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Abstract

Recent research has shown that there is a significant cleavage be-
tween the structure of ω-limit sets for continuous functions, and the
structure of ω-limit sets for Lipschitz functions. The development of
these results rested on measure theoretic considerations. In this paper
we show that there is no such divergence when one considers the topo-
logical structure of these two classes of ω-limit sets. We show that an
every nowhere dense compact set is homeomorphic to an ω-limit set for
a differentiable function with bounded derivative.

A set E is called an ω-limit set or an attractor for a continuous function f
mapping a compact interval I into itself if there exists an x in I such that E =
ωf (x) is the cluster set of the sequence {x, f(x), f(f(x)), · · · } = {fn(x)}∞n=0.
Recent work by Bruckner, Ceder and Smı̀tal in [1], [2], and [3] has shown us
how the structure of ωf (x) is affected by imposing conditions on the chaotic
behavior of f . In fact, complete characterizations of ω-limit sets for continuous
functions and for continuous functions of zero topological entropy can be found
in [2] and [3]. Limitations imposed by smoothness are not addressed in these
works, however.

In [4], we showed that there is a significant cleavage between the struc-
ture of attractors for continuous functions, and the structure of attractors for
Lipschitz functions. We furnished the class K of nonempty closed subsets of
I = [0, 1] with the Hausdorff metric d, and from this complete metric space
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develop a dense Gδ subset comprised of Cantor sets that cannot be attractors
for any Lipschitz function. This is in marked contrast to the continuous case
since any Cantor set is an ω-limit set for some continuous function with zero
topological entropy [3].

The development of our results in [4] rested exclusively on measure the-
oretic considerations. This then led us to consider whether or not there are
also topological restrictions on the structure of attractors for Lipschitz func-
tions. The balance of this paper is dedicated to answering this query with the
development of the following result.

Theorem 1 Every infinite nowhere dense compact set M ⊂ I is homeomor-
phic to an ω-limit set of homoclinic type for a differentiable function with
bounded derivative.

Critical to the development of Theorem 1 is the idea of a set M being
homoclinic with respect to a continuous function f . This is the content of our
first definition.

Definition 1 Let M be a nowhere dense compact set, and A = {a0, · · · , ak−1}
6= ∅ a set of limit points of M . Assume there is a system {M i

n}∞n=0, i =
0, 1, · · · , k− 1, of non-empty pairwise disjoint compact subsets of M such that
M \∪i,nM i

n = A and lim
n→∞

M i
n = ai for any i. Let f : M →M be a continuous

map and let A be a k-cycle of f such that f(ai) = ai−1 for 0 < i < k and
f(a0) = ak−1. If f(M i

n) = M i−1
n for 0 < i < k and any n, f(M0

n) = Mk−1
n−1

for n > 0, and f(M0
0 ) = ak−1, then M is called a homoclinic set (of order k)

with respect to f . If M is homoclinic of order k with respect to f , then for

each i, the set M i = {ai} ∪
∞⋃
n=0

M i
n is homoclinic of order 1 with respect to

g = fk, since we have g(M i
n) = M i

n−1 for n > 0 and g(M i
0) = g(ai) = ai.

In our effort to prove Theorem 1, we will consider the countable and un-
countable cases separately. For each case, however, our general approach is
the same. We first show that our general set M has a homeomorphic copy
M∗ that is homoclinic with respect to a function f : M∗ → M∗ such that

the difference quotient lim y → xy ∈M∗ f(y)− f(x)

y − x
exists and is bounded on

M∗. We then, through a series of lemmas, extend f to a differentiable function
F : I → I for which M∗ = ωF (x) for an appropriate value of x in I. We begin
by considering the countable case.

Our intermediate goal is to show that if M is a countable compact set,
then M has a homeomorphic copy M∗ that is homoclinic with respect to some
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continuous function f : M∗ →M∗ that satisfies our derivative-like condition.
An important preliminary result in this direction is Proposition 2. Before
developing this proposition, however, let us fix some helpful notation. Let
A ⊂ I be a countable compact set. Define a transfinite sequence {Aα}α∈Ω of
subsets of A as follows: A0 = A,Aγ =

⋂
α<γ

Aα if γ is a limit ordinal, and Aγ

is the set of limit points of Aγ−1 otherwise. For any such set A there is an
ordinal β < Ω such that Aβ is non-empty and finite, and Aβ+1 = ∅. Denote β
by T (A). We call β the rank of A, and Aβ its set of highest order limit points.

