Krzysztof Banaszewski, Instytut Matematyki WSP, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland

ON \mathcal{E}-CONTINUOUS FUNCTIONS

Abstract

Some properties of \mathcal{E}-continuous functions are investigated. In particular, the maximal family with respect to outer and inner compositions for the family of all \mathcal{E}-continuous functions are described. Moreover, under some assumptions on \mathcal{E} it is proved that every function $f: \mathbb{R} \rightarrow \mathbb{R}$ can be represented as the composition of two \mathcal{E}-continuous function. Similarly, every function $f: \mathbb{R} \rightarrow \mathbb{R}$ can be represented as the limit of a transfinite sequence of \mathcal{E}-continuous functions.

1 Introduction

This paper is a supplement to the article Algebraic properties of \mathcal{E}-continuous functions [1]. One can find there the following definitions.

Let $x \in \mathbb{R}$. A path leading to x is a set $E_{x} \subset \mathbb{R}$ such that $x \in E_{x}$ and x is a point of bilateral accumulation of E_{x}. For $x \in \mathbb{R}$ let $\mathcal{E}(x)$ be a family of paths leading to x. A system of paths is a collection $\mathcal{E}=\{\mathcal{E}(x): x \in \mathbb{R}\}$ such that each $E_{x} \in \mathcal{E}(x)$ for every $x \in \mathbb{R}$ (compare with [2]). Sometimes we shall simply refer to E_{x} as a "path".

We say that $L_{x}\left(R_{x}\right)$ is a left (right) path leading to x if $L_{x}=E_{x} \cap(-\infty, x]$ $\left(R_{x}=E_{x} \cap[x, \infty)\right)$ for some path $E_{x} \in \mathcal{E}(x)$.

For a system of paths \mathcal{E} we define its σ-closure $\sigma \mathcal{E}$ as the least σ-system of paths containing \mathcal{E}. We shall only consider systems of paths \mathcal{E} having the property that if L_{x} is a left path leading to x and R_{x} is a right path leading to x, then $L_{x} \cup R_{x}$ is an element of $\mathcal{E}(x)$ and we shall assume that $\mathbb{R} \in \mathcal{E}(x)$ for each $x \in \mathbb{R}$. We shall classify systems of paths according to the following scheme: a system of paths $\mathcal{E}=\{\mathcal{E}(x): x \in \mathbb{R}\}$ will be said to be

[^0]- of δ-type, if $E_{x} \cap[x-\delta, x+\delta]$ contains a path in $\mathcal{E}(x)$ for every $E_{x} \in \mathcal{E}(x)$ and for every $\delta>0$.
- of Δ-type, if \mathcal{E} is a δ-type system of paths, and there exists a path $E_{y} \in \mathcal{E}$ such that $E_{y} \subset E_{x} \backslash\{x\}$ for each a path $E_{x} \in \mathcal{E}$.
- of σ-type, if \mathcal{E} is a δ-type system of paths, and for each triple of sequences of numbers $\left(a_{n}\right)_{n=1}^{\infty},\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ such that $b_{n+1}<a_{n}<x_{n}<b_{n}$, $\left(a_{n}<x_{n}<b_{n}<a_{n+1}\right) b_{n} \searrow x\left(a_{n} \nearrow x\right)$ and for each left or right or bilateral paths $E_{x_{n}} \subset\left[a_{n}, b_{n}\right]$ leading to x_{n} for $n \in \mathbb{N}$, the set $\bigcup_{n=1}^{\infty} E_{x_{n}} \cup$ $\{x\}$ contains a right path R_{x} (left path L_{x}) derived from an $E_{x} \in \mathcal{E}(x)$.
- of c-type, if \mathcal{E} is a σ-system of paths and every Cantor set C_{x} such that x is a bilateral point of accumulation of C_{x}, belongs to $\mathcal{E}(x)$.
Such systems will be called simply δ-systems, σ-systems and c-systems, respectively. We consider real functions of a real variable, unless otherwise explicitly stated.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $\mathcal{E}=\{\mathcal{E}(x): x \in \mathbb{R}\}$ be a system of paths. We say that a function f is \mathcal{E}-continuous at x (f has a path at x) if there exists a path $E_{x} \in \mathcal{E}(x)$ such that $f \mid E_{x}$ is continuous at x. If f is \mathcal{E}-continuous at every point x, then we say that f is \mathcal{E}-continuous.

We say that a function f has a left (right) path at x if there exists a left (right) path E_{x} leading to x such that $f \mid E_{x}$ is continuous at x.

Let us set out some of the notation to be used in the article:
\mathcal{C} - the class of all continuous functions,
$\mathcal{P} \mathcal{R}$ - the class of all functions having perfect road at each point of the domain [5], (cf. [2] and [1]),
$\mathcal{P C}$ - the class of peripherally continuous functions $[9,2,1]$,
$\mathcal{Q}_{0} \quad$ - the class of bilaterally quasi-continuous functions [1],
$\mathcal{C}(m)$ - the class of functions which possess the cardinality m property, i.e. $\forall_{x \in \mathbb{R}} \forall_{\delta>0} \exists_{P \subset \mathbb{R}} \operatorname{card}(P \cap(x, x+\delta)) \geq m, \operatorname{card}(P \cap(x-\delta, x)) \geq m$ and $f \mid P$ is continuous at x, where m is a fixed infinite cardinal number less than or equal to the continuum [1],
\mathcal{E} const - the class of \mathcal{E}-constant functions, i.e. functions having the property: for each $x \in \mathbb{R}$ there exists a path E_{x} leading to x such that $f \mid E_{x}$ is constant,
$\mathcal{C}_{\mathcal{E}} \quad-$ if \mathcal{E} is a system of paths, then $\mathcal{C}_{\mathcal{E}}$ denote the class of all \mathcal{E}-continuous functions,
$\mathcal{E} I V P$ - the class of functions f having the \mathcal{E}-intermediate value property, i.e. functions for which the following condition is satisfied: for every $x, y \in \mathbb{R}$ and for each path $K \in \mathcal{E}$ between $f(x)$ and $f(y)$, there is a path $C \in \mathcal{E}$ between x and y such that $f(C) \subset K$ (cf. [3]).

Let \mathcal{X} be a class of real functions. The family of functions $\mathcal{M}_{\text {out }}(\mathcal{X})=\{f \in$ $\left.\mathcal{X} ; \forall_{g \in \mathcal{X}} f \circ g \in \mathcal{X}\right\}$ is called the maximal family of \mathcal{X} with respect to the outer component of the composition of functions. Similarly we define $\mathcal{M}_{\text {in }}(\mathcal{X})$, the maximal family of \mathcal{X} with respect to the inner component of the composition of functions (cf. [6]).

