\prime} \cup \bigcup_{I \in \mathcal{J}_{k}^{\prime}}\{\inf I\}$. If we would have $x \in A_{1}$, then since $\left(x_{m}\right) \subset \bigcup_{I \in \mathcal{J}_{k}}\{\inf I\}$ and $x_{m} \rightarrow x$, there was a sequence $\left(y_{m}\right) \subset \bigcup_{I \in \mathcal{J}_{k}}\{\sup I\}$ such that $y_{m} \rightarrow x$, which contradicts (16). Consequently $x \in B_{k}$, which proves that the set B_{k} is closed. So, by (12), the set F_{n}^{\prime} is also closed and $F_{n}^{\prime} \subset C_{1} \backslash A_{1}$.

Now let $a_{I} \stackrel{\mathrm{df}}{=} \inf I, b_{I} \stackrel{\text { df }}{=} \sup I$ for each $I \in \mathcal{I}$, and

$$
\mathcal{I}_{5} \stackrel{\text { df }}{=}\left\{I \in \mathcal{I}: I \notin \bigcup_{j=1}^{4} \mathcal{I}_{j}\right\} .
$$

Fix an $I \in \mathcal{I}$ and put

$$
n_{I}= \begin{cases}\min \left\{n \in \mathbb{N}: I \in \mathcal{J}_{n}^{\prime}\right\} & \text { if } I \in \bigcup \mathcal{J}_{n}^{\prime}, \\ \operatorname{Ent}(1 /|I|)+1 & \text { if } I \in \mathcal{I} \backslash \bigcup \mathcal{J}_{n}^{\prime} .\end{cases}
$$

Note that if $a_{I} \in P$, then there is $I_{R} \in \mathcal{I}$ such that $a_{I}=b_{I_{R}}$. Similarly, if $b_{I} \in P$, then there is $I_{L} \in \mathcal{I}$ such that $b_{I}=a_{I_{L}}$. Define

$$
\begin{aligned}
& r_{a_{I}}= \begin{cases}0 & \text { if } a_{I} \in A, \\
2^{-1}\left|\operatorname{sgn} f\left(a_{I}\right)\right| & \text { if } a_{I}=b_{I_{R}} \text { and } n_{I} \geq n_{I_{R}}, \\
2^{n_{I}-n_{I_{R}}-1}\left|\operatorname{sgn} f\left(a_{I}\right)\right| & \text { if } a_{I}=b_{I_{R}} \text { and } n_{I}<n_{I_{R}}, \\
2^{-n}\left|\operatorname{sgn} f\left(a_{I}\right)\right| & \text { if } a_{I} \in F_{n}^{\prime} \backslash \bigcup_{k<n} F_{k}^{\prime}, n \in \mathbb{N},\end{cases} \\
& r_{b_{I}}= \begin{cases}0 & \text { if } b_{I} \in A, \\
2^{-1}\left|\operatorname{sgn} f\left(b_{I}\right)\right| & \text { if } b_{I}=a_{I_{L}} \text { and } n_{I} \geq n_{I_{L}}, \\
2^{n_{I}-n_{I_{L}}-1}\left|\operatorname{sgn} f\left(b_{I}\right)\right| & \text { if } b_{I}=a_{I_{L}} \text { and } n_{I}<n_{I_{L}}, \\
2^{-n}\left|\operatorname{sgn} f\left(b_{I}\right)\right| & \text { if } b_{I} \in F_{n}^{\prime} \backslash \bigcup_{k<n} F_{k}^{\prime}, n \in \mathbb{N} .\end{cases}
\end{aligned}
$$

Observe that $r_{a_{I}}, r_{b_{I}} \in[0,1]$. Moreover we can easily see that if components $J, J^{\prime} \in \mathcal{I}$ and $a_{J}=b_{J^{\prime}}$, then

$$
\begin{equation*}
2^{-n_{J}} r_{a_{J}}=2^{-n_{J^{\prime}}} r_{b_{J^{\prime}}} . \tag{17}
\end{equation*}
$$

By (8), if $x \in \operatorname{bd} I \cap P$, there is $I^{\prime} \in \mathcal{I}$ such that $I^{\prime} \neq I$ and $x \in \operatorname{bd} I \cap \operatorname{bd} I^{\prime}$.

