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Abstract

It is known that a real–valued function on the unit interval belongs
to Baire class one if and only if it is first return recoverable. Here it
is shown that the trajectory used for recovering the function can be
modified in such a way as to reflect local behavior of the function.

1 Introduction

Several standard subcollections of the class of real–valued Baire one functions
defined on [0, 1] have been characterized utilizing first return limiting notions.
For example, for a function f : [0, 1] → R it is known that f is Baire one if
and only if f is first return recoverable [3], that f is Baire one and has a dense
in itself graph if and only if f is first return approachable [1], and that f is
Baire one, Darboux if and only if f is first return continuous [2]. Here we will
take a close look at what can be said about the trajectories involved in these
characterizations. In particular, we want to observe that a trajectory can be
chosen in such a way as to closely mirror the local behavior of the function.
For example, if f is a Baire one function, we want to show that the trajectory
can be chosen in such a way that if (x, f(x)) is isolated from neither the left
nor right in the graph of f , then f will not only be first return recoverable at
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x with respect to this trajectory, but actually first return continuous at x with
respect to this trajectory. We shall demonstrate similar behavior for situations
where (x, f(x)) is isolated on one side, obtaining first return approachability
at such a point. The next section contains the definitions of the terminology
used in these remarks.

2 First Return Terminology and Notation

By a trajectory we mean any sequence {xn}∞n=0 of distinct points in [0, 1],
which is dense in [0, 1]. One method of specifying a trajectory is to assign
an enumeration or ordering to a given countable dense subset D of [0, 1]. We
shall refer to such a set D as a support set.

Let {xn} be a fixed trajectory. For a given interval, or finite union of
intervals, H ⊆ [0, 1], r(H) will be the first element of the trajectory {xn}
in H. First, for x ∈ [0, 1] we define what we shall mean by the first return
route to x based on the trajectory {xn}. If ρ > 0, we use Bρ(x) to denote
{y ∈ [0, 1] : |x−y| < ρ}. The first return route to x, Rx = {yk}∞k=1, is defined
recursively via

y1 = x0,

yk+1 =

{
r
(
B|x−yk|(x)

)
if x 6= yk

yk if x = yk.

We say that f : [0, 1]→ R is first return recoverable with respect to {xn} at x
provided that

lim
k→∞

f(yk) = f(x),

and if this happens for each x ∈ [0, 1], we say that f : [0, 1]→ R is first return
recoverable with respect to {xn}. Further, we say that f is first return recov-
erable if there exists a trajectory {xn} such that f is first return recoverable
with respect to {xn}.

For 0 < x ≤ 1, the left first return path to x based on {xn}, P lx = {tk}, is
defined recursively via

t1 = r(0, x), and tk+1 = r(tk, x).

For 0 ≤ x < 1, the right first return path to x based on {xn}, Prx = {sk}, is
defined analogously, and for each x ∈ [0, 1] the first return approach to x based
on {xn}, Ax = {uk}, is defined recursively via

u1 = r((0, 1) \ {x}), and uk+1 = r(B|x−uk|(x) \ {x}).
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We say that f : [0, 1] → R is first return continuous from the left [right] at x
with respect to the trajectory {xn} provided

lim
t→x

t∈Pl
x

f(t) = f(x)

[
lim
s→x
s∈Pr

x

f(s) = f(x)

]
.

We say that for any x ∈ (0, 1), f is first return continuous at x with respect to
the trajectory {xn} provided it is both left and right first return continuous at
x with respect to the trajectory {xn}. We will adopt the convention of saying
that f is first return continuous at 0 with respect to {xn} provided it is first
return continuous from the right there with respect to {xn}, and adopt the
symmetric convention concerning x = 1. On the other hand, for x ∈ [0, 1] we
say that f is first return approachable at x with respect to the trajectory {xn}
provided

lim
u→x
u∈Ax

f(u) = f(x).

We say that f is first return continuous [approachable] with respect to {xn}
provided it is first return continuous [approachable] with respect to {xn} at
each x ∈ [0, 1]. Likewise, f is said to be first return continuous [approachable]
provided there exists a trajectory {xn} with respect to which f is first return
continuous [approachable].

3 The Fine Tuning

In [3] it was shown that a function f : [0, 1]→ R belongs to Baire class one if
and only if f is first return recoverable. Here we wish to take a closer look at
the proof of the “only if” direction as presented in [3] and observe that it can
readily be modified to yield the following:

Lemma 1 If f : [0, 1] → R is Baire one, then there exists a trajectory {xn}
such that for each x ∈ [0, 1], except the xn’s, f is first return continuous at x
with respect to {xn}.

