B. László and J. T. Tóth^{*}, Department of Mathematics, University of Education, Farská 19, 949 74 Nitra, Slovakia, e-mail: toth@@unitra.sk

RELATIVELY (R)-DENSE UNIVERSAL SEQUENCES FOR CERTAIN CLASSES OF FUNCTIONS

Abstract

Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ and $(a_n)_{n=1}^{\infty}$ be a sequence of positive reals. We will say that $(a_n)_{n=1}^{\infty}$ is relatively (R)-dense for f provided that for every $x, y \in \mathbb{R}^+$ with f(x) < f(y) there exists $n, m \in \mathbb{N}$ such that $f(x) < \frac{f(a_n)}{f(a_m)} < f(y)$. Sufficient conditions are given for a sequence of positive reals to be relatively (R)-dense for certain functions.

Introduction

Denote by \mathbb{R}^+ and \mathbb{N} the set of all positive real numbers and the natural numbers, respectively. Let $R(A, B) = \{\frac{a}{b}; a \in A, b \in B\}$ be the ratio set of $A, B \subset \mathbb{R}^+$ and put R(A) = R(A, A) for any $A \subset \mathbb{R}^+$ (cf. [2], [3], [4], [5]). Note here that $R(A, B) \neq R(B, A)$ in general, however R(A, B) is dense in \mathbb{R}^+ if and only if R(B, A) is dense in \mathbb{R}^+ .

Following [2] and [4] we call a set $A = \{a_1, a_2, \ldots, a_n, \ldots\} \subset \mathbb{R}^+$ (*R*)dense, provided R(A) is dense in \mathbb{R}^+ . Occasionally we will work with a sequence $A = (a_n)_{n=1}^{\infty}$ rather than a set *A*. Sequences of real numbers that are relatively dense for a function *f* were introduced and investigated in [1]. A straightforward analogue for (*R*)-density is as follows: Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ and $(a_n)_{n=1}^{\infty}$ be a sequence of positive reals. We will say that $(a_n)_{n=1}^{\infty}$ is relatively (*R*)-dense for *f* provided that for every $x, y \in \mathbb{R}^+$ with f(x) < f(y) there

Key Words: sequences, ratio set, (R)-density

Mathematical Reviews subject classification: Primary: 26A99. Secondary: 11B83 Received by the editors Feb 20, 1995

^{*}This research was supported by the Slovak Academy of Sciences Grant 1227

³³⁵

exists $n, m \in \mathbb{N}$ such that $f(x) < \frac{f(a_n)}{f(a_m)} < f(y)$ (the choice f(x) = x clearly yields the (R)-density). Evidently, $(a_n)_{n=1}^{\infty}$ is relatively (R)-dense for f, if the sequence $f(A) = (f(a_n))_{n=1}^{\infty}$ is (R)-dense. Further $(a_n)_{n=1}^{\infty}$ will be called a relatively (R)-dense universal sequence for the class of functions \mathcal{M} , if $(a_n)_{n=1}^{\infty}$ is relatively (R)-dense for every $f \in \mathcal{M}$. In what follows A(x) will stand for the counting function of the set $A = \{a_1 < a_2 < \cdots < a_n < \dots\} \subset \mathbb{R}^+$ with $\lim_{n \to \infty} a_n = +\infty$, i.e. $A(x) = \sum_{a \leq x, a \in A} 1$.

It is the purpose of this paper to study relatively (R)-dense universal sequences for a certain class of increasing functions, thus extending several results of [1], [2], [3], [4] concerning sets R(A, B).

Main Results

Denote by \mathcal{F} the set of all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying the following properties:

- 1. $f(x \cdot y) \ge f(x) \cdot f(y)$ for all $x, y \in \mathbb{R}^+$,
- 2. f is increasing and unbounded on \mathbb{R}^+ ,
- 3. f is continuous at x = 1 and f(1) = 1.

We have

Theorem 1 Suppose that the sequence $(a_n)_{n=1}^{\infty}$ of positive reals contains an unbounded subsequence $(c_n)_{n=1}^{\infty}$ such that

$$\limsup_{n \to \infty} \frac{c_{n+1}}{c_n} = 1 \tag{1}$$

Then $(a_n)_{n=1}^{\infty}$ is a relatively (R)-dense universal sequence for \mathcal{F} .

This theorem is a consequence of the following stronger statement:

Theorem 2 Suppose that $A = (a_n)_{n=1}^{\infty}$ fulfills the conditions of Theorem 1 and $B = (b_n)_{n=1}^{\infty}$ is an unbounded sequence of positive reals. Suppose that $\lim_{x\to\infty} g(x) = +\infty$ where $g : \mathbb{R}^+ \to \mathbb{R}^+$. Then R(f(A), g(B)) is dense in \mathbb{R}^+ for each $f \in \mathcal{F}$.