For each $x \in \operatorname{bd} I$ define

$$
s(x)=\left\{\begin{array}{cc}
|\operatorname{sgn} f(x)| & \text { if } x \notin P \text { or } x \in P \text { and } I^{\prime} \subset[f=0] \\
(-1)^{j+1}|\operatorname{sgn} f(x)| & \text { if } x \in P, I^{\prime} \in \mathcal{I}_{j} \text { for } j \in\{1,2,5\}, \\
& \text { and } I^{\prime} \cap[f=0]=\emptyset \\
(-1)^{j+1} \operatorname{sgn} f(x) & \text { if } x \in P, I^{\prime} \in \mathcal{I}_{j} \text { for } j \in\{3,4\}, \\
& \text { and } I^{\prime} \cap[f=0]=\emptyset
\end{array}\right.
$$

If $I \cap[f=0]=\emptyset$, assuming that $y_{1}=r_{a_{I}}$ and $y_{2}=r_{b_{I}}$, we construct the function $g_{I}: \operatorname{cl} I \rightarrow[0,1]$ which fulfills the requirements of Lemma 3.5. And if $I \subset[f=0]$, assuming that $c=r_{a_{I}} s\left(a_{I}\right)$ and $d=r_{b_{I}} s\left(b_{I}\right)$, we construct functions $g_{1, I}, g_{2, I}: \operatorname{cl} I \rightarrow[-1,1]$ which fulfill the requirements of Lemma 3.6.

Fix an $i \in\{1,2\}$. Define the function $g_{i}: E \rightarrow[-1,1]$ by the formula:

$$
g_{i}(x)= \begin{cases}0 & \text { if } x \in A \cap C \\ 2^{-n_{I}} g_{i, I}(x) & \text { if } x \in \operatorname{cl} I \text { and } I \subset[f=0] \\ (-1)^{j+1} 2^{-n_{I}}(\operatorname{sgn} f(x))^{i+1} g_{I}(x) & \text { if } x \in \operatorname{cl} I, I \cap[f=0]=\emptyset \\ (-1)^{j+1} 2^{-n_{I}}(\operatorname{sgn} f(x))^{i} g_{I}(x) & \text { and } I \in \mathcal{I}_{j} \text { for } j \in\{1,2,5\}, \\ & \text { if } x \in \operatorname{cl} I, I \cap[f=0]=\emptyset \\ 2^{-n}(\operatorname{sgn} f(x))^{i+1} & \text { and } I \in \mathcal{I}_{j} \text { for } j \in\{3,4\}, \\ & \text { if } x \in F_{n}^{\prime} \backslash\left(\cup_{I \in \mathcal{I}} \text { bd } I \cup F_{n-1}^{\prime}\right), \\ n \in \mathbb{N} .\end{cases}
$$

First we will show that the function g_{i} is well defined. If $x \in \operatorname{bd} I \cap A$ for some $I \in \mathcal{I}$, then $g_{i}(x)=0$. Now let $x \notin A$ and $x \in \operatorname{bd} I \cap \mathrm{bd} I^{\prime}$ for some $I, I^{\prime} \in \mathcal{I}$ such that $I^{\prime} \neq I$. Then obviously $x \in P$. Note that if $x \in[f=0] \cap P$, then $g_{i}(x)=0$. So, let $(\operatorname{sgn} \circ f)(x) \neq 0$. Without loss of generality we can assume that $x=a_{I}=b_{I^{\prime}}$. We consider the following cases.