Throughout this paper the symbols $K^{-}(f, x), K^{+}(f, x)$ denote the cluster sets from the left and from the right of the function f at the point x, respectively and $K(f, x)=K^{-}(f, x) \cap K^{+}(f, x)$. By $\operatorname{Pr}_{x}(A)$ we denote the x-projection of a set $A \subset \mathbb{R}^{2}$. Set $-A=\{-x: x \in A\}$.

2 Some Basic Lemmas

Remark 2.1 If \mathcal{E} is a σ-system of paths, then every bilaterally quasi continuous function is an \mathcal{E}-continuous function and each \mathcal{E}-continuous function is a peripherally continuous function, i.e. $\mathcal{Q}_{0} \subset \mathcal{C}_{\mathcal{E}} \subset \mathcal{P C}$.

Remark 2.2 Let \mathcal{E} be a σ-system of paths and let f be an \mathcal{E}-continuous function. Let $x \in \mathbb{R}$ and $x_{n} \searrow x\left(y_{n} \nearrow x\right)$. Then there exists a right path $R_{x} \in \mathcal{E}$ (left path $L_{x} \in \mathcal{E}$) such that $f \mid R_{x}\left(f \mid L_{x}\right)$ is continuous at x and the sets $\left(x_{n+1}, x_{n}\right) \cap R_{x}\left(\left(y_{n}, y_{n+1}\right) \cap L_{x}\right)$ contains a path E_{n} for infinite $n \in \mathbb{N}$.

Lemma 2.1 Let \mathcal{E} be an σ-system of paths, $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence and $c \in$ $\overline{\left\{x_{n} ; n \in \mathbb{N}\right\}}$. Then there exists an \mathcal{E}-continuous function f such that $f(\mathbb{R} \backslash$ $\{0\})=\left\{x_{n}: n \in \mathbb{N}\right\}$ and $f(\{0\})=\{c\}$.

Proof. Let C be the Cantor ternary set. For each $n \in \mathbb{N}$ let $I_{n, 1}, I_{n, 2}, \ldots$, $I_{n, 2^{n-1}}$ be the components of $[0,1] \backslash C$ of length 3^{-n}. Let $c \in \overline{\left\{x_{n} ; n \in \mathbb{N}\right\}}$ and let $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$ be a bijection between \mathbb{N} and $\mathbb{N} \times \mathbb{N}$. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
f(x)= \begin{cases}x_{\varphi_{1}(n)} & \text { if }|x| \in \bar{I}_{n, k}, n \in \mathbb{N}, k=1,2, \ldots, 2^{n-1} \\ c & \text { if } x=0 \\ x_{1} & \text { otherwise }\end{cases}
$$

Then f is bilaterally quasi-continuous function and, by Remark 2.1, it is an \mathcal{E}-continuous function.

Theorem 2.1 If \mathcal{E} is an arbitrary system of paths and $f: \mathbb{R} \rightarrow \mathbb{R}$ is an \mathcal{E}-continuous function having closed graph, then f is continuous.

Proof. Suppose that f is not continuous at x_{0} from the right. Notice that if there exists $y \in K^{+}\left(f, x_{0}\right) \backslash\left\{f\left(x_{0}\right), \pm \infty\right\}$, then f is not closed. Thus we have $K^{+}\left(f, x_{0}\right) \subset\left\{f\left(x_{0}\right), \pm \infty\right\}$. Therefore there exists $\delta>0$ such that if
$x \in\left[x_{0}, x_{0}+\delta\right]$, then $\mid f(x)-f\left(x_{0} \mid<1\right.$ or $f(x)>f\left(x_{0}\right)+2$ or $f(x)<f\left(x_{0}\right)-2$. Put $A=\left\{(x, f(x)) ; x \in\left[x_{0}, x_{0}+\delta\right],\left|f(x)-f\left(x_{0}\right)\right| \leq 1\right\}$. Since f is closed and the set A is bounded, the set A is compact and therefore $\operatorname{Pr}_{x}(A)$ is closed. Moreover $\left[x_{0}, x_{0}+\delta\right] \backslash \operatorname{Pr}_{x}(A) \neq \emptyset$. Let (a, b) be a component of $\left[x_{0}, x_{0}+\delta\right] \backslash \operatorname{Pr}_{x}(A)$. Then $a \in A$ and a function f is not \mathcal{E}-continuous at a from the right. This is impossible.

3 The \mathcal{E}-intermediate Value Property

Remark 3.1 Let \mathcal{E} be a σ-system of paths. If $f \in \mathcal{E} I V P$, then for each $x \in \mathbb{R}$ there exists sequence $\left(x_{n}\right)_{n=1}^{\infty}$ such that $x_{n} \searrow x\left(x_{n} \nearrow x\right)$ and $f\left(x_{n}\right) \rightarrow f(x)$.

Proof. If for some $\delta>0 f \mid(x, x-\delta)$ is constant, then the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ exists. Assume that $y_{n} \searrow x$ and $f\left(y_{n}\right) \neq f(x)$ for $n \in \mathbb{N}$. Let $\left(K_{n}\right)_{n=1}^{\infty}$ be a sequence of paths such that $K_{n} \subset\left(f(x), \min \left(f\left(y_{n}\right), f(x)+1 / n\right)\right)$ if $f(y)>f(x)$ and $K_{n} \subset\left(\max \left(f\left(y_{n}\right), f(x)-1 / n, f(x)\right)\right.$ otherwise. Because $f \in \mathcal{E} I V P$, for each $n \in \mathbb{N}$ there exists a path $C_{n} \subset\left(x, y_{n}\right)$ such that $f\left(C_{n}\right) \subset K_{n}$. For each $n \in \mathbb{N}$ choose a point $x_{n} \in C_{n}$. Then $x_{n} \searrow x$ and $f\left(x_{n}\right) \rightarrow f(x)$.

Lemma 3.1 If \mathcal{E} is a σ-system of paths, then $\mathcal{E} I V P \subset \mathcal{C}_{\mathcal{E}}$ and the opposite inclusion does not hold.

Proof. Let f be an arbitrary function satisfying $\mathcal{E} I V P$ and $x \in \mathbb{R}$. We shall construct a right path E_{x} leading to x such that $f \mid E_{x}$ is continuous at x.

