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THE s-DIMENSIONAL HAUSDORFF
INTEGRAL AND ITS PHYSICAL

INTERPRETATION

Abstract

A relationship between the s-dimensional Hausdorff integral and the
evolution with losses is established. Professor R. R. Nigmatullin showed
that the evolution with loss can be described by a non-integer integral.
This paper gives another way to describe the evolution. That is, the
evolution can be expressed as Hausdorff integral.

1 Introduction

The Lebesgue integral is the most important integration theory in mathematics
and natural science. However the Lebesgue theory can not deal with the
properties of functions defined on a set E of Lebesgue measure mE = 0.
The Hausdorff Calculus studies the differentiation and integration of functions
defined on a set of Lebesgue measure zero. Since many properties of functions
depend on the behavior of functions on a set of Lebesgue measure zero, one
should not be surprised that the Hausdorff calculus is applicable in these
cases. Using these newly defined concepts, the Cantor ternary function is
an indefinite integral [FU1] and length of this kind of singular curve has an
integral representation [FU2], both results can not be achieved by Lebesgue
Theory.

The purpose of this paper is to give a physical interpretation to the Haus-
dorff integral. In his pioneer work [N1], Professor R. R. Nigmatullin studies
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the evolution of some physical systems with losses using non-integer integrals.
In this paper it is shown that such evolution can be exactly described by
the Hausdorff integral. First, let us quote the nice description from Profes-
sor Nigmatullin’s letter “let us suppose that an initial bar made from metal
has the length t and density P0 = 1. That initial element is divided in two
parts of length ξt but each bar becomes heavier in the result of reforming and
has the mass 1

2ξt . This procedure keeps the total mass of the initial bar”.

The procedure continues infinitely and gives a curve M(t) which described
the distribution of masses on the chosen “length” t. As a result the mass
concentrates in an “exception” set (Lebesgue measure zero) and there is no
mass for almost every point in interval [0, t]. In other words, the density of
mass is 0 for almost every point, but it becomes infinite on an uncountable
set of Lebesgue measure zero. The traditional analysis can not deal with this
phenomenon. What Professor Nigmatullin did is that he approximated the

loss by the sum Pn(t) = 1
(2ξ)nt

∫ t
0
dτ
∑2n

m=1 η(t
(n)
m < τ < t

(n)
m+1)f(τ), the total

loss P (t) is then defined by P (t) = limn→∞ Pn(t). The following shows the
relationship between the loss P (t) and the Hausdorff integral.

The Hausdorff integral is a Riemann type integral. It is defined as the
limit of Riemann sum SD = (D)

∑
f(τ)Hs(E ∩ [u, v]), where s = log 2/log 1

ξ
denotes the Hausdorff dimension of Cantor set E. Note that

Sn =

2n∑
m=1

f(τm)Hs(E ∩ [um, vm]) =

2n∑
m=1

f(τm)
ts

2n

and

Pn(t) =
1

(2ξ)nt

∫ t

0

dτ

2n∑
m=1

η(t(n)m < τ < t
(n)
m+1)f(τ)

=

2n∑
m=1

τm
(2ξ)nt

ξnt =

2n∑
m=1

f(τm)
1

2n

then we have P (t) = t−s(H)
∫ t
0
f(τ) dHs. Recently, Professor Nigmatullin

asked the author if I can get these results [N1] without using Laplace trans-
form (private communication). This paper can be considered as an answer to
Professor Nigmutallin’s problem.

2 Notations and Terminology

Let [a, b] be a closed bounded interval and let E be a perfect set of Lebesgue
measure mE = 0, H − dimE = s (0 < s < 1) and 0 < Hs(E) < ∞, where
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H-dim denotes the Hausdorff dimension, the Hs Hausdorff measure. Following
the terminology of B. B. Mandelbrot [MA, p. 74] such a set E is called a perfect
dust. Set [a, b]\E =

⋃
(ai, bi) and let bi0 − ai0 = max{bi − ai : i = 1, 2, 3, . . . },

define E1
1 = [α1

1, β
1
1 ] = [a, ai0 ], E2

1 = [α2
1, β

2
1 ] = [b, bi0 ]. Let bi1 − ai1 =

max{bi−ai : [ai, bi] ⊂ [α1
1, β

1
1 ]} and bi2−ai2 = max{bi−ai : [ai, bi] ⊂ [α2

1, β
2
1 ]}.