Proposition 2 If A and B are countable compact sets with the same rank and
same number of highest order limit points, then A and B are homeomorphic.

Proof. We use transfinite induction. The result is true when T (A) = T (B) =
0, so we assume it is true for any α < α(0), and let T (A) = T (B) = α(0).
Suppose Aα(0) = {a1 < a2 < · · · < an}, and Bα(0) = {b1 < b2 < · · · < bn}.
Let I1, I2, · · · , In be pairwise disjoint compact intervals covering A such that
Ii is a neighborhood of ai for any i, T (A∩ Ii) = α(0), and (A∩ Ii)α(0) = {ai}.
Let J1, J2, · · · , Jn be an analogous covering of B. If A ∩ Ii is homeomorphic
to B ∩ Ji for any i, then A is homeomorphic to B. Thus it suffices to show
that our result holds when Aα(0) = {a} and Bα(0) = {b}. We proceed by
considering two cases.

Case 1 Suppose α(0)−1 exists. We can write A = {a}∪
∞⋃
i=0

Ai where T (Ai) =

α(0) − 1 and |(Ai)α(0)−1| = 1 for any i, with lim
i→∞

Ai = a. Similarly, we have

B = {b} ∪
∞⋃
j=0

Bj with T (Bj) = α(0) − 1 and |(Bj)α(0)−1| = 1 for any j, and

lim
j→∞

Bj = b. Since An and Bn are homeomorphic for any n, A and B must

be homeomorphic.
Case 2 Suppose α(0) is a limit ordinal. Using Lemma 5 of [2], we can write

A = {a} ∪
∞⋃
i=0

Ai with lim
i→∞

Ai = a and α(0) > δ(n + 1) ≥ δ(n), where

δ(n) = T (An) and (An)δ(n) = {an}. Similarly, we write B = {b} ∪
∞⋃
j=0

Bj .

Since lim
i→∞

T (Ai) = lim
j→∞

T (Bj) = α(0), for each k there exists n(k) so that

T

(
n(k)⋃
i=1

Ai

)
≥ T

(
k⋃
j=0

Bj

)
, and

k⋃
j=0

Bj is homeomorphic to a subset of
n(k)⋃
i=0

Ai.

Similarly, there exists k > k such that
k⋃
j=0

Bj is homeomorphic to a subset B∗
k
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of
n(k)⋃
i=0

Ai with
n(k)⋃
i=0

Ai ⊆ B∗k . Since n(k)→∞ as k →∞ with
n(k)⋃
i=0

Ai → A and

k⋃
j=0

Bj → B, A and B are homeomorphic. �

We are now in a position to show that any countable compact set M has
a homeomorphic copy M∗ that satisfies our desired conditions.

Lemma 3 Every countable compact set M ⊆ I is homeomorphic to a set

M∗ ⊆ I that is homoclinic with respect to a function f where lim y → xy ∈M∗ f(y)− f(x)

y − x
exists and is bounded for all x in M∗.

Proof. Suppose T (M) = α and Mα = {b0, b1, · · · , bk−1}. Since any two
countable compact sets with the same rank and number of highest order limit
points are homeomorphic, it suffices to show that there exists an M∗ ⊆ I that
is countable and compact for which T (M∗) = α, M∗α has k elements, and M∗

is homoclinic with respect to a function f meeting the desired conditions. Our

plan is to construct M∗ =

k−1
·⋃

i=0

M i so that it is the disjoint union of k of its

subsets M i, with each of the subsets M i congruent to all the others. In an
effort to furnish M∗ with a desirable homoclinic trajectory, we construct the
M i with the following considerations in mind. Our M i are evenly spaced in
I, with j < ` implying that M j lies to the right of M `. Moreover, we set