Notice that if for some $\delta>0, f(y)=f(x)$ for each $y \in[x, x+\delta]$, then for arbitrary right path R_{x} leading to x the function $f \mid R_{x}$ is continuous at x. Otherwise by Remark 3.1 there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ of reals such that $x_{n} \searrow x$, and $f\left(x_{n}\right)$ is monotonically convergent to $f(x)$. Suppose that $f\left(x_{n+1}\right)<f\left(x_{n}\right)$ for each n. Then for each path P_{n} between $f\left(x_{n+1}\right)$ and $f\left(x_{n}\right)$ there exists a path E_{n} between x_{n+1} and x_{n} such that $f\left(E_{n}\right) \subset P_{n}$ for all $n \in \mathbb{N}$. Since \mathcal{E} is a σ-system of paths, $\bigcup_{n=1}^{\infty} E_{n} \cup\{x\}$ is a right path leading to x and $f \mid E_{x}$ is continuous at x. In the same way we can prove that f has a left path at x.

By Lemma 2.1 there exists an \mathcal{E}-continuous function f such that $f(\mathbb{R})=$ $\{0,1\}$. This function is not $\mathcal{E} I V P$. Thus $\mathcal{C}_{\mathcal{E}} \not \subset \mathcal{E} I V P$.

Remark 3.2 Note that if \mathcal{E} is a collection of open intervals and $\mathcal{C}_{\mathcal{E}}$ is the class of all \mathcal{E}-continuous functions, then the first assertion of Lemma 3.1 is not true. Thus the assumption that \mathcal{E} is σ-system is important.

Theorem 3.1 If \mathcal{E} is a δ-system of paths, then $\mathcal{E} I V P=(\sigma \mathcal{E}) I V P$.

Proof. Suppose that f is $\mathcal{E} I V P$. Choose $x, y \in \mathbb{R}$ such that $f(x) \neq f(y)$ and let $K \in \sigma \mathcal{E}$ be a path between $f(x)$ and $f(y)$. Then there exists $K_{0} \in \mathcal{E}$ such that $K_{0} \subset K$ and $C_{0} \in \mathcal{E}$ for which $f\left(C_{0}\right) \subset K_{0} \subset K$. Thus f is $(\sigma \mathcal{E}) I V P$. Choose a function g having $(\sigma \mathcal{E}) I V P$. Let x, y be such that $f(x) \neq f(y)$ and let $K \in \mathcal{E}$ be between $f(x)$ and $f(y)$. Then there exists $C \in \sigma \mathcal{E}$ such that $f(C) \subset K$. Each path $C \in \sigma \mathcal{E}$ contains a paths $C_{0} \in \mathcal{E}$; so $f\left(C_{0}\right) \subset f(C) \subset K$, which completes the proof.

Example 3.1 There exists a σ-system of paths \mathcal{E} for which $\mathcal{C} \not \subset \mathcal{E} I V P$ and $\mathcal{E} I V P \not \subset \mathcal{C}$.

Proof. Let W be the set of all algebraic numbers, $W=\{x \in \mathbb{R} ; w(x)=0$ for some $w \in \mathbb{Q}[x]\}$. Define $F_{x}^{\varepsilon}=\mathbb{Q} \cap(x-\varepsilon, x+\varepsilon)$ and $\mathcal{F}(x)=\left\{F_{x}^{\varepsilon} ; \varepsilon>0\right\}$ if $x \in \mathbb{Q}$, and $\mathcal{F}(x)=\left\{A \in 2^{\mathbb{R} \backslash W} ; x\right.$ is a point of bilateral accumulation of A$\}$ otherwise. Put $\mathcal{E}=\sigma \mathcal{F}$. Define a continuous function f by $f(x)=\sqrt{|x|}$. We shall prove that f is not $\mathcal{E} I V P$. Let $x=0, y=1$ and $K=(0,1) \cap \mathbb{Q}$. Then $K \in \mathcal{E}$ and $K \subset(f(x), f(y))$. Choose a path $C \subset(x, y)$. Since $\mathcal{E} I V P=\mathcal{F} I V P$, we can assume that $C \in \mathcal{F}$. If C is a path leading to $x \in \mathbb{R} \backslash \mathbb{Q}$, then $f(C) \cap(\mathbb{R} \backslash \mathbb{Q}) \neq \emptyset$, and thus $f(C) \not \subset K$. If C is a path leading to some $x \in \mathbb{Q}$, then it contains a rational number y such that $\sqrt{y} \notin \mathbb{Q}$. Therefore $f(C) \not \subset K$, too. Put

$$
g(x)= \begin{cases}4 n(2 n-1) x-4 n+1 & \text { if } x \in\left[\frac{1}{2 n}, \frac{1}{2 n-1}\right], n \in \mathbb{N} \\ -4 n(2 n+1) x+4 n+1 & \text { if } x \in\left(\frac{1}{2 n+1}, \frac{1}{2 n}\right), n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

Then g is a discontinuous function having $\mathcal{E} I V P$.
Theorem 3.2 $\mathcal{E} I V P=\mathcal{C}$ holds for no system of paths \mathcal{E}.
Proof. Assume that $\mathcal{C} \subset \mathcal{E} I V P$. Let $f(x)=\sin 1 / x$ if $x \neq 0$ and $f(x)=0$ for $x=0$. Choose x, y such that $x<y$ and $f(x) \neq f(y)$. Let K be an arbitrary path from \mathcal{E} which is between $f(x)$ and $f(y)$. Assume that $y>0$. (The proof in the other case is similar.) Then there exists a point x_{1} such that $0<x_{1}<y$ and $f\left(x_{1}\right)=f(x)$. Since $f \mid\left[x_{1}, y\right]$ is continuous and K is between $f\left(x_{1}\right)$ and $f(y)$, there exists a path $C \subset\left(x_{1}, y\right)$ from \mathcal{E} for which $f(C) \subset K$. Therefore $f \in \mathcal{E} I V P \backslash \mathcal{C}$.

Theorem 3.3 If \mathcal{E} is δ-system of paths and if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a $\mathcal{E} I V P$ closed function, then f is continuous.

Proof. If \mathcal{E} is δ-system of paths, then by Theorem 3.1, $\mathcal{E} I V P=(\sigma \mathcal{E}) I V P$. Then by Lemma 3.1 each function f having $(\sigma \mathcal{E}) I V P$ is $\sigma \mathcal{E}$-continuous. Thus by Theorem 2.1, f is continuous.

Remark 3.3 Let $E_{x}=\mathbb{R}$ and $\mathcal{E}=\{\mathbb{R}\}$ be a system of paths. Then each function $f: \mathbb{R} \rightarrow \mathbb{R}$ has $\mathcal{E} I V P$ and claim of Theorem 3.3 is not true. Thus the assumption that \mathcal{E} is a δ-system is important.

