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ON SOME REPRESENTATIONS OF A.E.
CONTINUOUS FUNCTIONS

Abstract
It is proved that the following conditions are equivalent:
(a) f is an almost everywhere continuous function.
(b) f =g+ h, where g, h are strongly quasi-continuous.
(¢) f=c+ gh, where c € R and g, h are s.q.c..

Let R be the set of all reals and let . () denote outer Lebesgue measure
(Lebesgue measure) in R. Denote by

dy(A,x) = limsup pe(AN (x — hyz + h))/2h
h—0

(di(A,x) = 1i£n_3£1f te(AN (z — h,z+ h))/2h)

the upper (lower) density of a set A C R at a point z. A point z € R is called
a density point of a set A C R if there exists a measurable (in the sense of
Lebesgue) set B C A such that d;j(B,z) = 1. The family 73 = {A C R; A is
measurable and every point z € A is a density point of A} is a topology called
the density topology [1].

A function f : R — R is said to be strongly quasi-continuous (in short
s.q.c.) at a point x if for every set A € Ty containing x and for every positive
real i there is an open interval I such that TN A # () and |f(t) — f(z)| < n for
allt e AN [2].

If there is an open set U such that d,, (U, z) > 0 and the restricted function
fI(U U{x}) is continuous at z, then f is s.q.c. at z. [3].

By an elementary proof, we obtain the following observation.
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Remark 1 If all functions f, : R = R, n = 1,2,..., of some uniformly
convergent sequence (fy)n are s.q.c. at a point x , then its limit f is also s.q.c.
at .

It is known [2, 3] that every s.q.c. function f is almost everywhere (with
respect to p) continuous. So, the sum and the product of two s.q.c. functions
are almost everywhere continuous.

We will prove the following assertion.

Theorem 1 If a function f : R — R is almost everywhere continuous, then
there are two s.q.c. functions g,h : R — R such that f = g+ h.

PRrROOF. Let cl denote the closure operation and let

B={yeR;u(l(f'(y) >0}

Since the function f is almost everywhere continuous, the set B is countable.
Let E(B) be the linear space over the field Q of all rationals generated by the
set B. Since the set E(B) is countable, there is a positive number ¢ € R\ E(B).
Denote by Z the set of all integers and by N the set of all positive integers.
Fix k € Z and n € N. If (2k — 1)c/4" < f(z) < (2k + 1)c/4™, then we
define f,,(z) = (2k — 1)c/4™. Observe that every function f,, n € N, is almost
everywhere continuous and if D(f,,) denotes the set of all discontinuity points
of f,, then D(f,) is a closed set of measure zero. Moreover, D(f,) C D(fn+1)
for n € N. Let C(f,), n € N, be the set of all continuity points of the function

Step 1. Since the set D(f1) is closed and of measure zero, for k € Z and
J € N there are disjoint closed intervals Iy ; = [a1,k,,01,5,;] C C(f1), such
that for every k € Z and for every x € D(f1) we have d, (UjenI1,k,j,z) = 1 and
if there exists the limit lim;_,oc a1k, 5,, then lim;_, o a1k, 5, = limy—00 b1 1,5, €
D(f1). Let

(2k+1)c/4 ifz e Lok, jEN
gi(z) = i
fi (w) otherwise

and for x € R let hy(z) = fi(z) — g1(z). Observe that the functions g;, hy are
s.q.c. and f; = g1 + hy.

Step 2. First, we find disjoint sets Fy ox ;1 C int (I125,5) \ D(f2), k € Z,
j €N, I=1,...,7, being the unions of finite families of disjoint closed intervals
and such that
° /J(F272k,j,l) = M(ILQ;CJ)/lO for ke Z, j€eN, l=1,...,7;

Moreover, we find a family of disjoint closed intervals Io  ; = [a2 k. ;, b2,k ;]
C C(fg) \ UkeZ;jeN;l§7F2,2k,j,l7 k € Z, 5 € N such that
e for every k € Z and for every x € D(f2) we have dy(U;ey I2,k.,5, %) = 1;
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o if there exists the limits limy_, o a2 1, j,, then limy_oc a2 i, j, = lima g, j, b2 i, 5,

€ D(f2);
e for all ]411,/{}2 € Z and jl,jQ € N we have Il,k17j1 N Ig,k%h =0 or 127k2,j2 C

int (Ilyk/lvjl )