M i = {ai}∪
∞⋃
j=0

M i
j , so that M i

α = {ai} is the unique highest order limit point

of M i, and our sequence {M i
j}∞j=0 will easily accommodate a differentiable

Lipschitz mapping of M0
n to Mk−1

n−1 for n > 0. Specifically, we begin by letting

(maxM i − minM i) =
9

10k
, minM i = M i

α = {ai}, and j > ` imply that

maxM j < a` for all i, and j, `, in {1, 2, . . . , k − 1}. We also take (ai−1 −
maxM i) =

1

10(k − 1)
for i ∈ {1, 2, . . . , k − 1}.

We now proceed by developing one of our congruent sets M i, as this will

completely determine M∗ =
k−1⋃
i=0

M i. The Lipschitz function f : M∗ → M∗

with respect to which M∗ is homoclinic will also be defined as we develop M i.

Case 1 Suppose α − 1 exists. We write Mk−1 = {ak−1} ∪
∞⋃
j=0

Mk−1
j with
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T (Mk−1
j ) = α− 1 for all j, Mk−1

α = {ak−1} = {0} = minMk−1, and

convMk−1
j =

[
9

10k2j+1
,

9

10k2j+1
+

9

10k22(j+1)

]
with {2x : x ∈ Mk−1

j+1 } congruent to Mk−1
j for j ≥ 0. Therefore, we can map

k−1⋃
i=1

M i to
k−2⋃
i=0

M i with f |
k−1⋃
i=1

M i the identity function plus a constant. Since

|a0−maxM1| =
1

10(k − 1)
, if x ∈

k−1⋃
i=1

M i, then lim y → xy ∈M∗ f(y)− f(x)

y − x
=

1. We can also map M0 to Mk−1 with f |M0 ∈ Lip2 so that M0 is homoclinic
with respect to f , and

lim y → xy ∈M0 f(y)− f(x)

y − x
=

{
2 x ∈M0 −M0

0

0 x ∈M0
0

.

Case 2 Suppose α is a limit ordinal. We write Mk−1 = {ak−1} ∪
∞⋃
j=0

Mk−1
j so

that T (Mk−1
j ) = αj with lim

j→∞
αj = α, and p > q implies αp > αq. Again we

let Mk−1
α = {ak−1} = {0} = min Mk−1 with

convMk−1
j =

[
9

10k2j+1
,

9

10k2j+1
+

9

10k22(j+1)

]
for j ≥. This time, however, we take the Mk−1

j so that{
4x : x ∈Mk−1

j+1

⋂[
9

10k2j+2
+

9

10k22(j+2)+1
,

9

10k2j+2
+

9

10k22(j+2)

]
= Mk−1,t

j+1

}
is congruent to Mk−1

j , j ≥ 0, and min Mk−1,t
j+1 is isolated from the left. There-

fore, we can map
k−1⋃
i=1

M i to
k−2⋃
i=0

M i with f
∣∣ k−1⋃
i=1

M i the identity function plus

a constant, and map M0,t
j to Mk−1

j+1 with f ∈ Lip 4, so that M∗ is homoclinic
with respect to f , and

lim y → xy ∈M∗ f(y)− f(x)

y − x
=


1 x ∈M∗ −M0

0 x ∈M0
0 ; x ∈M0

j −M
0,t
j , j = 1, 2, 3, · · ·

4 x ∈M0,t
j , j = 1, 2, 3, · · · .
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Moreover, by restricting the diameters of the Mk−1
j as we did, we have

lim y → ak−1y ∈M∗
f(y)− 0

y − ak−1
= 2 .

�
Our goal now is to extend the function f : M∗ →M∗ developed in Lemma

3 to a differentiable function F : I → I for which there exists an x in I such
that M∗ = ωF (x). We do this in Lemma 4, taking advantage of a result in [2]
as well as a construction from [5]. From [2] we find that if for any x ∈M∗ our
extension F : I → I has the property that F (Nx) is a relative neighborhood
of F (x) = f(x) whenever Nx is a relative neighborhood of x, then there exists
some y ∈ I such that M∗ = ωF (y). The construction found in [5] allows us to
extend f to the complementary intervals of M∗ in a smooth fashion without
affecting the values of the difference quotient on M∗.