PROOF. According to (1) $\liminf_{\substack{n \to \infty}} \frac{c_n}{c_{n+1}} = 1$ thus by properties of \mathcal{F} $\liminf_{n \to \infty} f(\frac{c_n}{c_{n+1}}) = 1$, so $\limsup_{n \to \infty} \frac{1}{f(\frac{c_n}{c_{n+1}})} = 1$. Let 0 < a < b. Then

$$\frac{1}{f(\frac{c_n}{c_{n+1}})} < \frac{b}{a}$$

whenever $n \ge n_0$ for some $n_0 \in \mathbb{N}$. Consequently by the first property of f

$$\frac{f(c_{n+1})}{f(c_n)} < \frac{b}{a} \quad \text{for all} \quad n \ge n_0 \,. \tag{2}$$

The sequences $(b_n)_{n=1}^{\infty}$ and $(c_n)_{n=1}^{\infty}$ are unbounded so there exists an $i \in \mathbb{N}$ with $f(c_{n_o})b \leq g(b_i)$ further the number $j = \min\{k \in \mathbb{N}; k > n_0 \text{ and } f(c_k)b > g(b_i)\}$. Then $j-1 \geq n_0$ and $f(c_j)b > g(b_i) \geq f(c_{j-1}) \cdot b$. Hence from (2) for n = j-1 we get that $f(c_{j-1})b > f(c_j)a$, so by the previous inequalities $f(c_j)b > g(b_i) > f(c_j)a$ which yields the density of R(g(B), f(A)) thus also of R(f(A), g(B)) in \mathbb{R}^+ since $c_j \in A$.

Remark 1 The preceding theorem generalizes Theorem 2.1 in [1] stating that R(A, B) is dense in \mathbb{R}^+ for every couple of unbounded sequences A, B of positive reals such that $\limsup_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$.

PROOF OF THEOREM 1. Let $f \in \mathcal{F}$. It suffices to choose $b_n = a_n$ (n = 1, 2, ...) and g(x) = f(x) in Theorem 2.

Remark 2 Let $0 < c \le 1$ and $\alpha \in \mathbb{R} \setminus \{0\}$. The function $f(x) = cx^{\alpha}$, $x \in \mathbb{R}^+$ belongs to \mathcal{F} . Further \mathcal{F} also contains functions which are not continuous or strictly increasing, respectively on \mathbb{R}^+ ; e.g.

$$f(x) = \begin{cases} c, & \text{if } x \in [1, x_0) \\ cx^{\alpha}, & \text{if } x \in \mathbb{R}^+ \setminus [1, x_0) \text{ where } x_0 > 1 \end{cases}$$

It is proved in [4] (Satz 5) that if $A = \{a_1 < a_2 < \cdots < a_n < \ldots\}, B = \{b_1 < b_2 < \cdots < b_n < \ldots\} \subset \mathbb{N}$ and at least one of A, B has positive asymptotic density (i.e. $\lim_{n \to \infty} \frac{A(n)}{n} > 0$ or $\lim_{n \to \infty} \frac{B(n)}{n} > 0$) then R(A, B) is dense in \mathbb{R}^+ . The pertinent theorem for one set is proved in (3, Theorem 4). The following theorem generalizes these results for positive real numbers. Before stating it introduce the class \mathcal{F}^* of all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ for which:

- 1. $f(x \cdot y) \ge f(x) \cdot f(y)$ for all $x, y \in \mathbb{R}^+$,
- 2. f(x) > 1 for all x > 1.

It is not hard to prove that members of \mathcal{F}^* are increasing and unbounded on \mathbb{R}^+ , so $\mathcal{F} \not\subset \mathcal{F}^*$ and $\mathcal{F}^* \not\subset \mathcal{F}$ but $\mathcal{F} \cap \mathcal{F}^*$ is an infinite set. We have

Theorem 3 Suppose that $B = \{b_1, b_2, \ldots, b_n, \ldots\} \subset \mathbb{R}^+$ is unbounded as well as the set $A = \{a_1 < a_2 < \cdots < a_n < \ldots\} \subset \mathbb{R}^+$. Suppose that

$$\lim_{x \to \infty} \frac{f(A)(x)}{g(x)} > 0 \tag{3}$$

for some $g \in \mathcal{F}^*$ and a strictly increasing unbounded function $f : \mathbb{R}^+ \to \mathbb{R}^+$. Then R(f(A), g(B)) is dense in \mathbb{R}^+ .

PROOF. Let 0 < a < b and $x \in \mathbb{R}^+$. Then by the 1. property of $g \in \mathcal{F}^*$ we get:

$$\frac{f(A)(bx)}{f(A)(ax)} = \frac{\frac{f(A)(bx)}{g(bx)}}{\frac{f(A)(ax)}{g(ax)}} \cdot \frac{g(bx)}{g(ax)} \ge \frac{\frac{f(A)(bx)}{g(bx)}}{\frac{f(A)(ax)}{g(ax)}} \cdot g\left(\frac{b}{a}\right).$$

Then by (3) and the 2nd property of g, $\lim_{x\to\infty} \frac{f(A)(bx)}{f(A)(ax)} \ge g\left(\frac{b}{a}\right) > 1$. Accordingly $\frac{f(A)(bx)}{f(A)(ax)} > 1$ whenever $x \ge x_0$ for some $x_0 \in \mathbb{R}^+$, hence f(A)(bx) - f(A)(ax) > 0 thus for all $x \ge x_0$ there exists $i = i(x) \in \mathbb{N}$ such that $ax < f(a_i) < bx$. Now $\lim_{x\to\infty} g(x) = +\infty$ and B is unbounded so $g(b_j) > x_0$ for some $j \in \mathbb{N}$. It means by previous considerations that $g(b_j)a < f(a_i) < g(b_j)b$ for some $i = i(g(b_j)) \in \mathbb{N}$ and the density of R(f(A), g(B)) in \mathbb{R}^+ follows.