Theorem 3.4 If \mathcal{E} is a system of paths, then $g \circ f \in \mathcal{E} I V P$ for all functions $f, g \in \mathcal{E} I V P$.

Proof. Choose $x, y \in \mathbb{R}$ such that $x<y$ and $g(f(x)) \neq g(f(y))$. Let K be arbitrary path between $g(f(x))$ and $g(f(y))$. Then $f(x) \neq f(y)$ and there exists a path P between $f(x)$ and $f(y)$ such that $g(P) \subset K$. Notice that there exists a path $C \subset(x, y)$ for which $f(C) \subset P$. Consequently, $g(f(C)) \subset K$.

Lemma 3.2 Let \mathcal{E} be a δ-system of paths, $f \in \mathcal{E} I V P$ and $x_{0} \in \mathbb{R}$. If $m=\inf K^{+}\left(f, x_{0}\right) \quad\left(m=\inf K^{-}\left(f, x_{0}\right)\right)$ and if $M=\sup K^{+}\left(f, x_{0}\right) \quad(M=$ $\left.\sup K^{-}\left(f, x_{0}\right)\right)$, then $K^{+}\left(f, x_{0}\right)\left(K^{-}\left(f, x_{0}\right)\right)$ is equal to the interval $[m, M]$.

Proof. If f is a continuous function from the right at x_{0}, then $m=M$. Suppose that f is discontinuous from the right at x_{0} and there exists an open bounded interval $(a, b) \subset(m, M)$ such that $(a, b) \cap K^{+}\left(f, x_{0}\right)=\emptyset$ and $m, M, f\left(x_{0}\right) \notin[a, b]$. Then there exists a point $x_{1}>x_{0}$ such that

$$
[a, b] \subset\left(\min \left\{f\left(x_{0}\right), f\left(x_{1}\right)\right\}, \max \left\{f\left(x_{0}\right), f\left(x_{1}\right)\right\}\right) \text { and } f(x) \notin(a, b)
$$

for $x \in\left[x_{0}, x_{1}\right]$. Choose a path $K \subset(a, b)$. Then K is between $f\left(x_{0}\right)$ and $f\left(x_{1}\right)$ and $f(C) \not \subset K$ for each path $C \subset\left(x_{0}, x_{1}\right)$. This is impossible; so $K^{+}\left(f, x_{0}\right)$ is dense in $[m, M]$. Since $K^{+}\left(f, x_{0}\right)$ is closed, $K^{+}\left(f, x_{0}\right)=[m, M]$.

Theorem 3.5 Let \mathcal{E} be a δ-system of paths, $f \in \mathcal{E} I V P, x_{0} \in \mathbb{R}$ and $z \in$ $K\left(f, x_{0}\right) \backslash\{ \pm \infty\}$. Then the function

$$
g(x)= \begin{cases}f(x) & \text { if } x \neq x_{0} \\ z & \text { otherwise }\end{cases}
$$

has the \mathcal{E}-intermediate value property.
Proof. Choose $x, y \in \mathbb{R}$ such that $x<y$ and $g(x) \neq g(y)$. We can assume that $g(x)<g(y)$. Choose an arbitrary path $K_{s} \subset(g(x), g(y))$ leading to some $s \in(g(x), g(y))$. We shall consider two cases.

1. Assume that $x=x_{0}$. (If $y=x_{0}$, the proof is analogous.)

Set $c=\min \{|s-g(x)|,|s-g(y)|\}$. Let K_{1} be a path leading to s such that $K_{s} \cap\left(s-\frac{c}{2}, s+\frac{c}{2}\right)$. Because $\left(\min \left\{z, f\left(x_{0}\right)\right\}, \max \left\{z, f\left(x_{0}\right)\right\}\right) \subset K\left(f, x_{0}\right)$, we can choose a point x_{1} such that $x_{0}<x_{1}<y$ and
(a) $f\left(x_{1}\right) \in\left(f\left(x_{0}\right), z\right)$ if $f\left(x_{0}\right)<z$,
(b) $f\left(x_{1}\right) \in\left(z, s-\frac{c}{2}\right)$ if $f\left(x_{0}\right) \in(z, g(y))$,
(c) $f\left(x_{1}\right) \in\left(s+\frac{c}{2}, g(y)\right)$ if $f\left(x_{0}\right) \geq g(y)$.

Then $K_{1} \subset\left(g\left(x_{1}\right), g(y)\right)$ and there exists a path C such that $C \subset\left(x_{1}, y\right)$ if (a) or (b) holds, $C \subset\left(x_{0}, x_{1}\right)$ if (c) holds, and $g(C) \subset K_{1}$.
2. Suppose that $x \neq x_{0} \neq y$.

If $x_{0} \notin(x, y)$, then there exists a path C between x and y such that $g(C)=f(C) \subset K_{s}$. Let $x_{0} \in(x, y)$. Then there exists a path C_{r} leading to some $r \in(x, y)$ such that $f\left(C_{r}\right) \subset K_{s}$. If $x_{0} \neq r$, then there exists a positive number δ and path C leading to r such that $x_{0} \notin C \subset C_{r} \cap(r-\delta, r+\delta)$. Thus $g(C)=f(C) \subset K_{s}$. Assume that $x_{0}=r$ and $f(r)<g(r)$. (If $f(r)>g(r)$, then the proof is similar.) We shall consider two cases.
(i) If $f(r)<s$, then $s \in(f(r), f(y))$ and $K_{s} \cap(f(r), f(y)) \subset(g(x), g(y))$ contains a path K. But then there exists a path $C \subset(r, y) \subset(x, y)$ such that $g(C)=f(C) \subset K \subset K_{s}$.
(ii) If $f(r)>s$, then $s \in(f(x), f(r))$. Because $f \in \mathcal{E} I V P$, there exists a path $C \subset(x, r)$ such that $g(C)=f(C) \subset K \subset K_{s}$.