Lemma 4 Every countable compact set M ⊂ I is homeomorphic to an ω-limit
set of homoclinic type for a differentiable function with bounded derivative.

Proof. Let M∗ be the homeomorphic copy of M that appears in the proof of
Lemma 3, with f : M∗ →M∗ the function with respect to which M∗ is homo-
clinic. We can extend f to F linearly and by using Misiurewicz’ construction
on M∗ −M0 so that for any x ∈M∗ −M0, F (Nx) is a neighborhood of F (x)
whenever Nx is a neighborhood of x. We proceed by considering two cases.
Case 1 Suppose T (M) = α, and α − 1 exists. We can then extend f to F
linearly and by using Misiurewicz’ construction on M0 −M0

0 so that for any
x ∈ M0 −M0

0 , F (Nx) is a neighborhood of F (x) whenever Nx is a neighbor-
hood of x. It remains to show that we can extend f |M0

0 to a differentiable
function f so that F (Nx) is a neighborhood of ak−1 = 0 whenever Nx is
a neighborhood of x ∈ M0

0 . However, since the isolated points of M0
0 are

dense in M0
0 , it suffices to extend f to F so that F (Nx) is a neighborhood

of the origin whenever Nx is a neighborhood of an isolated point x in M0
0 .

To this end, let x be an isolated point of M0
0 , with dist (x,M0

0 − {x}) = dx

and ρx =
dx
2

. On [x, x + ρx], let F : [x, x + ρx] → R be defined so that

F (y) = (y − x)2. Let {xn}∞n=1 be an enumeration of the isolated points of
M0

0 ; on each xn we perform the above construction, so that we now have F

defined on convM0
0

⋂{ ∞⋃
n=1

[xn, xn + ρxn
]

}
. We can now extend F to the rest

of convM0
0 using Misiurewicz’ construction so that F ′(x) = 0 for all x ∈M0

0 .
Case 2 Suppose α is a limit ordinal. Here we extend f linearly on M0,t

j ,

j ∈ {1, 2, 3, · · · }, and mimic our above construction on M0
0 and M0

j −M
0,t
j for
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j ∈ {1, 2, 3, · · · }. We then use Misiurewicz’ construction to finish our definition
of F so that F is differentiable, and F (Nx) is a neighborhood of F (x) whenever
Nx is a neighborhood of x in M0

0 or M0
j −M

0,t
j for j ∈ {1, 2, 3, · · · }. �

Let us now turn our attention to the uncountable case. Specifically, our
goal is to show that any uncountable nowhere dense compact set is homeo-
morphic to a homoclinic attractor for a differentiable function with a bounded
derivative. Our strategy is much like that for the countable case. We first
show that every uncountable nowhere dense compact set M has a homeomor-
phic copy M∗ that is homoclinic with respect to a function f : M∗ →M∗ for

which lim y → xy ∈M∗ f(y)− f(x)

y − x
exists and is bounded for all x in M∗. The

proof of this rests on the establishment of Lemmas 5 and 6. Loosely speaking,
Lemma 5 tells us that, given some rudimentary regularity conditions, a rela-
tively thick Cantor set E can be mapped onto a relatively thin Cantor set F

with a continuous function f so that lim y → xy ∈ Ef(y)− f(x)

y − x
= 0 for every

x in E. The other preliminary result we need to develop, Lemma 6, involves
mapping portions of a Cantor set E onto a countable set C by a continuous

function f in such a way that lim y → xy ∈ Ef(y)− f(x)

y − x
= 0 for all x in E.

Prior to the development of Lemma 5, we need the following definition.

Definition 2 A set E is quasi-self-similar if

1. there exist constants c, r0 > 0 such that for any ball B with center in E,

|B| = r ≤ r0, there exists ψ : E → B ∩ E so that r c ≤ |ψ(x)− ψ(y)|
x− y

for x 6= y;

2. there exist constants a, b, r0 > 0 such that for any neighborhood N of a
point in E with |N | = r ≤ r0, there exists ψ : N ∩ E → E such that

a ≤ r|ψ(x)− ψ(y)|
|x− y|

≤ b for x 6= y.