Let
fg(l‘) ifx e D(fg)
(z) = gi(x)+1lc/16 fxely;;, jeN, I=1,...,7
A= gl(@) +1e/16 ifw € Foopjy, k€Z, jEN, [<T
g1 (x) otherwise

and for x € R let ha(x) = fa(x) — g2(z). Then the functions gs, he are s.q.c.
and fy = ga+h. Moreover, [g1 —ga| < ¢/2 and |hy —ha| < |f1— fa|+[g91—ga| <
c/2+c/2=c.
Step n (n > 2). There are s.q.c. functions g,—1, hy,—1 such that
® gn—1+ hn—l = fn—l and
® g 1(R)Uh,_1(R) C {ke/4"1; k € Z}.
If (gn—1)"t(kc/4"1) £ 0 for some k € Z, then for there are disjoint closed
intervals I, 1.; C int ((gn—1)"'(kc/4"1)) N C(fn), I,j € N, such that
o for every | € N and for every z € D(fn) N (gn_1)"*(kc/4""1) we have
du(UjeN In,k,l,j; Z‘) > 0 and
e if a sequence of points z;, ¢ € N, belonging to different intervals I, 1, ;.
converges to a point x, then x € D(f,,).

Let
fn(2) if x € D(f,)

() =< gno1(x) +1lc/4" Hx€lppuy, jEN, ke Z 1=1,...,7
Gn—1(x) otherwise

and let hy(z) = fo(x) — gn(z), =« € R. Then the functions g,, h, are s.q.c.
and f, = gn+ hn. Moreover, |g, —gn_1| < 2¢/4"" 1 and |h,, —h, 1] < c/4772
The sequences (g, )n and (hy,), uniformly converge to some functions g and h
respectively, which are, by Remark 1, s.q.c.. Moreover,

g+ h lim g, + lim h, = lim (g, + h,) = lim f, = f.
n—00 n—00 n—00 n—r00
This finishes the proof. O

Remark 2 If the function f from Theorem 1 is of Baire o class (o > 0),
then the functions g and h can be the same.

Remark 3 From the proof of Theorem 1 it follows immediately that if I is an
open interval and if f: I — R is an almost everywhere continuous function,
then there are two s.q.c. functions g,h : I — R such that f = g+ h.
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Now we will examine the products of s.q.c. functions.

Theorem 2 Let f : R — R be an almost everywhere continuous function such
that pu(cl (f71(0)) \int (f=1(0))) = 0. Then there are two s.q.c. functions g, h
such that f = gh.

PRrROOF. Denote by A the set {x; f(z) > 0}, by B the set {z; f(z) < 0} and
observe that u(R\int (A)\int (B)\int (f~1(0))) = 0. If I is a component of the
set int (A), then the function z — In(f(z)) for € I, is an almost everywhere
continuous function, and by Remark 3, there are two s.q.c. functions gy, hy :
I — R such that In(f(z)) = gr(z)+hs(x) for z € I. Consequently, the reduced
function f|I = (e™())/I = e9eht is the product of two s.q.c. functions.
Analogously, if J is a component of the set int (B), then the function — f|J
is the product of two s.q.c. functions and consequently, the function f|J is
also the product of two s.q.c. functions. So, there are two s.q.c. functions
g1, h1 ¢ (int (A) Uint (B)) — R such that f|(int (A) Uint (B)) = g1hy. Let F
be the set of all points z € cl (int (f~1(0))) at which d;(int (f=1(0)),z) = 1
and f(xz) # 0. There are families of closed intervals Iy, = [akn,brn] C
int (f71(0)), k,n € N, such that

® Iy ny N Ik ny = 0if (K1, n1) # (ka,n2), k1, k2, na,n2 €N,
o if 3 the limit lim;_, o ag, »,, then im0 ax, n, = limy_yo0 b, ., € ¢l (F),
e for every point € F and for every k € N we have d,(,, Tx,n,x) > 0.

Next, enumerate all non zero rationals in a sequence wy, ..., Wk, ... such that
w; #wj for i # j,i,j € N,and let H =R\ int (A) \ int (B) \ int (f~1(0)) \ F.
There are disjoint closed intervals Ji , = [ckn, din] C int (A) Uint (B), k,n €
N, such that

e the functions g;, h1 are continuous at all points ¢, and di ,, k,n € N,

o if there exist the limit lim; o0 Cky,n,, then limy,o e, ., = iMoo digy 0y €
cl(H),
e for every point x € H and for every k € N we have d,,(U,, Jx,n, ) > 0.