Define E1
2 = [α1

2, β
1
2 ] = [a, ai1 ], . . . , E4

2 = [α4
2, β

4
2 ] = [bi2 , b]. This procedure

continues to give a sequence of intervals, {[αin, βin]2
n

i=1}, n = 1, 2, . . . . Let

En =
⋃2n

i=1E
i
n, n = 1, 2, . . . . then E =

⋂∞
n=1En. It is clear that the class

{Ein}2
n

i=1, n = 1, 2, . . . , forms a net of sets [FA, p. 64].
The upper and lower net densities of E at a point x ∈ E\

⋃
{ai, bi} are

defined as

ND(E, x) = lim
n→∞

Hs(E ∩ [αixn , β
ix
n ])

(βixn − αixn )s

ND(E, x) = lim
n→∞

Hs(E ∩ [αixn , β
ix
n ])

(βixn − αixn )s

x ∈ (αixn , β
ix
n ), n = 1, 2, . . .

respectively. If ND(E, x) = ND(E, x) we say that the net density of E at x
exists, and we write ND(E, x) for the above value. A dust E is said to be
normal if there is a positive number β such that ND(E, x) ≥ β H-a.e.

Remark 1 The ordinary density is not suitable for doing calculus. It can
happen that D(E, x) = 0 for all x, even though Hs(E) > 0 [FE, p. 294].
Moreover, it is hard to estimate the lower density D(E, x). However, it can be
shown that net density is 1 at the points of a Cantor set C nearly everywhere
(except on a countable set). Consequently, the Cantor set is normal. This is
why we use the net density instead of ordinary density.

For any singular function on E, we define the net extreme Hausdorff deriva-
tives as

N −HDF (x) = lim
n→∞

F (βixn )− F (αixn )

Hs(E ∩ [αixn , β
ix
n )

N −HDF (x) = lim
n→∞

F (βixn )− F (αixn )

Hs(E ∩ [αixn , β
ix
n )

x ∈ (αixn , β
ix
n ), n = 1, 2, . . .

If N −HDF (x) = N −HDF (x), we say that the function F (x) is net
Hausdorff differentiable at x; this limit is termed the net Hausdorff derivative
of F (x) at x and is denoted by F ′SH(x).

Remark 2 If the dust E is a Cantor type set, then the net Hausdorff deriva-
tive coincides with λ-power dyadic derivative [FU1].
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We need some notations from Henstock integration theory. Let I be the
set of all closed intervals [u, v] in [a, b] having a nonempty interior. An element
([u, v], x) ∈ I× [a, b] is called an interval-point pair. We write D = {([u, v], x)}
where ([u, v], x) denotes a typical interval-point pair in D. Then D is said to
be a partition of [a, b] (E resp.) if {[u, v]; ([u, v], x) ∈ D} is a finite collec-
tion of nonoverlapping subintervals of [a, b] and [a, b] =

⋃
([u,v],x)∈D[u, v](E =⋃

([u,v],x)∈D[u, v] ∩ E). Let δ(x) be a positive function on [a, b](E). The

partition D is called a δ-fine division of [a, b](E) if ([u, v], x) ∈ D, then
v − u ≤ δ(x). A δ-fine division D of [a, b] is called a net δ-fine division of
[a, b], if E =

⋃
([u,v],x)∈D[u, v]∩E and [u, v] = [αixn , β

ix
n ], for x ∈ E. Thomson’s

paper [TH] provides a nice introduction to these terminologies.

3 s-dimensional Hausdorff integral

As it was mentioned in the introduction, there are some physical systems
in which the mass concentrates in a set E of Lebesgue measure mE = 0.
Therefore, the integral which sums up the total mass will take place only
on E.

Definition 1 A real function f on E is said to be Hausdorff integrable on
[a, b], if there exists r, such that for every ε > 0 there is a gauge function
δ(x) > 0 on E, such that for any net δ-fine division D = {([u, v], x)} of E, we
have

|(D)
∑

f(x)Hs(E ∩ [u, v])− r| < ε,

As usual, we write

(H)

∫ b

a

f(x) dHs = r.