Generally speaking, quasi-self-similar sets are those sets that begin to look
the same all over after a certain amount of magnification. It is not too difficult
to develop a familiar family of sets that satisfy the conditions of this definition.
If we let K(αm) represent the symmetric Cantor set developed by removing
the middle αthm portion from each of the (m− 1)th stage intervals, then those
sets K(αm) for which lim inf αm = p > 0 and lim supαm = q < 1 turn out to
be quasi-self-similar.
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Lemma 5 Suppose E and F are quasi-self-similar Cantor sets with Hausdorff
dimension s and t, respectively. Then there exist positive constants α and β

and a bijection ψ : E → F such that α ≤ ψ(x)− ψ(y)

(x− y)s/t
≤ β for all x and y in

E, with x > y.

Proof. Let [0, a] ⊆ [0, 1] be the convex hull of E. We first show that there

exist constants 0 < c1 ≤ c2 such that c1 ≤
µs(E ∩ [0, x])

xs
≤ c2 for all x ∈

(0, a], where µs is Hausdorff s-dimensional measure. By the definition of µs-
measure and the definition of quasi-self-similarity, we have that µs(B ∩ E) ≥
csrsµs(E) for any ball B with center in E and diameter r. This implies that
µs(E ∩ [0, r])

rs
≥ csµs(E) = c1. We also have from the definition of quasi-self-

similarity that asµs(N ∩ E) ≤ rsµs(E) for any neighborhood of a point in E

with diameter r, so that
µs(E ∩ [0, r])

rs
≤ µs(E)

as
= c2. Now, let [0, q] be the

convex hull of F . As is the case with E, there exist 0 < c3 ≤ c4 such that

c3 ≤
µt(F ∩ [0, y])

yt
≤ c4 for y ∈ (0, q]. We now define ψ : E → F by requiring

that µs(E ∩ [0, x]) =
µs(E)

µt(F )
µt(F ∩ [0, ψ(x)]).

Since
µs(E ∩ [0, x])

µt(F ∩ [0, ψ(x)])
=
µs(E)

µt(F )
, we have

µt(F )

µs(E)
· c1
c4
≤ [ψ(x)]t

xs
≤ µt(F )

µs(E)
·

c2
c3

, or c5 ≤
[ψ(x)]t

xs
≤ c6 and c7 ≤

[ψ(x)]

xs/t
≤ c8, for some constants 0 < c7 ≤ c8.

Now let {αi} be an enumeration of the open intervals complementary to E,
and set αi = (ai, bi). Then {bi} is dense in E, and for each bi, if y > bi

and y ∈ E, then c7 ≤
ψ(y)− ψ(bi)

(y − bi)s/t
≤ c8. Thus, for each x and y in E with

x > y, we have c7 ≤
ψ(x)− ψ(y)

(x− y)s/t
≤ c8. We can now linearly extend ψ to

ψ̃ defined on all of conv(E), so that ψ̃ : [0, a] → [0, q] is a bijection with

c7 ≤
ψ̃(x)− ψ̃(y)

(x− y)s/t
≤ c8. �

Lemma 6 Let E be a Cantor set and F a countable compact set. Then there
exist E∗ and F ∗ homeomorphic copies of E and F respectively, and a non-
decreasing function f : E∗ → F ∗ so that convF ∗ = convF = convE∗, f(E∗) =

F ∗, and for any x in E∗ we have lim y → xy ∈ E∗ f(y)− f(x)

y − x
= 0.
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While a complete proof of Lemma 6 is quite lengthy, the ideas underlying
it are relatively straight-forward. Proposition 2 allows us to take any set with
the same rank and number of highest order limit points of F as F ∗. Since all
Cantor sets are homeomorphic to one another, we need only find an F ∗ that
can be covered by a Cantor set in accordance with the conclusions of Lemma
6. In constructing F ∗, our approach is to make it as spread-out as possible in
order to accommodate the derivative like condition we desire.