Case 1. $I \subset[f=0]$ and $I^{\prime} \subset[f=0]$.
Then, by (17) and since $s\left(a_{I}\right)=1=s\left(b_{I^{\prime}}\right)$, we have

$$
\begin{aligned}
g_{i}\left(a_{I}\right) & =2^{-n_{I}} g_{i, I}\left(a_{I}\right)=2^{-n_{I}} r_{a_{I}} s\left(a_{I}\right)\left(\operatorname{sgn} f\left(a_{I}\right)\right)^{i+1}= \\
& =2^{-n_{I^{\prime}}} r_{b_{I^{\prime}}} s\left(b_{I^{\prime}}\right)\left(\operatorname{sgn} f\left(b_{I^{\prime}}\right)\right)^{i+1}=2^{-n_{I^{\prime}}} g_{i, I^{\prime}}\left(b_{I^{\prime}}\right)=g_{i}\left(b_{I^{\prime}}\right)
\end{aligned}
$$

Case 2. $I \cap[f=0]=\emptyset, I^{\prime} \subset[f=0]$, and $I \in \mathcal{I}_{j}$ for $j \in\{1,2,5\}$.
Since $g_{I}\left(a_{I}\right)=r_{a_{I}}$ and $s\left(b_{I^{\prime}}\right)=(-1)^{j+1}$, then by (17)

$$
\begin{aligned}
g_{i}\left(a_{I}\right) & =(-1)^{j+1} 2^{-n_{I}}\left(\operatorname{sgn} f\left(a_{I}\right)\right)^{i+1} g_{I}\left(a_{I}\right)= \\
& =2^{-n_{I^{\prime}}} r_{b_{I^{\prime}}} s\left(b_{I^{\prime}}\right)\left(\operatorname{sgn} f\left(b_{I^{\prime}}\right)\right)^{i+1}=2^{-n_{I^{\prime}}} g_{i, I^{\prime}}\left(b_{I^{\prime}}\right)=g_{i}\left(b_{I^{\prime}}\right)
\end{aligned}
$$

Case 3. $I \cap[f=0]=\emptyset, I^{\prime} \subset[f=0]$, and $I \in \mathcal{I}_{j}$ for $j \in\{3,4\}$.
Since $g_{I}\left(a_{I}\right)=r_{a_{I}},\left(\operatorname{sgn} f\left(a_{I}\right)\right)^{i}=\left(\operatorname{sgn} f\left(b_{I^{\prime}}\right)\right)^{i+2}$, and

$$
s\left(b_{I^{\prime}}\right)=(-1)^{j+1} \operatorname{sgn} f\left(b_{I^{\prime}}\right)
$$

then by (17)

$$
\begin{aligned}
g_{i}\left(a_{I}\right) & =(-1)^{j+1} 2^{-n_{I}}\left(\operatorname{sgn} f\left(a_{I}\right)\right)^{i} g_{I}\left(a_{I}\right)= \\
& =2^{-n_{I^{\prime}}} r_{b_{I^{\prime}}} s\left(b_{I^{\prime}}\right)\left(\operatorname{sgn} f\left(b_{I^{\prime}}\right)\right)^{i+1}=2^{-n_{I^{\prime}}} g_{i, I^{\prime}}\left(b_{I^{\prime}}\right)=g_{i}\left(b_{I^{\prime}}\right)
\end{aligned}
$$

So, the function g_{i} is well defined. Moreover, we can easily see that sgn \circ $\left(g_{1} g_{2}\right)=\operatorname{sgn} \circ f$.

Now we will show that

$$
\begin{equation*}
A_{1}^{\prime} \stackrel{\mathrm{df}}{=} A \cap C \subset \mathcal{C}\left(g_{i}\right) \tag{18}
\end{equation*}
$$

Take an $x_{0} \in A_{1}^{\prime}$. Observe that $A_{1}^{\prime} \subset[f=0] \cap C$. If there is an $I \in \mathcal{I}$ such that $x_{0}=b_{I}$, then by condition iii) of Lemma 3.5 or condition vi) of Lemma 3.6, respectively, the function g_{i} is continuous from the left at x_{0}.

