H. Fejzić and D. Rinne, Department of Mathematics, California State University, San Bernardino, CA 92407-2397, e-mail: hfejzic@@wiley.csusb.edu and drinne@@wiley.csusb.edu

CONTINUITY PROPERTIES OF PEANO DERIVATIVES IN SEVERAL VARIABLES

Abstract

For a real-valued function of several real variables that is *n*-times Peano Differentiable, a sufficient condition is given for the Peano derivatives of order n to be Baire*1. An immediate consequence will be that the order n Peano derivatives of an (n + 1)-times Peano differentiable function are Baire*1.

In 1935, A. Denjoy [1] showed that if a real function f is (n + 1)-times Peano differentiable, then the *n*th Peano derivative f_n has the following property. For every nonempty closed set C there is an open interval (a, b) with $(a, b) \cap C \neq \phi$ so that f_n restricted to C, $f_n|_C$, is continuous on $(a, b) \cap C$. In 1976, R. J. O'Malley [3] named this property Baire*1. Approximate Peano derivatives were shown to be Baire*1 by M. J. Evans [2] in 1985. The notion of Baire*1 extends to functions from *m*-dimensional space, \mathbb{R}^m , to \mathbb{R} in the obvious manner, replacing the one-dimensional interval (a, b) with an m-dimensional interval. In this work we obtain the result that if $f : \mathbb{R}^m \to \mathbb{R}$ is (n + 1)-times Peano differentiable, then all the order n Peano derivatives of f are Baire*1. This is done by developing a condition that is implied by (n + 1)-times Peano differentiability that is sufficient to guarantee that the order n Peano derivatives are Baire*1. We also show that the order n Peano derivatives of an n-times Peano differentiable function are Baire 1.

Throughout this paper we consider real valued functions defined on a subset of \mathbb{R}^m . For a vector $h = (h_1, h_2, \ldots, h_m) \in \mathbb{R}^m$, we define $||h|| = \max_i \{h_i\}$. For a multiindex $\alpha = (\alpha_1, \ldots, \alpha_m)$, we define $|\alpha| = \sum_{i=1}^m \alpha_i$, and $\binom{i}{\alpha_1, \ldots, \alpha_m} = \frac{i!}{\alpha_1! \cdots \alpha_m!}$.

Mathematical Reviews subject classification: Primary: 26B05 Received by the editors July 13, 1995

We say that a function f, defined in a neighborhood of a point x is *n*-times Peano differentiable at x if there is a set of numbers $f_{\alpha}(x)$, $1 \leq |\alpha| \leq n$, such that

$$\lim_{||h|| \to 0} \frac{f(x+h) - \sum_{i=0}^{n} \sum_{|\alpha|=i} {i \choose \alpha_1, \dots, \alpha_m} h_1^{\alpha_1} \cdots h_m^{\alpha_m} \frac{f_\alpha(x)}{i!}}{||h||^n} = 0$$
(1)

where $f_{[0,...,0]} = f(x)$. Equivalently

$$f(x+h) = \sum_{i=0}^{n} \sum_{|\alpha|=i} \binom{i}{\alpha_1, \dots, \alpha_m} h_1^{\alpha_1} \cdots h_m^{\alpha_m} \frac{f_\alpha}{i!} + ||h||^n \cdot \epsilon_x(h)$$

where $\epsilon_x(h) \to 0$ as $||h|| \to 0$.

It is easy to check that if f is *n*-times Peano differentiable at a point x, then the numbers $f_{\alpha}(x)$, are unique. Therefore the functions f_{α} , defined to be the $f_{\alpha}(x)$ from (1), are well defined, and each f_{α} is called a Peano derivative of f, of order $|\alpha|$

It is also easy to verify that if f is (n + 1)-times Peano differentiable at x, it is also k-times Peano differentiable for $1 \le k \le n$. However, (n + 1)-times Peano differentiable gives more than n-times Peano differentiable in that we actually have

$$\lim_{||h|| \to 0} \frac{f(x+h) - \sum_{i=0}^{n} \sum_{|\alpha|=i} {i \choose \alpha_1, \dots, \alpha_m} h_1^{\alpha_1} \cdots h_m^{\alpha_m} \frac{f_\alpha(x)}{i!}}{||h||^{n+s}} = 0.$$
(2)

for any $0 \leq s < 1$.