Outline of the proof of Lemma 6. Let [p, q] = convF , and suppose p is
a limit point of order αp and q is a limit point of order αq. Then there exist
neighborhoods P and Q of p and q respectively such that T (P ∩ F ) = αp,
T (Q ∩ F ) = αq, (P ∩ F )αp = {p}, (Q ∩ F )αq = {q}, and P ∩ F , Q ∩ F and
their complements are all both closed and open. In constructing F ∗ we will
take convF ∗ = [p, q], with p a limit point of order αp and q a limit point of
order αq. A homeomorphic copy of P ∩F will be placed in [p, p+ q−p

5 ], and a

homeomorphic copy of Q ∩ F will be placed in [q − q−p
5 , q]. A homeomorphic

copy of F t = F −{(P ∩F )∪ (Q∩F )} will be placed in [p+ q−p
4 , q− q−p

4 ]. Let
T (F t) = αt, and suppose F tαt

= {a0, a1, · · · , ak−1}. We continue our outline
in several parts.

1. We construct (P ∩ F )∗ a homeomorphic copy of P ∩ F .

Case 1 Suppose αp−1 exists. We assume that
q − p

5
= 1 and

[
p, p+

q − p
5

]
=

[0, 1]. We take

{
1

2n
: n = 1, 2, 3, · · ·

}
to be limit points of order αp − 1 of a

sequence of points contained in

[
1

2n
,

1

2n
+

1

2n+2

]
for each n. In defining these

particular sequences, we iteratively decompose the intervals

[
1

2n
,

1

2n
+

1

2n+2

]
into closed subintervals with lengths of negative powers of two, making each

point a distance 2−(n+2+j) to the right of
1

2n
a limit point of an appropriate

lower order. For example, if αp−2 > 0 exists, for each n, we let

{
1

2n
+

1

2n+2+j
:

j = 1, 2, 3, · · ·
}

be limit points of order αp − 2. If αp − 2 > 0 does not exist,

we let

{
1

2n
+

1

2n+2+j
: j = 1, 2, 3, · · ·

}
be limit points of increasing order as

j increases so that the limit of their orders is αp − 1.

Case 2 Suppose now that αp is a limit ordinal. We again assume
q − p

5
= 1



190 T. H. Steele

and that

[
p, p+

q − p
5

]
= [0, 1]. In this instance we take

{
1

2n
: n = 1, 2, 3, · · ·

}
to be limit points of increasing order as n increases so that the limit of their
orders is αp. We then continue the construction described in the previous case.

2. We construct (Q ∩ F )∗ a homeomorphic copy of Q ∩ F . We mimic our
construction of (P ∩F )∗ so that points accumulate to the right rather than to
the left.

3. We construct (F t)∗ a homeomorphic copy of F t. We will let

(F t)∗ =
k−1⋃
i=0

F i, with all the F i congruent to one another, and so that T (F i) =

αt and F iαt
= {bi} for all i ∈ {0, 1, · · · , k − 1}. Moreover, we let |maxF i −

minF i| =
9

10k
· q − p

2
, minF i = bi, and j > ` imply maxF j < b` for

i, j, ` ∈ {0, 1, · · · , k − 1}, with |ai−1 − maxF i| =
1

10(k − 1)
· q − p

2
. We now

construct each F i as we constructed (P ∩ F )∗.

4. We set F ∗ = (P ∩ F )∗
·
∪ (F t)∗

·
∪ (Q ∩ F )∗.

5. We construct E∗ a homeomorphic copy of E.

We first define a homeomorphic copy F ′ of F ∗. We begin with (P ∩ F )∗

and our assumption that
q − p

5
= 1 with

[
p, p +

q − p
5

]
= [0, 1]. We start

our copy by moving each of the points

{
1

2n
: n = 1, 2, 3, · · ·

}
to

{√
1

2n
:

n = 1, 2, 3, · · ·
}

, and for each n, we move the sequence

{
1

2n
+

1

2n+2+j
: j =

1, 2, 3, · · ·
}

to

{√
1

2n
+

1

2n

√
1

2j+2
: j = 1, 2, 3, · · ·

}
. By continuing this

process, we arrive at a copy of (P ∩ F )∗ contained in

[
p, p+

q − p
5

]
. We now

do the same with each of the sets F i, i ∈ {0, 1, . . . , k − 1}, comprising (F t)∗,
with min(F t)∗ left fixed. For (Q ∩ F )∗ we use the same iterative process, but
apply instead the mirror of the square root function with the point q left fixed.
Now, let {cn} be an enumeration of F ∗, with {dn} an enumeration of F ′ such
that cn is mapped to dn by the homeomorphism just defined. We now use F ′

to construct a Cantor set E∗. We consider two cases.