In the opposite case take an $x_{0} \in A_{1}^{\prime} \backslash\left\{b_{I}: I \in \mathcal{I}\right\}$ and let $\varepsilon>0$. Choose $n_{0} \in \mathbb{N}$ such that $2^{-n_{0}}<\varepsilon$ and define the set F as follows:

$$
F \stackrel{\text { df }}{=} \begin{cases}\left(\operatorname{cl} \bigcup \mathcal{J}_{n_{0}}^{\prime}\right) \backslash\left(I \cup\left\{x_{0}\right\}\right) & \text { if there is an } I \in \mathcal{I} \text { such that } x_{0} \in \operatorname{cl} I \\ \operatorname{cl} \bigcup \mathcal{J}_{n_{0}}^{\prime} & \text { otherwise. }\end{cases}
$$

Observe that, by (16), the set F is closed. Put $\delta=\min \left\{2^{-n_{0}}\right.$, $\left.\operatorname{dist}\left(F, x_{0}\right)\right\}$. (If $C \backslash A_{1}=\emptyset$, then $\delta=2^{-n_{0}}$.) Since $x_{0} \notin F$, we have $\operatorname{dist}\left(F, x_{0}\right)>0$. Consequently $\delta>0$. Choose a $\delta^{\prime} \in(0, \delta)$ such that $x_{0}-\delta^{\prime} \notin \bigcup \mathcal{I}$. (Recall that x_{0} is not isolated in C from the left.) Observe that if $I \in \mathcal{I}_{5}$ and $I \subset$ $\left(x_{0}-\delta^{\prime}, x_{0}\right)$, then $|I|<2^{-n_{0}}$ and $n_{I}>n_{0}$. For every $x \in\left(x_{0}-\delta^{\prime}, x_{0}\right)$, we have $x \notin F$, which shows that $x \notin \bigcup_{I \in \mathcal{J}_{n_{0}}^{\prime}} \operatorname{cl} I$. Condition (15) yields $F_{n_{0}}^{\prime} \subset \operatorname{cl} \bigcup \mathcal{J}_{n_{0}}^{\prime}$, whence $F_{n_{0}}^{\prime} \subset F \cup\left\{x_{0}\right\}$ and in particular $x \notin F_{n_{0}}^{\prime}$. Thus

$$
\left|g_{i}(x)-g_{i}\left(x_{0}\right)\right|=\left|g_{i}(x)\right| \leq 2^{-n_{0}}<\varepsilon
$$

So, in this case the function g_{i} is continuous from the left at x_{0}, too. Similarly we can prove that the function g_{i} is continuous from the right at each point $x_{0} \in A_{1}^{\prime}$. Consequently $A_{1}^{\prime} \subset \mathcal{C}\left(g_{i}\right)$.

Now we will prove that

$$
\begin{equation*}
\underset{n \in \mathbb{N}}{\forall} \underset{\delta>0}{\forall}\left(x \in F_{n}^{\prime} \backslash\left\{b_{I}: I \in \mathcal{I}\right\} \Rightarrow g_{i}\left[(x-\delta, x) \cap \mathcal{C}\left(g_{i}\right)\right] \supset\left[-2^{-n}, 2^{-n}\right]\right) \tag{19}
\end{equation*}
$$

Let $n \in \mathbb{N}, \delta>0$ and $x \in F_{n}^{\prime} \backslash\left\{b_{I}: I \in \mathcal{I}\right\}$. Then $x \notin P$, whence for $j \in\{1, \ldots, 4\}$, by (15), there is an $I_{j} \in \mathcal{J}_{j, n}^{\prime}$ with $I_{j} \subset(x-\delta, x)$. Notice that $\max \left\{n_{I_{j}}: j \in\{1, \ldots, 4\}\right\} \leq n$. So,

$$
g_{i}\left[(x-\delta, x) \cap \mathcal{C}\left(g_{i}\right)\right] \supset \bigcup_{j=1}^{4} g_{i}\left[I_{j} \cap \mathcal{C}\left(g_{i}\right)\right] \supset\left[-2^{-n}, 2^{-n}\right] \backslash\{0\}
$$