This observation motivates considering the quotient

$$\epsilon_x(h) = \frac{f(x+h) - \sum_{i=0}^n \sum_{|\alpha|=i} {i \choose \alpha_1, \dots, \alpha_m} h_1^{\alpha_1} \cdots h_m^{\alpha_m} \frac{f_\alpha(x)}{i!}}{||h||^r}.$$
 (3)

for r a positive real number. If $\epsilon_x(h) = O(1)$, we say f is r-times Peano bounded at x. By (n + s)-times Peano bounded on \mathbb{R}^m we mean there is a function $s : \mathbb{R}^m \to [0, 1)$ so that f is (n + s(x))-times Peano bounded at each x. Obviously (n + s)-times Peano bounded on \mathbb{R}^m implies n-times Peano differentiable. It turns out that the condition (n + s)-times Peano bounded on \mathbb{R}^m is sufficient to gain information about continuity properties of the nth order Peano derivatives of f. In Theorem 5 below we show that the Baire*1 property is obtained.

The following useful lemma is easily proved by induction.

Lemma 1 For $k \in \mathbb{N}$ we have

$$\sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{i} = \begin{cases} 0 & \text{if } i = 0, 1, ..., k-1, \\ k! & \text{if } i = k, \end{cases}$$

Let $D_n(u,h) = \sum_{j=0}^n (-1)^{n-j} {n \choose j} f(u+jh)$, an *n*th forward difference applied to f.

Lemma 2 Let f be (n + s(u))-times Peano bounded at u. Then $D_n(u, h) =$

$$\sum_{|\alpha|=n} \binom{n}{\alpha_1,\ldots,\alpha_m} h_1^{\alpha_1}\cdots h_m^{\alpha_m} f_\alpha(u) + \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} ||jh||^{n+s(u)} \cdot \epsilon_u(jh).$$

PROOF. Writing each

$$f(u+jh) = \sum_{i=0}^{n} \sum_{|\alpha|=i} j^{i} \binom{i}{\alpha_{1}, \dots, \alpha_{m}} h_{1}^{\alpha_{1}} \cdots h_{m}^{\alpha_{m}} \frac{f_{\alpha}(u)}{i!} + ||jh||^{n+s(u)} \cdot \epsilon_{u}(jh),$$

we get $D_n(u,h) = \sum_{j=0}^n (-1)^{n-j} {n \choose j} f(u+jh) =$

$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \left(\sum_{i=0}^{n} \sum_{|\alpha|=i} j^{i} \binom{i}{\alpha_{1}, \dots, \alpha_{m}} h_{1}^{\alpha_{1}} \cdots h_{m}^{\alpha_{m}} \frac{f_{\alpha}(u)}{i!} + ||jh||^{n+s(u)} \cdot \epsilon_{u}(jh) \right)$$

$$=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}\left(\sum_{i=0}^{n}\sum_{|\alpha|=i}j^{i}\binom{i}{\alpha_{1},\ldots,\alpha_{m}}h_{1}^{\alpha_{1}}\cdots h_{m}^{\alpha_{m}}\frac{f_{\alpha}(u)}{i!}\right)$$
$$+\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}||jh||^{n+s}\cdot\epsilon_{u}(jh).$$

The error term is of the desired form and we rearrange the triple sum to get

$$\sum_{i=0}^{n} \sum_{|\alpha|=i} \left(\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} j^{i} \right) \binom{i}{\alpha_{1}, \dots, \alpha_{m}} h_{1}^{\alpha_{1}} \cdots h_{m}^{\alpha_{m}} \frac{f_{\alpha}(u)}{i!}$$
$$= \sum_{|\alpha|=n} \binom{n}{\alpha_{1}, \dots, \alpha_{m}} h_{1}^{\alpha_{1}} \cdots h_{m}^{\alpha_{m}} f_{\alpha}(u)$$

by Lemma 1.

294

Theorem 3 If $f : \mathbb{R}^m \to \mathbb{R}$ is n-times Peano differentiable, then all nth order Peano derivatives are Baire 1.