Case 1 Suppose dn ∈ F ′ is a limit point. Then let en = dn.

Case 2 Suppose dn ∈ F ′ is isolated, where min{dist(dn, x) : x ∈ F ′−{dn}} =
N . Then let en be a copy of the middle thirds Cantor set contained in [dn, dn+
N/210].
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Let E∗ =
∞⋃
n=0

en. We can now define f : E∗ → F ∗ by x 7→ cn for all x ∈ en.

�
With Lemmas 5 and 6, we are in a position to prove that every uncount-

able nowhere dense compact set M is homeomorphic to a set M∗ which is ho-

moclinic with respect to a function f for which lim y → xy ∈M∗ f(y)− f(x)

y − x
exists and is bounded for all x ∈M∗. Our strategy is to break the set M into
appropriate concentric annuli, making homeomorphic copies of each annulus
as we go along. It is in mapping one annulus onto another as we develop our
homoclinic trajectory that we use Lemmas 5 and 6. The idea is to use the
maximal perfect part P ∗ of M∗ = P ∗∪̇C∗ to cover both itself and the at most
countable remainder C∗ of M∗ in the homoclinic trajectory. Specifically, we
have the following proposition.

Proposition 7 Every uncountable nowhere dense set M ⊆ I is homeomor-
phic to a set M∗ ⊆ [−1, 1] that is homoclinic with respect to a function f ,
where

lim y → xy ∈M∗ f(y)− f(x)

y − x
=

{
2 x = 0

0 x ∈M∗ − {0} .

Proof. Let M = P ∪̇C, where P is a Cantor set and C is countable, and
take a ∈ P ⊆ M to be an accumulation point in P from both the left and
the right. We construct sets {Mn}∞n=0 by taking concentric annuli about a
so that each Mn is both open and closed in M , M `

n = {x ∈ Mn : x < a}
and Mr

n = {x ∈ Mn : x > a} are both uncountable, and m > n implies
maxM `

n < minM `
m, minMr

n > maxMr
m. We put a homeomorphic copy

M∗0 of M0 in

[
−3

4
,−1

2

]
∪
[

1

2
,

1

2
+

1

22

]
, a homeomorphic copy M∗1 of M1 in[

− 5

16
,−1

4

]
∪
[

1

4
,

1

4
+

1

42

]
, and in general a homeomorphic copy M∗n−1 of

Mn−1 in

[
−2n + 1

22n
,− 1

2n

]
∪
[

1

2n
,

1

2n
+

1

22n

]
. We send the point a ∈ P ⊆ M

to the origin, and use Lemmas 5 and 6 to make appropriate copies M∗n. Our

restriction of the diameters of the M∗n gives us lim y → 0y ∈M∗ f(y)

y
= 2,

since lim
n→∞

(
1

2n−1 + 1
22n−2

)
1

2n

= 2 and lim
n→∞

1
2n

1
2n+1 + 1

22n+2

= 2 as well. We now

construct our sets M∗n. We begin with M∗0 . We write M0 = P0∪̇C0, where
P0 is a Cantor set and C0 is countable. We let M∗0 = P ∗0 ∪̇C∗0 , where P ∗0
is a closed and open portion of K

(
1
3

)
, the middle thirds Cantor set, and C∗0
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is arranged so that Lemma 6 is satisfied in each complementary interval of
P ∗0 . For M∗1 , we let M∗1 = P ∗1 ∪̇C∗1 where P ∗1 is a union of a closed and open
portion of K