This completes the proof.
Lemma 3.3 Let $f:(-\infty, a) \rightarrow \mathbb{R}, g:(a, \infty) \rightarrow \mathbb{R}, f, g \in \mathcal{E} I V P$ and $c \in$ $\left[K^{-}(f, a) \cap K^{+}(g, a)\right] \backslash\{ \pm \infty\}$. If \mathcal{E} is a Δ-system of paths, then the function

$$
h(x)=\left\{\begin{array}{cl}
f(x) & \text { if } x<a \\
c & \text { if } x=a \\
g(x) & \text { if } x>a
\end{array}\right.
$$

has $\mathcal{E} I V$.
Proof. Choose x, y such that $h(x)<h(y)$ and a path $K \in \mathcal{E}$ such that $K \subset(h(x), h(y))$. Suppose that $x<y$. It is enough to prove that there exists a path $C \in \mathcal{E}$ between x and y such that $h(C) \subset K$. If $x, y \in(-\infty, a)$ or $x, y \in(a, \infty)$, then such a path C exists, because $f, g \in \mathcal{E} I V P$. If $x=a$ or $y=a$, then by Theorem 3.5, there exists a path $C \in \mathcal{E}$ such that $C \subset(x, y)$ and $f(C) \subset(h(x), h(y))$.
Suppose that $x<a<y$. We shall consider two cases.

1. $c \notin[h(x), h(y)]$. Assume that $c<h(x)$. Then there exists a point $s \in(a, y)$ such that $h(s)<h(x)$. Since $g \in \mathcal{E} I V P$ and $K \subset(h(s), h(y))$, there exists a path $C \subset(s, y) \subset(x, y)$ with $h(C)=g(C) \subset K$.
2. $c \in[h(x), h(y)]$. Since \mathcal{E} is a Δ-system of path, $(h(x), c) \cap K$ or $(c, h(y)) \cap$ K contains a path $K_{1} \in \mathcal{E}$. We can assume that $K_{1} \subset(c, h(y)) \cap K$. (Otherwise the proof is analogous.) Then $h(y)=g(y)$. Let s be a point such that $a<s<y, g(x)<g(s)<g(y)$ and $(g(s), g(y)) \cap K_{1}$ contains a path K_{2}. Because $g \in \mathcal{E} I V P$, there exists a path $C \subset(s, y) \subset(x, y)$ such that $g(C)=h(C) \subset K_{2} \subset K$.

Remark 3.4 There exists a δ-system of paths \mathcal{E} and functions $f, g \in \mathcal{E} I V P$, $f:(-\infty, 0) \rightarrow \mathbb{R}, g:(0, \infty) \rightarrow \mathbb{R}$ such that $0 \in K^{-}(f, 0) \cap K^{+}(g, 0)$ and the function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
h(x)=\left\{\begin{array}{cc}
f(x) & \text { if } x<0 \\
0 & \text { if } x=0 \\
g(x) & \text { if } x>0
\end{array}\right.
$$

does not have $\mathcal{E} I V P$.
Proof. Let \mathcal{E} be a δ-system of paths containing all sets having a point of bilateral accumulation. Then $E_{0}=\left\{(-1)^{n}, n \in \mathbb{N}\right\} \cup\{0\} \in \mathcal{E}$ and $E_{0} \backslash\{0\}$ contains no path; so \mathcal{E} is not a Δ-system of paths. Let $\left\{I_{n}\right\}_{n=1}^{\infty}$ be a sequence of all open intervals having rational endpoints such that $I_{n} \subset(-\infty, 0)$ for $n \in \mathbb{N}$. Let $\left\{C_{n, \alpha}\right\}_{n \in \mathbb{N}, \alpha<c}$ be a family of pairwise disjoint Cantor sets such that $C_{n, \alpha} \subset I_{n}$ for $n \in \mathbb{N}, \alpha<c$ where c means the cardinality of the reals (cf. Lemma 2 [8] and [4]). Let $\left\{x_{\alpha}\right\}_{\alpha<c}$ be the net of $(-\infty, 0) \backslash E_{0}$. Put

$$
\begin{aligned}
& f(x)= \begin{cases}x_{\alpha} & \text { if } x \in \bigcup_{n=1}^{\infty} C_{n, \alpha} \text { and } \alpha<c \\
-1 & \text { otherwise }\end{cases} \\
& g(x)= \begin{cases}-x_{\alpha} & \text { if } x \in-\bigcup_{n=1}^{\infty} C_{n, \alpha} \text { and } \alpha<c \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Then $f, g \in \mathcal{E} I V P$.
Choose a x, y such that $x<0<y, h(x)<-1$ and $1<h(y)$. Then $h(C) \not \subset E_{0}$ for each $C \in \mathcal{E}$ and $h \notin \mathcal{E} I V P$.

Remark 3.5 $\mathcal{E} I V P \not \subset \mathcal{E}$ const and \mathcal{E} const $\not \subset \mathcal{E} I V P$.
Proof. The function $f(x)=x$ has $\mathcal{E} I V P$ and $f \notin \mathcal{E}$ const. Let $x_{n}=(-1)^{n}$ for $n \in \mathbb{N}$. By Lemma 2.1 there is an \mathcal{E}-continuous function g such that $g(\mathbb{R})=\{-1,1\}$. Note that $g \in \mathcal{E}$ const and $g \notin \mathcal{E} I V P$.

4 Compositions with \mathcal{E}-continuous Functions

For the remainder of this paper \mathcal{E} denotes a σ-system of paths.

Theorem 4.1 $\mathcal{M}_{\text {out }}\left(\mathcal{C}_{\mathcal{E}}\right)=\mathcal{C}$.
Proof. The inclusion $\mathcal{C} \subseteq \mathcal{M}_{\text {out }}\left(\mathcal{C}_{\mathcal{E}}\right)$ is obvious. Now we shall prove the opposite inclusion. Let g be an \mathcal{E}-continuous function and suppose that g is not continuous at y_{0} from the right. Choose $y \in K^{+}\left(g, y_{0}\right) \backslash\left\{g\left(y_{0}\right)\right\}$. Let $c=\left|y-g\left(y_{0}\right)\right|$ if $|y| \neq \infty$ and $c=1$ otherwise. Then there exists a sequence $\left(y_{n}\right)_{n=1}^{\infty}$ such that $y_{n} \searrow y_{0}, \lim _{n \rightarrow \infty} g\left(y_{n}\right)=y$ and $\left|g\left(y_{n}\right)-g\left(y_{0}\right)\right|>c / 2$ for each $n \in \mathbb{N}$. By Lemma 2.1 there exists an \mathcal{E}-continuous function f for which $f(\mathbb{R} \backslash\{0\})=\left\{y_{n} ; n \in \mathbb{N}\right\}$ and $f(\{0\})=\left\{y_{0}\right\}$. Then for each $x \neq 0$ there exists an $n \in \mathbb{N}$ such that $|g \circ f(x)-g \circ f(0)|=\left|g\left(y_{n}\right)-g\left(y_{0}\right)\right|>c / 2>0$. Consequently, $g \circ f(0) \notin K^{+}(g \circ f, 0)$ and $g \circ f \notin \mathcal{C}_{\mathcal{E}}$, which completes the proof.