PROOF. Pick *m* distinct primes $q_1 > ... > q_m$. There are $L = \binom{m+n-1}{n}$ Peano derivatives of order *n* and for each natural number *N* we generate *L* vectors $\{h[k]\}_{k=0}^{L-1}$ by setting each $h[k]_i = \frac{q_i^k}{\sqrt[n]{N}}$, $0 \le k \le L-1$ and $1 \le i \le m$. The formula for $D_n(u, h)$ in Lemma 2 with s = 0 gives *L* equations of the form

$$N\left(D_n(u,h[k]) - \sum_{j=1}^n (-1)^{n-j} \binom{n}{j} j^n \frac{q_1^{kn}}{N} \cdot \epsilon_u(jh[k])\right)$$
$$= \sum_{|\alpha|=n} \binom{n}{\alpha_1,\dots,\alpha_m} q_1^{k\alpha_1} \cdots q_m^{k\alpha_m} f_\alpha(u).$$

The coefficient matrix for this system, thinking of the $\binom{n}{\alpha_1,\ldots,\alpha_m}f_{\alpha}(u)$ as the unknowns, is the Vandermonde matrix constructed using $\{q_1^{\alpha_1}\cdots q_m^{\alpha_m}|\ 0 \le k \le L-1\}$, that is, the entry in the *i*th row *j*th column is $q_1^{(i-1)\alpha_1}\cdots q_m^{(i-1)\alpha_m}$ where α is the *j*th index with $|\alpha| = n$. Since $\alpha \ne \alpha'$ implies $q_1^{\alpha_1}\cdots q_m^{\alpha_m} - q_1^{\alpha'_1}\cdots q_m^{\alpha'_m} \ne 0$, the determinant Δ of this matrix will be nonzero. By Cramer's Rule each $\binom{n}{\alpha_1,\ldots,\alpha_m}f_{\alpha}(u)$ is of the form

$$\frac{1}{\Delta}\sum_{k=0}^{L-1}N\left(D_n(u,h[k]) - \sum_{j=1}^n (-1)^{n-j} \binom{n}{j} j^n \frac{q_1^{kn}}{N} \cdot \epsilon_u(jh[k])\right) \Delta_k$$

where each Δ_k is the appropriate cofactor in the expansion of Δ about the (k+1)st column. As $N \to \infty$, $||h[k]|| \to 0$ so $\sum_{j=1}^{n} (-1)^{n-j} {n \choose j} j^n q_1^{kn} \cdot \epsilon_u(jh[k]) \to 0$. Therefore each $f_\alpha(u)$ is a pointwise limit of the sequence of continuous functions $\left\{ \frac{1}{\Delta} \sum_{k=0}^{L-1} ND_n(u, h[k]) \Delta_k \right\}$ and is thus Baire 1.

We will also need the following form of $D_n(u, h)$ involving a second point x.

Lemma 4 Let f be (n + s(u))-times Peano bounded at u. Then

$$D_n(u,h) = \sum_{|\alpha|=n} \binom{n}{\alpha_1, \dots, \alpha_m} h_1^{\alpha_1} \cdots h_m^{\alpha_m} f_\alpha(x)$$
$$+ \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} ||u-x+jh||^{n+s(x)} \cdot \epsilon_x (u-x+jh)$$

PROOF. Expanding as we did in the proof of Lemma 2, we get

$$D_n(u,h) = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} f(u+jh) = \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} f(x+u-x+jh) =$$
$$\sum_{j=0}^n (-1)^{n-j} \binom{n}{j} \left(\sum_{i=0}^n \sum_{|\alpha|=i} \binom{i}{(\alpha_1,\dots,\alpha_m)} \prod_{\ell=1}^m (u_\ell - x_\ell + jh_\ell)^{\alpha_\ell} \frac{f_\alpha(x)}{i!} \right) +$$
$$\sum_{j=0}^n (-1)^{n-j} \binom{n}{j} ||u-x+jh||^{n+s(x)} \cdot \epsilon_x (u-x+jh) = T_1 + T_2.$$

The term T_2 is as desired. We rearrange the triple sum T_1 to get $T_1 =$

$$\sum_{i=0}^{n} \sum_{|\alpha|=i} \left(\sum_{j=0}^{n} (-1)^{n-j} {n \choose j} {i \choose \alpha_1, \dots, \alpha_m} \right) \prod_{\ell=1}^{m} (u_\ell - x_\ell + jh_\ell)^{\alpha_\ell} \frac{f_\alpha(x)}{i!} \right).$$