If there is an $I \in \mathcal{I}$ such that $I \subset[f=0]$ and $(x-\delta, x) \cap I \neq \emptyset$, then since $g_{i, I} \in \mathcal{S}_{e s}$ and conditions v) and vi) of Lemma 3.6 hold, we have

$$
g_{i}\left[(x-\delta, x) \cap \mathcal{C}\left(g_{i}\right)\right] \supset\left[-2^{-n}, 2^{-n}\right]
$$

In the opposite case, since $x \notin P$, the function f changes its sign in each left-hand neighborhood of x. Hence, by assumption

$$
\emptyset \neq(x-\delta, x) \cap A_{1}^{\prime} \subset(x-\delta, x) \cap \mathcal{C}\left(g_{i}\right) \cap\left[g_{i}=0\right]
$$

and finally

$$
g_{i}\left[(x-\delta, x) \cap \mathcal{C}\left(g_{i}\right)\right] \supset\left[-2^{-n}, 2^{-n}\right]
$$

Similarly we can prove that

$$
\underset{n \in \mathbb{N} \delta>0}{\forall}\left(x \in F_{n}^{\prime} \backslash\left\{a_{I}: I \in \mathcal{I}\right\} \Rightarrow g_{i}\left[(x, x+\delta) \cap \mathcal{C}\left(g_{i}\right)\right] \supset\left[-2^{-n}, 2^{-n}\right]\right)
$$

Further we will show that
for each $I \in \mathcal{I}$, if $x \in \operatorname{bd} I$, then $g_{i}(x) \in g_{i}\left[\mathrm{I}[x, t] \cap \mathcal{C}\left(g_{i}\right)\right]$ for each $t \neq x$ such that $\mathrm{I}[x, t] \subset E$.

Let $I \in \mathcal{I}, x \in \operatorname{bd} I$, and $t \neq x$. Without loss of generality we can assume that $x \notin \mathcal{C}\left(g_{i}\right)$. Hence by (18), $x \notin A_{1}^{\prime}$. Let $t<x$. (If $t>x$ we proceed analogously.)

First assume that $x=b_{I}$. We consider two cases.
Case 1. $I \subset[f=0]$.
Then $g_{i}=2^{-n_{I}} g_{i, I}$ on $\mathrm{cl} I$. If $g_{i, I}\left(b_{I}\right) \neq 0$, then by condition v) of Lemma 3.6 we obtain that

$$
g_{i, I}\left[\left(t_{0}, b_{I}\right) \cap \mathcal{C}\left(g_{i, I}\right)\right]=[-1,1]
$$

where $t_{0}=\sup \left\{a_{I}, t\right\}$. Hence and by the definition of g_{i} we have

$$
g_{i}\left[[t, x] \cap \mathcal{C}\left(g_{i}\right)\right] \supset g_{i}\left[\left(t_{0}, b_{I}\right) \cap \mathcal{C}\left(g_{i}\right)\right]=\left[-2^{-n_{I}}, 2^{-n_{I}}\right] \ni g_{i}\left(b_{I}\right)=g_{i}(x)
$$

If $g_{i, I}\left(b_{I}\right)=0$, then by condition vi) of Lemma 3.6 there is a $\delta>0$ such that

$$
\left(b_{I}-\delta, b_{I}\right] \subset\left[g_{i, I}=0\right] \subset\left[g_{i}=0\right],
$$

whence condition (20) holds.
Case 2. $I \cap[f=0]=\emptyset$.
Then $g_{i}=2^{-n_{I}} g_{I}$ or $g_{i}=-2^{-n_{I}} g_{I}$. If $g_{i}\left(b_{I}\right)=0$, then $b_{I} \in A \cap C=A_{1}^{\prime} \subset$ $\mathcal{C}\left(g_{i}\right)$, which is impossible, or $b_{I} \in P$. But if $b_{I} \in P$, then by condition iii) of Lemma 3.5 and by condition iv) of Lemma 3.6, we would also have $x=b_{I} \in$ $\mathcal{C}\left(g_{i}\right)$, a contradiction. So, $g_{i}\left(b_{I}\right) \neq 0$. By condition v) of Lemma 3.5 there is a $z \in\left(t, b_{I}\right) \cap \mathcal{C}\left(g_{i}\right)$ such that $g_{i}(z)=g_{i}\left(b_{I}\right)=g_{i}(x)$, whence condition (20) holds.