If X^d denotes the set of all limit points of the set X then we have:

Theorem 4 If $A = \{a_1 < a_2 < \ldots a_n < \ldots\} \subset \mathbb{R}^+$ is relatively (R)-dense for some $f \in \mathcal{F}^*$, then $\liminf_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$.

PROOF. Let $f \in \mathcal{F}^*$ and suppose that $\liminf_{n \to \infty} \frac{a_{n+1}}{a_n} = c > 1$, where $c \in \mathbb{R}^+$. It follows from properties of f that

$$\liminf_{n \to \infty} f\left(\frac{a_{n+1}}{a_n}\right) \ge f(c) > 1 \text{ and } \frac{f(a_{n+1})}{f(a_n)} \ge f\left(\frac{a_{n+1}}{a_n}\right),$$

thus $\liminf_{n \to \infty} \frac{f(a_{n+1})}{f(a_n)} \ge f(c)$. If $c = +\infty$ then put $f(c) = +\infty$.

Now choose $t \in R(f(A))^d$ and t > 1. Then $\frac{f(a_{m_k})}{f(a_{n_k})} \to t$ (as $k \to \infty$) for some sequences $(m_k)_{k=1}^{\infty}$, $(n_k)_{k=1}^{\infty}$ of natural numbers such that $m_k > n_k$ (k = 1, 2, ...). Clearly $\frac{f(a_{m_k})}{f(a_{n_k})} \ge \frac{f(a_{n_k+1})}{f(a_{n_k})}$ so

$$t \ge \liminf_{k \to \infty} \frac{f(a_{n_{k+1}})}{f(a_{n_k})} \ge \liminf_{n \to \infty} \frac{f(a_{n+1})}{f(a_n)} \ge f(c).$$

Consequently $R(f(A))^d \cap (1, f(c)) = \emptyset$. Then properties of f easily yield numbers 1 < x < y < c such that 1 < f(x) < f(y) < f(c) and $(f(x), f(y)) \cap R(f(A)) = \emptyset$, whence A is not relatively (R)-dense for f.

Remark 3 Functions $f(x) = x^{\alpha}$, $x \in \mathbb{R}^+$, $\alpha \in \mathbb{R} \setminus \{0\}$ belong to $\mathcal{F} \cap \mathcal{F}^*$, so these functions satisfy Theorem 1 and Theorem 4.

338

An argument similar to that of in Theorem 4 justifies that $t \leq \frac{1}{f(c)}$ if $t \in R(f(A))^d$ and t < 1. Hence we have the following generalization of Proposition 3 of [6]:

Corollary 1 Let $f \in \mathcal{F}^*$ and $A = \{a_1 < a_2 < \dots a_n < \dots\} \subset \mathbb{R}^+$ such that $\liminf_{n \to \infty} \frac{a_{n+1}}{a_n} = c > 1$. Then $R(f(A))^d \cap (\frac{1}{f(c)}, f(c)) = \emptyset$.

Remark 4 If $c = +\infty$ in the preceding Corollary, then R(f(A)) consists of isolated points in \mathbb{R}^+ .

Remark 5 It was already mentioned in the introduction that (R)-density of f(A) implies relative (R)-density of $A = (a_n)_{n=1}^{\infty}$ for a function f. It is evident that the reverse implication also holds for surjective $f : \mathbb{R}^+ \to \mathbb{R}^+$.

In connection with this it would be interesting to characterize functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ for which f(A) is (R)-dense if and only if the sequence $A = (a_n)_{n=1}^{\infty}$ is relatively (R)-dense for f.

References

- D. Andrica and S. Buzeteanu, Relatively dense universal sequences for the class of continuous periodical functions of period T, L' Analyse Numérique et la théorie de L'Approximation, 16 no. 1 (1987), 1–9.
- [2] W. Narkiewicz and T. Šalát, A theorem of H. Steinhaus and (R)-dense sets of positive integers, Czechoslov. Math. J., 34 (109) (1984), 355–361.
- [3] T. Šalát, On ratio sets of sets of natural numbers, Acta Arith., 15 (1969), 273–278.
- [4] T. Šalát, Quotientbasen und (R)-dichte Mengen, Acta Arith., 19 (1971), 63–78.
- [5] J. Smítal, Remarks on ratio sets of natural numbers, Acta F. R. N. Univ. Comen. – Math., 25 (1971), 93–99.
- [6] J. T. Tóth and L. Zsilinszky, On density of ratio sets of powers of primes, Nieuw Archief voor Wiskunde, 13 no. 2 (1995), 205–208.