If we write each $(u_l - x_l + jh_l)^{\alpha_l}$ as $\sum_{p_l=0}^{\alpha_l} {\alpha_l \choose p_l} (u_l - x_l)^{\alpha_l - p_l} j^{p_l} h_i^{p_l}$, Then $T_1 =$

$$\sum_{i=0}^{n} \sum_{|\alpha|=i} \left(\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \binom{i}{\alpha_1, \dots, \alpha_m} \right)$$
$$\prod_{\ell=1}^{m} \sum_{p_\ell=0}^{\alpha_\ell} \binom{\alpha_\ell}{p_\ell} (u_\ell - x_\ell)^{\alpha_\ell - p_\ell} j^{p_\ell} h_i^{p_\ell} \right) \frac{f_\alpha(x)}{i!}.$$

When the product inside is expanded and then summed over j = 0, ..., n the only nonzero term, by Lemma 1, will be the term containing j^n . This happens exactly when $\sum_{l=1}^{m} p_l = n$, that is, when each $p_l = \alpha_l$, and $|\alpha| = n$. We then obtain $T_1 =$

$$\sum_{|\alpha|=n} \left(\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \binom{n}{\alpha_1, \dots, \alpha_m} \prod_{l=1}^{m} j^{\alpha_l} h_i^{\alpha_l} \right) \frac{f_\alpha(x)}{n!} =$$
$$\sum_{|\alpha|=n} \left(\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} j^n \right) \binom{n}{\alpha_1, \dots, \alpha_m} h_1^{\alpha_1} \cdots h_m^{\alpha_m} \frac{f_\alpha(x)}{n!} =$$
$$\sum_{|\alpha|=n} \binom{n}{\alpha_1, \dots, \alpha_m} h_1^{\alpha_1} \cdots h_m^{\alpha_m} f_\alpha(x)$$

by Lemma 1.

The main result of the paper is the following Theorem.

Theorem 5 Let $f : \mathbb{R}^m \to \mathbb{R}$ be (n + s)-times Peano bounded on \mathbb{R}^m and let $A_N = \{x \mid |\epsilon_x(h)| \leq N \text{ for all } 0 < \|h\| < \frac{1}{N} \text{ and } s(x) \geq \frac{1}{N}\}$. Then there is a constant K so that whenever $u, x \in \overline{A_N}$ and $\|u - x\| < \frac{1}{(1+n)N}$ we have $|f_\alpha(u) - f_\alpha(x)| \leq \|u - x\|^{\frac{1}{N}} K$ for all $|\alpha| = n$.

PROOF. Let $u, x \in A_N$ with $||u - x|| < \frac{1}{(1+n)N}$. By Lemma 2, $D_n(u, h) =$

$$\sum_{|\alpha|=n} \binom{n}{\alpha_1,\ldots,\alpha_m} h_1^{\alpha_1}\cdots h_m^{\alpha_m} f_\alpha(u) + \sum_{j=0}^n (-1)^{n-j} \binom{n}{j} ||jh||^{n+s(u)} \cdot \epsilon_u(jh).$$
(4)

By Lemma 4 we also have

$$D_n(u,h) = \sum_{|\alpha|=n} \binom{n}{\alpha_1, \dots, \alpha_m} h_1^{\alpha_1} \cdots h_m^{\alpha_m} f_\alpha(x)$$
(5)

$$+\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j}||u-x+jh||^{n+s(x)}\cdot\epsilon_{x}(u-x+jh).$$
 (6)

For $||u - x|| \le ||h|| < \frac{1}{(1+n)N}$ the error terms in (4) and (6) are uniformly bounded on A_N and

$$\sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} \left(||jh||^{n+s(u)} \cdot \epsilon_u(jh) - ||u-x+jh||^{n+s(x)} \cdot \epsilon_x(u-x+jh) \right)$$

may be written as $||h||^{n+\frac{1}{N}} \cdot \varepsilon(h)$ where $|\varepsilon(h)| \leq H$ for some constant H depending only on N. Equating (4) and (6) gives

$$\sum_{|\alpha|=n} \binom{n}{\alpha_1,\ldots,\alpha_m} h_1^{\alpha_1}\cdots h_m^{\alpha_m}(f_\alpha(u)-f_\alpha(x)) = ||h||^{n+\frac{1}{N}}\varepsilon(h).$$
(7)