Now let $x=a_{I}$. We can assume that $x \notin P$. Since $x \notin A_{1}^{\prime}$, then $x \notin A_{1}$. Consequently $x \in C \backslash A_{1}=\bigcup_{n \in \mathbb{N}} F_{n}$, whence $x \in F_{n}^{\prime} \backslash \bigcup_{k<n} F_{k}^{\prime}$ for some $n \in \mathbb{N}$. Since $g_{i}\left(a_{I}\right)=0, g_{i}\left(a_{I}\right)=2^{-n-n_{I}}$, or $g_{i}\left(a_{I}\right)=-2^{-n-n_{I}}$, we have $\left|g_{i}\left(a_{I}\right)\right|<2^{-n}$. Therefore, by (19),

$$
g_{i}\left[[t, x] \cap \mathcal{C}\left(g_{i}\right)\right] \supset\left[-2^{-n}, 2^{-n}\right] \ni g_{i}\left(a_{I}\right)=g_{i}(x),
$$

which completes the proof of (20).
To complete the proof of (7) we must show that $g_{i} \in \dot{\mathcal{S}}_{e s}$. Let $\alpha, \beta \in E$, $\alpha<\beta$, and $y \in \mathrm{I}\left[g_{i}(\alpha), g_{i}(\beta)\right]$. Assume that $g_{i}(\alpha) \leq g_{i}(\beta)$. (The other case is similar.) If $\alpha, \beta \in \operatorname{cl} I$ for some $I \in \mathcal{I}$, then by (20) and since $g_{1, I}, g_{2, I}, g_{I} \in \dot{\mathcal{S}}_{e s}$, there is an $x_{0} \in[\alpha, \beta] \cap \mathcal{C}\left(g_{i}\right)$ with $g_{i}\left(x_{0}\right)=y$. So, assume that the opposite case holds.

Assume that $y \geq 0$. (The case $y<0$ is analogous.) If $\beta \in A_{1}^{\prime}$, then $y=g_{i}(\beta)=0$ and by (18), $\beta \in \mathcal{C}\left(g_{i}\right)$. So, let $\beta \notin A_{1}^{\prime}$. We consider two cases.

Case 1. $\beta \notin \bigcup_{n \in \mathbb{N}} F_{n}^{\prime}$ or $\beta \in\left\{b_{I}: I \in \mathcal{I}\right\}$.
Then there is an $I \in \mathcal{I}$ such that $\beta \in \operatorname{cl} I, \alpha \notin \operatorname{cl} I$ and $\beta \neq a_{I}$. If $y \in \mathrm{I}\left[g_{i}\left(a_{I}\right), g_{i}(\beta)\right]$, then by (20) and since $g_{1, I}, g_{2, I}, g_{I} \in \dot{\mathcal{S}}_{e s}$, there is an $x_{0} \in\left[a_{I}, \beta\right] \cap \mathcal{C}\left(g_{i}\right) \subset[\alpha, \beta] \cap \mathcal{C}\left(g_{i}\right)$ with $g_{i}\left(x_{0}\right)=y$.

Now let $y \in\left[0, g_{i}\left(a_{I}\right)\right)$. Then $g_{i}\left(a_{I}\right)>0$, whence $a_{I} \notin A$.
If $a_{I} \in C \backslash A_{1}=\bigcup_{n \in \mathbb{N}} F_{n}$, then $a_{I} \in F_{n}^{\prime} \backslash \bigcup_{k<n} F_{k}^{\prime}$ for some $n \in \mathbb{N}$ and $g_{i}\left(a_{I}\right)=2^{-n-n_{I}}<2^{-n}$. By (19),

$$
y \in\left[0, g_{i}\left(a_{I}\right)\right) \subset\left[0,2^{-n}\right] \subset g_{i}\left[\left(\alpha, a_{I}\right) \cap \mathcal{C}\left(g_{i}\right)\right] .
$$