For x ∈ [a, b], let F (x) = (H)
∫ x
a
f(x) dHs + F (a). We call F (x) an indefinite

Hausdorff-integral on [a, b].

Lemma 1 (Covering Lemma) Let δ(x) > 0 for x ∈ E, then there is a net
δ-fine division of E.

Proof. Let F = {x ∈ E : x is an endpoint of a complementary interval of E}.
For each x ∈ E\F , there is a positive integer Nx such that x ∈ (αixn , β

ix
n ) ⊂

(x − δ(x), x + δ(x)) whenever n ≥ Nx. For each x ∈ F , i.e., x = αixn or βixn
for some n, there is an element E

imx
mx of net {Eimx

}αix
such that Ix one-sided

intersects with E, Ix = (2αixn − β
imx
mx , β

imx
mx ) or Ix = (α

imx
mx , 2β

ix
n − α

imx
mx ) and

|Eimx
mx | < δ(x). Since E is compact and E ⊂ ∪{Ix : Ix = (α

inx
nx , β

inx
nx ), whenever
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x ∈ E\F ; Ix = (2α
inx
nx −β

imx
mx , β

imx
mx ), or (α

imx
mx , 2β

inx
nx −α

imx
mx ), whenever x ∈ F};

then by Heine-Borel theorem there is a finite subcover A = {Ixi
}Ii=1 of E. We

divide the intervals Ixi
, i = 1, 2, . . . , I, into two groups, we shall say that an

interval Ixi
is of the the first class if the associated point xi ∈ E\F ; otherwise

the second class i.e., the associated point xi ∈ F .
Since we are interested in a net δ-fine division of E, we shall show that

with a suitable extension of δ to all [a, b], we can construct a net δ-fine division
of [a, b]. This will give the required result. We show that there is a net
δ-fine division of [a, b]. First, we mention a property of the net which will
be used in following. Let [αim, β

i
m], [αjp, β

j
p] be the elements of net {Ein}2

n

i=1,

n = 1, 2, . . . , then either (αim, β
i
m) ∩ (αjp, β

j
p) = ∅ or (αim, β

i
m) ⊆ (αjp, β

j
p) or

(αjp, β
j
p) ⊆ (αim, β

i
m). Let U =

⋃I
i=1 Ixi =

⋃P
p=1(up, vp), where open intervals

(up, vp) are pairwise disjoint. Note that for each p = 1, 2, . . . , P, (up, vp) is

of finite union of elements of A, that is, (up, vp) =
⋃T
t=1 Ixit , Ixit ∈ A. If

necessary discard some intervals Ixit , we write Ixit = (ct, dt), t = 1, 2, . . . , T ,
such that

uj = c1 < c2 < d1 < c3 < d2 < · · · < dT = vj .

Since E is covered by A, there are three possible cases of (c1, d1). We treat
one case only. We may write

(c1, d1) = (c1, α
i1
m1

) ∪ [αi1m1
, βi1m1

).

For the first class interval (c2, d2), by the property of the net we must have

[αi1m1
, βi1m1

] ⊆ [c2, d2] = [αi2m2
, βi2m2

]

where αi1m1
= αi2m2

then,

(c1, d2) = (c1, α
i2
m2

) ∪ [αi2m2
, βi2m2

).

For the second class interval (c2, d2), the interval (c2, d2) intersects with E on
the left-side. Therefore, by the property of the net, we may write

(c1, d2) = (c1, α
i1
m1

) ∪ [αi1m1
, βi1m1

] ∪ (βi1m1
, d2)

or
(c1, d2) = (c1, α

i2
m2

) ∪ [αi2m2
, βi2m2

] ∪ (βi2m2
, d2).

Similarly for the other cases of (c1, d1). Using the definition of αjm and βjm
and the above results, one may choose the elements from A so that the union
of the first class intervals and the first class subintervals of the second class
intervals form a partial partition of E ∩ (c1, d2). The procedure continues and
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stops in finite steps. Thus, there exists a partition D1 of E which consists
of the first class intervals and the first class subintervals of the second class
intervals.

Since D1 is a finite collection of subintervals of [a, b], then V = [a, b]\U,U =⋃
[u,v]∈D1

[u, v], is a finite collection of subintervals of [a, b]. Define a gauge

function δ1(x) on each closed interval of V by

δ1(x) =

{
δ(x) x is an endpoint of intervals of V ,
1
2d(x, U) x ∈ V.