Since the function g; is almost everywhere continuous on its domain, for every
interval int (Ji ,,), k,n € N, there are a positive real r(k,n) and a finite family
of disjoint closed intervals Ky, ,, ; C int (Jgn), ¢ = 1,...,i(k, n), such that

o |g1(z)] > r(k,n) forx € Ky i, k,n e N, i =1,....i(k,n),
e 0sc g, ,91 <7(k,n)/nwy for k,n e N, i =1,...,i(k,n),

e for every point « € H and for every k € N we have du (U, eni<i(k,n) EKkonis @)
> 0. B

In every interval int (Ky i), k,n € N, i =1,...,i(k,n), fix a point xy p ;.
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Put
Wi, ifex € gy, k,neN
0 ifxe€lr_1n, k,neN
_Jo otherwise on f~1(0)

9(@) = g1()wr/g1(x2km,:) ifx € Kogpi, k,neN, i <i(k,n)
g1 (x) otherwise on int (4) Uint (B)
g1(z)hi(x) fre FUH

and
0 if 2 € Ipgn, kyn €N
ifx e log_1pn, k,n €N

W) = 0 otherwise on f~1(0)
hi(z)g1(zokni)/we iz € Ko pi, k,n €N, i <i(k,n)
hi(x) otherwise on int (4) Uint (B)

1 ifre FUH.

Since g(Kkn,i) C (wrp — 1/n,w, + 1/n) for all k,n € N, ¢ = 1,...,i(k,n),
and du(UneN, i<i(kn) Ky pn,i,x) > 0 for each © € H and for each k € N, the
function g is s.q.c. at every point x € H. Evidently, it is also s.q.c. otherwise
on R. Analogously, h is a s.q.c. function. Obviously, f = gh and the proof is
completed. (Il

Theorem 3 If f : R — R is an almost everywhere continuous function, then
there are a constant ¢ € R and two s.q.c. functions g, h such that f = c+ gh.

PRrROOF. Let ¢ € R be a number such that u(cl(f~%(c))) = 0. Then the
function f; = f — c satisfies the suppositions of Theorem 2 and consequently,
there are two s.q.c. functions g, h such that f; = gh. So, f = ¢+ gh and the
proof is completed. O
Recall that a function f : R — R is quasi-continuous (cliquish) at a point x
if for every positive 1 and for every open set U containing x there is a nonempty
open set V C U such that |f(t) — f(z)] <npforallt € V (oscvf <n) [6].

Remark 4 Since for every cliquish function f : R — R there is a homeo-
morphism h : R — R such that f o h is almost everywhere continuous, by
Theorems 1 and 8 we obtain immediately that for every cliquish function f
there are a constant ¢ € R and quasi-continuous functions f1, fa, f3, f4 such

that f = f1 4+ fo and f = c+ f3f4.

Remark 5 If a function f: R — R is the product of a finite family of s.q.c.
functions g, k =1,...,n, then it satisfies the following condition:
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(H) if A C cl(f~40)) — f71(0) is such that di;(f~*(0),z) = 1 for every
x € A, then A is nowhere dense in f~1(0).

PROOF. Denote by B the set of all density points of the set f~!(0) belonging
to f71(0). If B # 0 and A is not nowhere dense in f~1(0), then there is a
point & € A and a positive integer ¢ < n such that z is a density point of
the set (f;)7(0). Since fi(x) # 0 and f; is a s.q.c. function, we obtain a
contradiction. If B = (), then A is the same. This completes the proof. O

Remark 6 There is almost everywhere continuous functions which are not
the products of finite families of s.q.c. functions.

PROOF. Such as, for example, the function

_J 1/n fz=w, neN
flz) = { 0 otherwise

(see also [4, 5]), since it does not satisfy condition (H) in Remark 5. O

Problems

1. Let f : R — R be an almost everywhere continuous function. Is the function
f the sum of two Darboux s.q.c. functions?

2. Let f : R — R be an almost everywhere continuous function satisfying the
condition (H) from Remark 5. Is f the product of two s.q.c. functions?

3. Characterize the products of two Darboux s.q.c. functions.
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