Corollary $4.1 \mathcal{M}_{\text {out }}(\mathcal{P C})=\mathcal{M}_{\text {out }}(\mathcal{P} \mathcal{R})=\mathcal{M}_{\text {out }}\left(\mathbb{Q}_{0}\right)=\mathcal{M}_{\text {out }}(\mathcal{C}(m))=\mathcal{C}$.
Theorem 4.2 $\mathcal{E} I V P \subset \mathcal{M}_{\text {in }}\left(\mathcal{C}_{\mathcal{E}}\right)$.
Proof. Choose an $x \in \mathbb{R}$. We shall prove that $g \circ f$ has a right path leading to x. If there exists a right path R_{x} leading to x such that $f \mid R_{x} \equiv f(x)$, then $g \circ f \mid R_{x} \equiv g(f(x))$; so $g \circ f$ is continuous at x. Otherwise there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ such that $x_{n} \searrow x$ and $f\left(x_{n}\right)$ is monotonically convergent to $f(x)$. Assume that $f\left(x_{n+1}\right)<f\left(x_{n}\right)$. By Remark 2.2 there exists a path $E_{f(x)}$ leading to $f(x)$ such that $g \mid E_{f(x)}$ is continuous at $f(x)$ and $E_{f(x)} \cap$ $\left(f\left(x_{n+1}\right), f\left(x_{n}\right)\right)$ contains a path E_{n} for infinitely many $n \in \mathbb{N}$. Since $f \in$ $\mathcal{E} I V P$ and $E_{n} \subseteq\left(f\left(x_{n+1}\right), f\left(x_{n}\right)\right)$, there exists a path $F_{n} \subseteq\left(x_{n+1}, x_{n}\right)$ such that $f\left(F_{n}\right) \subseteq E_{n}$. Note that $E_{x}=\bigcup_{n=1}^{\infty} F_{n} \cup\{x\}$ is a right path leading to x and $g \circ f \mid E_{x}$ is continuous at x.

Corollary 4.2 Note that if $f \in \mathcal{E}$ const, then $g \circ f$ is an \mathcal{E}-continuous function for every \mathcal{E}-continuous function g. By Remark $3.5, \mathcal{E} I V P \not \subset \mathcal{E}$ const. Thus $\mathcal{M}_{\text {in }}\left(\mathcal{C}_{\mathcal{E}}\right) \not \subset \mathcal{E} I V P$.

Question 4.1 Characterize the class $\mathcal{M}_{\text {in }}\left(\mathcal{C}_{\mathcal{E}}\right)$.
Lemma 4.1 If \mathcal{E} is a c-system of paths, then there exists a one-to-one, \mathcal{E} continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ of the second class of Baire, such that $f(\mathbb{R})$ is an F_{σ}, uncountable, first category, measure zero set.

Proof. Let $\left\{I_{k}\right\}_{k=1}^{\infty}$ be a sequence of all open intervals with rational endpoints. In each I_{k} choose a sequence $\left\{C_{k, n}\right\}_{n=1}^{\infty}$ of Cantor measure zero sets such that $C_{k, n} \cap C_{m, p}=\emptyset$ for $(k, n) \neq(m, p)$. Such a sequence $\left\{C_{k, n}\right\}_{k, n=1}^{\infty}$ exists since for $k \in \mathbb{N}$ the set $I_{k} \backslash \bigcup_{l=1}^{k-1} \bigcup_{m=1}^{\infty} C_{l, m} \backslash \bigcup_{p=1}^{n-1} C_{k, p}$ is a G_{δ}, uncountable set [4, p. 387]. Let $f_{k, n}: C_{k, n} \rightarrow C_{n, k}$ be a homeomorphism of the

Cantor sets $C_{k, n}$ and $C_{n, k}$ for $k, n \in \mathbb{N}$. Denote by C an arbitrary Cantor set contained in $\mathbb{R} \backslash \bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} C_{k, n}$. By [7] there exists a bijection of the first class of Baire $\varphi: \mathbb{R} \backslash \bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} C_{k, n} \rightarrow C$. Put

$$
f(x)= \begin{cases}f_{k, n}(x) & \text { if } x \in C_{k, n}, k, n \in \mathbb{N} \\ \varphi(x) & \text { otherwise }\end{cases}
$$

Then $f(\mathbb{R})=\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} C_{n, k} \cup C$ is a first category measure zero set and f is an injection of the second class of Baire. Note that the set $f \mid H$ where $H=\left\{x \in C_{k, n} ; x\right.$ is a point of bilateral accumulation of $C_{k, n}$ for $\left.k, n \in \mathbb{N}\right\}$ is bilaterally dense in the graph of f and $f \mid C_{k, n}$ is continuous at x for any $x \in H$ and $x \in C_{k, n}$ for $k, n \in \mathbb{N}$. Then by Lemma $2.2[1], f$ is \mathcal{E}-continuous.

Theorem 4.3 Let \mathcal{E} be an arbitrary c-system. There exists a one-to-one \mathcal{E}-continuous function of the second class of Baire $f_{0}: \mathbb{R} \rightarrow \mathbb{R}$ such that every $f: \mathbb{R} \rightarrow \mathbb{R}$ can be represented as a composition of f_{0} with some measurable \mathcal{E}-continuous function $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ which has the Baire property. Thus every function f is a composition of two \mathcal{E}-continuous functions.
Proof. Let $\left\{I_{k}\right\}_{k=1}^{\infty}$ be a sequence of all open intervals with rational endpoints and let f_{0} be a function from Lemma 4.1. Since $f(\mathbb{R})$ is an F_{σ}, uncountable, first category, measure zero set, in each interval I_{k} we can choose a sequence of Cantor sets $\left\{K_{k, n}\right\}_{n=1}^{\infty}$ such that $K_{k, n} \cap f(\mathbb{R})=\emptyset$ and $K_{k, n} \cap K_{m, p}=\emptyset$ for $(k, n) \neq(m, p)$. Let $\left\{q_{k}\right\}_{k=1}^{\infty}$ be an enumeration of rationals. Define

$$
f_{1}(y)= \begin{cases}f\left(f_{0}^{-1}(y)\right) & \text { if } y \in f_{0}(\mathbb{R}) \\ q_{k} & \text { if } y \in K_{k, n} \\ 0 & \text { otherwise }\end{cases}
$$

If x is a point of bilateral accumulation of $K_{k, n}$, then $f_{1} \mid K_{k, n}$ is continuous at x and the union of the set of all points of bilateral accumulation of $K_{k, n}$ is bilaterally dense in the graph of f_{1}. Thus f_{1} is \mathcal{E}-continuous. Choose an $x \in \mathbb{R}$. Then $f_{1} \circ f_{0}(x)=f\left(f_{0}^{-1}\left(f_{0}(x)\right)\right)=f(x)$.