As in the proof of Theorem 3 pick m distinct primes $q_1 > ... > q_m$ and generate L vectors $\{h[k]\}_{k=0}^{L-1}$ by setting each $h[k]_i = \frac{||u-x||q_i^k}{q_1^k}$, $0 \le k \le L-1$. Substitution in equation (7) gives a system of L equations in the L unknowns $f_{\alpha}(u) - f_{\alpha}(x)$. By Cramer's Rule each $f_{\alpha}(u) - f_{\alpha}(x) = ||u-x||^{\frac{1}{N}} \Delta' \Delta$ where Δ is the Vandermonde determinant as in Theorem 3 and Δ' is bounded and the bound depends only on N. Thus $|f_{\alpha}(u) - f_{\alpha}(x)| \le ||u-x||^{\frac{1}{N}} K$ where $K = \frac{\Delta'}{\Delta}$. It remains to show that the constant K holds for $u, x \in \overline{A}_N$ with $||u-x|| < \frac{1}{(1+n)N}$. To see this, let u and x be in \overline{A}_N and pick $u_n, x_n \in A_N$ approaching u and x respectively. The calculation above shows that $|f_{\alpha}(x_n) - f_{\alpha}(x)| \le ||u-x_n|| \le |$ $||x_n - x||^{s_x} H_x$ for x_n sufficiently close to x, where $s_x = \min\{s(x), \frac{1}{N}\}$ but H_x depends on x as well as N. A similar inequality holds for u_n and u. Then

$$|f_{\alpha}(u) - f_{\alpha}(x)| \leq |f_{\alpha}(u) - f_{\alpha}(u_{n})| + |f_{\alpha}(u_{n}) - f_{\alpha}(x_{n})| + |f_{\alpha}(x_{n}) - f_{\alpha}(x)|$$
$$\leq ||u - u_{n}||^{s_{u}} H_{u} + ||u_{n} - x_{n}||^{\frac{1}{N}} K + ||x_{n} - x||^{s_{x}} H_{x}.$$

Letting $n \to \infty$ we obtain $|f_{\alpha}(u) - f_{\alpha}(x)| \le ||u - x||^{\frac{1}{N}} K$ as desired. \Box

Corollary 6 Let $f : \mathbb{R}^m \to \mathbb{R}$ be (n+s)-times Peano bounded on \mathbb{R}^m . Then the nth order Peano derivatives of f are Baire^{*}1.

PROOF. Let C be a closed subset of \mathbb{R}^m . Since $\bigcup_{N=1}^{\infty} \overline{A}_N = \mathbb{R}^m$, by the Baire Category Theorem there is an open interval $I \in \mathbb{R}^m$ and an integer N such that $C \cap I$ is nonempty and contained in \overline{A}_N . By Theorem 5, the *n*th order Peano derivatives of f restricted to \overline{A}_N are continuous. Therefore, the restriction of the derivatives to the set $C \cap I$ are also continuous.

The next corollary follows easily from the Baire*1 property.

Corollary 7 Let $f : \mathbb{R}^m \to \mathbb{R}$ be (n+s)-times Peano bounded on \mathbb{R}^m . Then there is a dense open set $G \subset \mathbb{R}^m$ such that the nth order Peano derivatives of f are continuous on G.

Lastly, we summarize these results for (n + 1)-times Peano differentiable functions.

Corollary 8 Let $f : \mathbb{R}^m \to \mathbb{R}$ be (n + 1)-times Peano differentiable on \mathbb{R}^m . Then the nth order Peano derivatives of f are Baire*1 and are thus continuous on some dense open set $G \subset \mathbb{R}^m$.

References

- A. Denjoy, Sur l'intégration des coefficients différentiels d'order supérieur, Fund. Math. 25 (1935), 273–326.
- M. J. Evans, Approximate Peano derivatives and the Baire*1 property, Real Analysis Exchange 11 (1985–86), 283–289.
- [3] R. J. O'Malley, Baire*1, Darboux functions, Proc. Amer. Math. Soc., 60 (1976), 187–192.