(
1
4

)
as well as closed and open portions of K

(
1
4

)
that will map

onto C∗0 as in Lemma 6. We arrange C∗1 as in Lemma 6 as well. In the
general case of M∗n+1, we let M∗n+1 = P ∗n+1∪̇C∗n+1 so that P ∗n+1 is a union
of a closed and open portion of K

(
1

n+4

)
as well as closed and open portions

of K
(

1
n+4

)
that will map onto C∗n as in Lemma 6. We arrange C∗n+1 as in

Lemma 6. From Lemmas 5 and 6, then, we can map P ∗n+1 onto M∗n so that

lim y → xy ∈ P ∗n+1

f(x)− f(y)

x− y
= 0 for every x ∈ P ∗n+1. We complete our map

of M∗n+1 to M∗n, for n > 0, by retracting the points of C∗n+1 into the endpoints
of the complementary intervals of the Cantor set P ∗n+1. By mapping the origin
to itself and M∗0 to the origin, we have a map which is homoclinic with respect
to M∗ that satisfies our derivative-like condition. �

We now need only extend our function f : M∗ →M∗ developed in Propo-
sition 7 to a function F : [−1, 1]→ [−1, 1] for which there exists an x in [−1, 1]
with ωF (x) = M∗. This is the content of Lemma 8.

Lemma 8 Every uncountable nowhere dense compact set M ⊆ I is homeo-
morphic to an ω-limit set of homoclinic type for a differentiable function with
bounded derivative.

Proof. Let M∗ be the homeomorphic copy of M that appears in the proof
of Lemma 7, with f : M∗ → M∗ the function with respect to which M∗ is
homoclinic. We describe our construction for 0 ≤ x ≤ 1, since the extension of
f to−1 ≤ x ≤ 0 is completely analogous. We may assume that for every n ≥ 0,
f maps P ∗n+1 onto M∗n so that f |P ∗n+1 is non-decreasing. We want to now
extend f |M∗n+1 to all of convM∗n+1 so that the extension F is differentiable,
F ′(x) = 0 for all x ∈ M∗n+1 and if Nx is a neighborhood of x ∈ M∗n+1,
then F (Nx) is a neighborhood of F (x) = f(x). Let M∗n+1 = P ∗n+1∪̇C∗n+1

as before, with {(am, bm)} an enumeration of the complementary intervals of
P ∗n+1 in convM∗n+1. If C∗n+1 ∩ (aj , bj) 6= ∅ for some j ∈ N, we then extend the
retraction of this set to f(aj) and f(bj) by using that part of the construction
in Lemma 4 that applies to intervals upon which f is constant (1).
We can use Misiurewicz’ construction on the rest of (aj , bj). Now, let Qn+1

be a maximal closed and open portion of M∗n+1 that maps onto some cn ∈ C∗n,
and let {(aj , bj)} be an enumeration of those complementary intervals of Qn+1

that contain no points of C∗n+1. Let cj =
bj + aj

2
and ρj =

bj − aj
4

. On
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[cj − ρj , cj + ρj ], let F : [cj − ρj , cj + ρj ]→ R be defined so that

F (y) =

{
(y − cj)2 y ≥ cj
−(y − cj)2 y < cj .

(2)

We can now extend F to the rest of convQn+1 using Misiurewicz’ construction.
It remains to extend f to those complementary intervals {(a`, b`)} of M∗n+1

that contain no points of C∗n+1 and for which f(a`) < f(b`). We do this with
Misiurewicz’ construction so that max{F (x) : x ∈ [a`, b`]} = F (b`) = f(b`),
min{F (x) : x ∈ [a`, b`]} = F (a`) = f(a`), and F is non-decreasing on [a`, b`].
In the same way we extend f to the intervals {(maxM∗n+1,minM∗n)}. Finally,
we use the same ideas found in (1) and (2) above to extend f to convM∗0 .
Moreover, from our development of M∗ in the proof of Proposition 7, we can
take F ′(x) < 4 + ε for all x ∈ [−1, 1], and ε > 0. �

Theorem 1 now follows as an immediate consequence of Lemmas 4 and 8.
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