So, there is an $x_{0} \in\left(\alpha, a_{I}\right) \cap \mathcal{C}\left(g_{i}\right) \subset[\alpha, \beta] \cap \mathcal{C}\left(g_{i}\right)$ with $g_{i}\left(x_{0}\right)=y$.
If $a_{I} \in P$, then there is an $I^{\prime} \in \mathcal{I}$ such that $a_{I}=b_{I^{\prime}}$. Since $g_{i}\left(a_{I}\right)>0$, we have $I \subset[f=0]$ or $I^{\prime} \subset[f=0]$. Assume that the first inclusion holds. (If
$I^{\prime} \subset[f=0]$, then we proceed similarly.) By condition iii) of Lemma 3.6 and since $g_{i}=2^{-n_{I}} g_{i, I}$ on cl I we obtain that

$$
y \in\left[0, g_{i}\left(a_{I}\right)\right] \subset\left[0,2^{-n_{I}}\right] \subset g_{i}\left[\left(a_{I}, \beta\right) \cap \mathcal{C}\left(g_{i}\right)\right]
$$

Hence there is an $x_{0} \in\left(a_{I}, \beta\right) \cap \mathcal{C}\left(g_{i}\right) \subset[\alpha, \beta] \cap \mathcal{C}\left(g_{i}\right)$ with $g_{i}\left(x_{0}\right)=y$.
Case 2. $\beta \in \bigcup_{n \in \mathbb{N}} F_{n}^{\prime} \backslash\left\{b_{I}: I \in \mathcal{I}\right\}$.
Then $\beta \in F_{n}^{\prime} \backslash F_{n-1}^{\prime}$ for some $n \in \mathbb{N}$. By (19),

$$
y \in\left[0, g_{i}(\beta)\right] \subset\left[0,2^{-n}\right] \subset g_{i}\left[(\alpha, \beta) \cap \mathcal{C}\left(g_{i}\right)\right]
$$

Consequently, there is an $x_{0} \in(\alpha, \beta) \cap \mathcal{C}\left(g_{i}\right) \subset[\alpha, \beta] \cap \mathcal{C}\left(g_{i}\right)$ with $g_{i}\left(x_{0}\right)=y$. This completes the proof of condition (7).

Now define the function $\tilde{f}: E \rightarrow \mathbb{R}$ by

$$
\tilde{f}(x)=\left\{\begin{array}{cl}
\frac{f}{g_{1} g_{2}}(x) & \text { if } f(x) \neq 0 \\
1 & \text { otherwise }
\end{array}\right.
$$

Notice that \tilde{f} is cliquish. Indeed, it is obvious that

$$
\mathcal{C}(\tilde{f}) \supset \mathcal{C}(f) \cap \mathcal{C}\left(g_{1}\right) \cap \mathcal{C}\left(g_{2}\right) \cap U
$$

where

$$
U \stackrel{\mathrm{df}}{=} \operatorname{int}[f=0] \cup \operatorname{int}[f \neq 0]
$$

Observe that $E \backslash U=\operatorname{bd}[f=0]=C$ is nowhere dense, whence U is residual. Since the sets $\mathcal{C}(f), \mathcal{C}\left(g_{1}\right)$, and $\mathcal{C}\left(g_{2}\right)$ are also residual, the set $\mathcal{C}(\tilde{f})$ is dense. Hence the function \tilde{f} is cliquish.

Clearly $\tilde{f}>0$ on E. So, the function $\ln \circ \tilde{f}: E \rightarrow \mathbb{R}$ is cliquish. By [6, Corollary 3.4], there are functions $h_{1}, h_{2} \in \mathcal{S}_{e s}$ such that $\ln \circ \tilde{f}=h_{1}+h_{2}$.