Lemma 4.2 Assume that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ fulfills the condition:
(i) for each interval $J \subset \mathbb{R}$ and for each first category set $F \subset \mathbb{R}$ there exist Cantor sets $C_{1}, C_{2} \subset J \backslash F$ such that $f\left(C_{1}\right)$ and $f^{-1}\left(C_{2}\right)$ are of first category.
Then there exist families of sets $\left\{A_{y} ; y \in \mathbb{R}\right\}$ and $\left\{B_{y} ; y \in \mathbb{R}\right\}$ such that:
(1) Let $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ be a set of all intervals having rational endpoints. For each $y \in \mathbb{R}$ there exist families of Cantor sets $\left\{C_{n, y}\right\}_{n \in \mathbb{N}},\left\{K_{n, y}\right\}_{n \in \mathbb{N}}$ such that $\bigcup_{n=1}^{\infty} C_{n, y} \subset A_{y}, \bigcup_{n=1}^{\infty} K_{n, y} \subset B_{y}, C_{n, y} \cap C_{m, y}=\emptyset=K_{n, y} \cap K_{m, y}$ for $m \neq n$ and $C_{n, y}, K_{n, y} \subset I_{n}$, interval $J \subset \mathbb{R}, A_{y} \cap J$ and contain a Cantor set,
(2) if $y \neq y_{1}$, then $A_{y} \cap A_{y_{1}}=\emptyset=B_{y} \cap B_{y_{1}}$,
(3) $\bigcup_{y \in \mathbb{R}} A_{y}, \bigcup_{y \in \mathbb{R}} B_{y}$ are of first category,
(4) $f\left(\bigcup_{y \in \mathbb{R}} A_{y}\right) \cap \bigcup_{y \in \mathbb{R}} B_{y}=\emptyset$.

Proof. Let $\left\{I_{k}\right\}_{n=1}^{\infty}$ be a sequence of all open intervals with rational endpoints. Let $\left\{C_{n}\right\}_{n=1}^{\infty}$ and $\left\{K_{n}\right\}_{n=1}^{\infty}$ be sequences of Cantor sets such that $f\left(C_{n}\right), f^{-1}\left(K_{n}\right)$ are first category sets and

$$
\begin{array}{lll}
K_{1} & \subset & I_{1}, \\
C_{1} & \subset & I_{1} \backslash f^{-1}\left(K_{1}\right), \\
\vdots & & \vdots \\
K_{n} & \subset & I_{n} \backslash\left[\bigcup_{k=1}^{n-1} K_{k} \cup f\left(\bigcup_{k=1}^{n-1} C_{k}\right)\right], \\
C_{n} & \subset & I_{n} \backslash\left[\bigcup_{k=1}^{n-1} C_{k} \cup f^{-1}\left(\bigcup_{k=1}^{n} K_{k}\right)\right], \\
\vdots & \quad \vdots
\end{array}
$$

Represent all sets C_{n} and K_{n} as unions $C_{n}=\bigcup_{\alpha<c} C_{n, \alpha}$ and $K_{n}=\bigcup_{\alpha<c} K_{n, \alpha}$ of pairwise disjoint perfect sets (cf. [4]). Let $\left(y_{\alpha}\right)_{\alpha<c}$ be a transfinite sequence of all reals. Put $A_{y}=\bigcup_{n=1}^{\infty} C_{n, \alpha}, B_{y}=\bigcup_{n=1}^{\infty} K_{n, \alpha}$ where $y=y_{\alpha}$ and $y \in \mathbb{R}$. Obviously, the families of sets $\left\{A_{y} ; y \in \mathbb{R}\right\},\left\{B_{y} ; y \in \mathbb{R}\right\}$ fulfill the conditions (1)-(4).

Theorem 4.4 If a function $f: \mathbb{R} \rightarrow \mathbb{R}$ fulfills condition (i) and $g: \mathbb{R} \rightarrow \mathbb{R}$ is a surjection, then there exist \mathcal{E}-continuous surjections $h_{1}, h_{2}: \mathbb{R} \rightarrow \mathbb{R}$ such that $h_{1} \circ f=g \circ h_{2}$.

Proof. Let a function f fulfill condition (i), g be a surjection and $\left\{A_{y} ; y \in \mathbb{R}\right\}$, $\left\{B_{y} ; y \in \mathbb{R}\right\}$ be families of sets from Lemma 4.2. We shall construct functions $h_{2}: \mathbb{R} \rightarrow \mathbb{R}$ and $h_{1}: \mathbb{R} \rightarrow \mathbb{R}$.

Put $h_{2}\left|A_{y} \equiv h_{1}\right| B_{y} \equiv y$ for $y \in \mathbb{R}$. If $x \in f^{-1}\left(B_{y}\right)$, then let $h_{2}(x)=z$, where z is an arbitrary point from a set $g^{-1}(\{y\})$. For $x \in f\left(A_{y}\right)$ define $h_{1}(x)=g(y)$. Now we define a value of functions h_{2} and h_{1} in a set $S_{2}=$ $\bigcup_{y \in \mathbb{R}}\left(A_{y} \cup f^{-1}\left(B_{y}\right)\right)$ and $S_{1}=\bigcup_{y \in \mathbb{R}}\left(B_{y} \cup f\left(A_{y}\right)\right)$, respectively. For $x \in \mathbb{R} \backslash S_{1}$ let $h_{1}(x)=0$. Fix an $x \in \mathbb{R} \backslash S_{2}$. If $f(x) \in \mathbb{R} \backslash S_{1}$, then define $h_{2}(x)=t$ where t is an arbitrary point for which $g(t)=0$. Suppose that $f(x) \in S_{1}$. If $f(x) \in B_{y}$ for some $y \in \mathbb{R}$, then put $h_{2}(x)=z$, where z is an arbitrary point belonging to the set $g^{-1}(\{y\})$. If $f(x) \in f\left(A_{y}\right)$ for $y \in \mathbb{R}$ set $h_{2}(x)=y$.