It is well known that for every positive function η(x) defined on an interval
[α, β]. There is a η-fine division D on [α, β]. Applying this statement to each
closed interval of V , we get a partition D2 of V . We write D = D1 ∪D2, then
D is a net δ-fine division of [a, b]. �

By the Lemma, the s-dimensional Hausdorff integral is well defined. The
usual properties of ordinary integral hold for the s-dimensional Hausdorff in-
tegral.

4 Physical Interpretation

We first recall the construction of Professor Nigmatullin. It is known that the
Cantor set is constructed by the following algorithm. Begin with taking t as
the total length of a bar of weight 1. In step one, we remove the middle open
subinterval, leaving two subintervals with length ξt(ξ < 1

2 ). In step two, the
same procedure applies to the remaining subintervals with length ξt. Then
the procedure continues infinitely (see Figure 1). After the first partition the
remaining intervals are [0, ξt], [t(1 − ξ), t]; the inserted points are ξt, t(1 − ξ),
and the density of the remaining points is (2ξt)−1. After the second partition
the remaining intervals are [0, ξ2t], [(ξ − ξ2)t, ξt], [t(1 − ξ), t(1 − ξ + ξ2)] and
[t(1−ξ2), t], the inserted points are ξ2t, (ξ−ξ2)t, t(1−ξ), (1−ξ+ξ2)t, t(1−ξ2),

the density of the remaining points is 1
(2ξ)2t . Let t

(n)
m (m = 1, 2, . . . , 2n) denote

the coordinates of the n-step inserted points then the coordinates of the (n+1)-
step inserted points are defined by following recurrence relationship

t
(n+1)
m+1 = t

(n)
m , t

(n+1)
m+2 = t

(n)
m + ξn+1t

t
(n+1)
m+3 = t

(n)
m+1 − ξn+1t, t

(n+1)
m+4 = t

(n)
m+1,

with the density 1
(2ξ)n+1t .
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Figure 1.

We now integrate f(τ) over the 2n small strips [t
(n)
2m−1, t

(n)
2m], obtaining

Pn(t) =
1

(2ξ)nt

∫ t

0

dτ

2n∑
m=1

η(t
(n)
2m−1 < τ < t

(n)
2m)f(τ).

We define
P (t) = lim

n→∞
Pn(t).
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Theorem 1 Let f be a continuous function on E, then

P (t) = t−s(H)

∫ t

0

f(τ) dHs.

Proof. It is clear that the Hausdorff integral (H)
∫ t
0
f(τ) dHs exists for

every continuous function f(τ) on E. We want to show limn→∞ Pn(t) =

t−s(H)
∫ t
0
f(τ) dHs.

Given ε > 0, there is a positive number δ, such that

|f(τ)− f(τ ′)| < ε (1)

whenever |τ − τ ′| < δ. We can find a positive integer N , such that ξnt < δ, so
that

(f(τ)− ε) ξnt

(2ξ)nt
<

1

(2ξ)nt

∫ t
(n)
2m−1

t
(n)
2m

f(τ) dτ < (f(τ) + ε)
ξnt

(2ξ)nt

where t
(n)
2m−1 ≤ τ ≤ t

(n)
2m and n ≥ N . Thus,

|Pn(t)−
2n∑
1

f(τm)
1

2n
| < ε (2)

whenever n ≥ N and τm ∈ [t
(n)
2m−1, t

(n)
2m].

By the definition of Hausdorff integral, there is a gauge function δ1(x),
such that

|(D1)
∑

f(τ)Hs(E ∩ [u, v])− (H)

∫ t

0

f(τ) dHs| < ε (3)

for every net δ1-fine division D of E. Let δ2(x) = min(δ1(x), δ), by Lemma 1
there is a net δ2-fine devision D1, note that

(D1)
∑

f(τ)Hs(E ∩ [u, v]) =

2n∑
1

f(τm)
ts

2n

where τm ∈ [t
(n)
2m−1, t

(n)
2m] for some n.

Combining (2) and (3) gives

|Pn(t)− t−s(H)

∫ t

0

f(τ) dHs| < (1 + t−s)ε,
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and so limn→∞ Pn(t) = t−s(H)
∫ t
0
f(τ) dHs. �
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