Define $g_{3} \stackrel{\text { df }}{=} \exp \circ h_{1}$ and $g_{4} \stackrel{\text { df }}{=} \exp \circ h_{2}$. By Lemma 3.2, $g_{3}, g_{4} \in \mathcal{S}_{e s}$. Clearly

$$
f=g_{1} g_{2} \tilde{f}=g_{1} g_{2}\left(\exp \circ h_{1}\right)\left(\exp \circ h_{2}\right)=g_{1} \ldots g_{4}
$$

which completes the proof.
Theorem 4.2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. The following conditions are equivalent:
i) there are functions $g_{1}, \ldots, g_{4} \in \dot{\mathcal{S}}_{e s}$ such that $f=g_{1} \ldots g_{4}$,
ii) there is a $k \in \mathbb{N}$ and functions $g_{1}, \ldots, g_{k} \in \dot{\mathcal{S}}_{\text {es }}$ such that $f=g_{1} \ldots g_{k}$,
iii) the function f is cliquish, the set $[f=0]$ is simply open, and there is a G_{δ}-set $A \subset[f=0]$ such that $I \cap A \neq \emptyset$ for every interval I in which f changes its sign.
Proof. The implication i) \Rightarrow ii) is evident, while the implication ii) \Rightarrow iii) follows by [6, Theorem 4.1].
iii) \Rightarrow i). Put $E=[-\pi / 2, \pi / 2]$. Define the function $\tilde{f}: E \rightarrow \mathbb{R}$ by

$$
\tilde{f}(x)= \begin{cases}(f \circ \tan)(x) & \text { if } x \in(-\pi / 2, \pi / 2) \\ 0 & \text { if } x \in\{-\pi / 2, \pi / 2\}\end{cases}
$$

Then clearly $\tilde{A} \xlongequal{\text { df }} \arctan [A] \cup\{-\pi / 2, \pi / 2\} \subset[\tilde{f}=0]$ is a G_{δ}-set, the function \tilde{f} is cliquish, and by [1], the set $[\tilde{f}=0]=\arctan [[f=0]] \cup\{-\pi / 2, \pi / 2\}$ is simply open. Moreover for each interval $I \subset E$, if the function \tilde{f} changes its sign in I, then $I \cap \tilde{A} \neq \emptyset$. So, by Theorem 4.1, there are functions $\tilde{g}_{1}, \ldots, \tilde{g}_{4} \in$ $\dot{\mathcal{S}}_{e s}$ such that $\tilde{f}=\tilde{g}_{1} \ldots \tilde{g}_{4}$. For $i \in\{1, \ldots, 4\}$ define $g_{i}=\tilde{g}_{i} \circ \arctan$ and notice that by Lemma $3.2, g_{i} \in \mathcal{S}_{e s}$. Clearly

$$
f=\tilde{f} \circ \arctan =\left(\tilde{g}_{1} \circ \arctan \right) \ldots\left(\tilde{g}_{4} \circ \arctan \right)=g_{1} \ldots g_{4}
$$

which completes the proof.

References

[1] N. Biswas, On some mappings in topological spaces, Bull. Calcutta Math. Soc., 61 (1969), 127-135.
[2] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math., 19 (1932), 184-197.
[3] A. Maliszewski, On the limits of Światkowski functions, Zeszyty Nauk. Politech. Łódz. Mat., 27(719) (1995), 87-93.
[4] A. Maliszewski, Darboux Property and Quasi-Continuity. A Uniform Approach, WSP, Słupsk, 1996.
[5] P. Szczuka, Products of strong Świa̧tkowski functions, J. Appl. Anal., 12(1) (2006), 129-145.
[6] P. Szczuka, Sums and products of extra strong Śwightkowski functions, Tatra Mt. Math. Publ., 49 (2011), 71-79.
[7] H. P. Thielman, Types of functions, Amer. Math. Monthly, 60(3) (1953), 156-161.
P. SzCZUKA

[^0]: Mathematical Reviews subject classification: Primary: 26A21, 54C30; Secondary: 26A15, 54C08

 Key words: Darboux function, quasi-continuous function, strong Świa̧tkowski function, extra strong Świạtkowski function, product of functions

 Received by the editors November 14, 2009
 Communicated by: Brian S. Thomson
 *Supported by Kazimierz Wielki University.