We shall prove that $h_{1} \circ f=g \circ h_{2}$.
a) If $x \in A_{y}$ for some $y \in \mathbb{R}$, then $h_{2}(x)=y, f(x) \in f\left(A_{y}\right)$ and we have $h_{1} \circ f(x)=g(y)=g \circ h_{2}(x)$.
b) If $x \in f^{-1}\left(B_{y}\right)$ for some $y \in \mathbb{R}$, then $h_{2}(y) \in g^{-1}(\{y\})$ and therefore $g\left(h_{2}(x)\right)=y$. Notice that $f(x) \in B_{y}$ and $h_{1}(f(x))=y$, also.
c) If $x \in \mathbb{R} \backslash S_{2}$ and $f(x) \in \mathbb{R} \backslash S_{1}$, then $g\left(h_{2}(x)\right)=0=h_{1}(f(x))$.
d) If $x \in \mathbb{R} \backslash S_{2}$ and $f(x) \in S_{1}$, then either $g\left(h_{2}(x)\right)=y=h_{1}(f(x))$ if $f(x) \in B_{y}$ or $g\left(h_{2}(x)\right)=g(y)=h_{1}(f(x))$ if $f(x) \in f\left(A_{y}\right)$.

By Lemma 4.2 there exists a sequence of pairwise disjoint Cantor sets $\left\{C_{n, y}\right\}_{n \in \mathbb{N}, y \in \mathbb{R}}$ such that $C_{n, y} \subset I_{n}$ and $C_{n, y} \subset A_{y}$. Let P_{2} be the set of all points $z \in \bigcup_{y \in \mathbb{R}} A_{y}$ such that z is a point of bilateral accumulation of a $C_{n, y}$ for some $n \in \mathbb{N}, y \in \mathbb{R}$. Then $h_{2} \mid P_{2}$ is bilaterally dense in the graph of the function h_{2} and because each $z \in P_{2}$ is a point at which the function h_{2} is \mathcal{E}-continuous, h_{2} is \mathcal{E}-continuous everywhere. In the same way we can prove that h_{1} is \mathcal{E}-continuous.

5 Transfinite Limits

Recall that a function f is a limit of a transfinite sequence $\left(f_{\alpha}\right)_{\alpha<\omega_{1}}$ of functions iff for each positive $\varepsilon>0$ and $x \in \mathbb{R}$ there exists an $\alpha<\omega_{1}$ such that $\left|f(x)-f_{\beta}(x)\right|<\varepsilon$ for all $\beta>\alpha$.

Theorem 5.1 Let \mathcal{E} be a c-system. Then every function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a limit of a transfinite sequence $\left(f_{\alpha}\right)_{\alpha<\omega_{1}}$ of \mathcal{E}-continuous functions. Moreover, if f is measurable or fis Baire $\gamma(\gamma \geq 2)$, then f_{α} can be taken from the same class for $\alpha<\omega_{1}$.

Proof. Let $\left(I_{k}\right)_{k=1}^{\infty}$ be a sequence of all open intervals with rational endpoints. We shall use the fact that in each interval I_{k} we can choose a sequence $\left(C_{k, n}\right)_{n=1}^{\infty}$ of Cantor sets such that $C_{k, n} \cap C_{m, p}=\emptyset$ for $(k, n) \neq(m, p)$ (cf. Theorem 4.1). Because there exists a homeomorphism between $C_{k, n}$ and $C_{k, n} \times C_{k, n}$; so we can represent each $C_{k, n}$ as a union $\bigcup_{\alpha<\omega_{1}} C_{k, n, \alpha}$ of pairwise disjoint perfect sets. Let $\left(q_{n}\right)_{n=1}^{\infty}$ be a sequence of all rationals. Put

$$
D_{n, \alpha}=\bigcup_{k=1}^{\infty} C_{k, n, \alpha} \quad \text { and } \quad f_{\alpha}(x)= \begin{cases}q_{n} & \text { if } x \in D_{n, \alpha}, n \in \mathbb{N} \\ f(x) & \text { otherwise }\end{cases}
$$

for $\alpha<\omega_{1}$. Then each function f_{α} is \mathcal{E}-continuous $\left(\alpha<\omega_{1}\right)$. We shall show that

$$
\begin{equation*}
f(x)=\lim _{\alpha \rightarrow \omega_{1}} f_{\alpha}(x) \tag{1}
\end{equation*}
$$

Choose an $x \in \mathbb{R}$. Then either $x \notin \bigcup_{n=1}^{\infty} \bigcup_{\alpha<\omega_{1}} D_{n, \alpha}$; so $f_{\alpha}(x)=f(x)$ for each $\alpha<\omega_{1}$ and (1) holds, or $x \in D_{n, \beta}$ for some $\beta<\omega_{1}$ and $n \in \mathbb{N}$. Then $x \notin D_{k, \alpha}$ for $\alpha>\beta$ and $k \in \mathbb{N}$; so $f_{\alpha}(x)=f(x)$ for $\alpha>\beta$. If f is measurable or if f belongs to Baire class $\gamma(\gamma \geq 2)$, then by the definition it is easy see that f_{α} belongs to the same class.

References

[1] K. Banaszewski, Algebraic properties of \mathcal{E}-continuous functions, Real Analysis Exchange, 18 no. 1, (1992-93), 153-168.
[2] A. M. Bruckner, R. J. O'Malley and B. S. Thomson, Path derivatives: a unified view of certain generalized derivatives, Trans. Amer. Math. Soc., 283 (1984), 97-125.
[3] R. G. Gibson and F. Roush, The Cantor intermediate value property, Top. Proc., 7 (1982), 55-62.
[4] C. Kuratowski, Topology, Vol. 1, Academic Press, Warszawa, 1966.
[5] I. Maximoff, Sur les fonctions ayant la propriéte de Darboux, Prace Matem. Fizyc., 43 (1936), 241-265.
[6] R. Menkyna and L. Mikuláš, The maximal families with respect to the composition of functions with a closed graph, Acta Math. Univ. Comm., LVII (1988), 185-189.
[7] W. Sierpiński, Sur une propriété des ensembles G_{δ} non dénombrables, Fund. Math., 21 (1933), 66-72.
[8] J. Smítal, On approximation of Baire functions by Darboux functions, Czechoslovak Math. Journal, 21 (96) (1971), 418-423.
[9] J. Young, A theorem in the theory of functions of real variable, Rend. Circ. Palermo, 24 (1907), 187-192.

[^0]: Key Words: system of paths, \mathcal{E}-continuous functions, $\mathcal{P} \mathcal{R}$ functions, $\mathcal{P C}$ functions, bilaterally quasi-continuous functions, $\mathcal{C}(m)$ functions, $\mathcal{E} I V P, C I V P$, the maximal family with respect to outer and inner compositions, transfinite limit

 Mathematical Reviews subject classification: Primary: 26A15
 Received by the editors November 28, 1994