Proof. With apologies to the reader for the inconvenience we are about to
inflict, it seems that the most efficient method for indicating the proof is to
note modifications which can be made to that given for Theorem 1 in [3]. We
may proceed exactly as stated there until reaching the the conditions i) and
ii) which are to be satisfied at the end of the kth stage. Replace these with
the following two conditions:
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i*) If x ∈ Gν ∩
[

i
2nk

, i+1
2nk

]
\ {xl}mk

l=0 for some i = 0, 1, . . . , 2nk−1 and some

Gν ∈ Gk, then there are points of {xl}mk

l=0 in
[
i

2nk
, i+1
2nk

]
lying strictly to

the left and to the right of x and the closest such points to x on the left
and right of x both belong to Gν .

ii*) If x ∈ Gν \ {xl}mk

l=0 for some Gν ∈ Gk−1 and xl ∈ P lx ∪ Prx with mk−1 <
l ≤ mk, then xl ∈ Gν .

We proceed exactly as in [3] at stage 1, observing that i*) and ii*) are trivially
satisfied. We then assume that stages 1, . . . , k have been successfully com-
pleted and follow the directions for selecting and ordering points at stage k+1
as given in [3]. Then instead of verifying i) and ii) at stage k+ 1 we verify i*)
and ii*) as follows.

To show that condition i*) holds, assume that x ∈ Gν ∩
[

i
2nk+1 ,

i+1
2nk+1

]
\

{xl}
mk+1

l=0 for some i = 0, 1, . . . , 2nk+1−1 and some Gν ∈ Gk+1 and let J =[
i

2nk+1 ,
i+1

2nk+1

]
. Note that since we know that x /∈ {xl}

mk+1

l=0 , we know that
x is not an endpoint of J . Let Gτ be the unique element of Gk+1 having
the longest τ which intersects J . Note that τ is an extension of ν. In stage
k + 1 the points in J which are candidates to be added to the trajectory are
the max and min of J intersected with each of Gτ , Gτ |m−1

, Gτ |m−2
, . . . , Gτ |1 .

Since we know that x is not such a point, that τ is an extension of ν, and
that sequence {Gτ , Gτ |m−1

, Gτ |m−2
, . . . , Gτ |1} is monotonically increasing, it

follows that points to the left and right of x in J are chosen at stage k+ 1, or
earlier, and that the closest such chosen points to the left and to the right of
x will be from Gν , verifying i*).

To show that condition ii*) holds, assume that x ∈ Gν \{xl}
mk+1

l=0 for some
Gν ∈ Gk and that xl ∈ P lx ∪ Prx with mk < l ≤ mk+1. Without loss of
generality, consider the case xl ∈ Prx. Let I be the interval of length 1/2nk of
the partition considered at stage k which contains x. Then by condition i*)
at stage k, I also contains the nearest element of Prx restricted to {xl}mk

l=0.
Thus, xl must belong to I as well. If Gτ is the unique element of Gk having
the longest τ which intersects I, then τ is an extension of ν. At stage k + 1,
the interval I is subdivided into a finite collection H of intervals of length
1/2nk+1 . Let J ∈ H be such that xl ∈ J . If Gµ is the unique element of Gk+1

with the longest µ which intersects J , then either µ is an extension of τ and,
consequently, of ν, or µ has at least one entry equal to k + 1. We know from
condition i*) at stage k + 1 that the closest element of {xn}

mk+1

n=0 to the right
of x belongs to Gν . Call this point y. Thus, by the order in which points
from J are appended to the trajectory at stage k + 1, it follows that all such
points either belong to Gν or they are appended after y is appended. Since
xl ∈ Prx restricted to {xn}

mk+1

n=0 , it cannot be the case that xl is appended after
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y. Thus, xl ∈ Gν , verifying ii*).
Using i*) and ii*), the proof is completed in the same manner that recov-

erability was demonstrated in [3] using i) and ii). �

The next lemma is obvious, but we find it useful to state because we shall
use it repeatedly in the proof of our main result.

Lemma 2 Let D be a support set, {dj}∞j=0 any ordering of D, and (a, b) ⊂
[0, 1]. If s = r(a, b) i.e., if s is the first term of {dj}∞j=0 in (a, b), then s ∈ P lx
for all x ∈ (s, b) and s ∈ Prx for all x ∈ (a, s) .

Let f : [0, 1]→ R. In stating and proving the following result, it is helpful
to categorize the points in x ∈ [0, 1] into three types, depending upon how
isolated (x, f(x)) is in the graph of f : Type I points are those x ∈ (0, 1) for
which (x, f(x)) is isolated on neither the left nor the right. (The point x = 0
[x = 1] will be a type I point if (0, f(0)) [(1, f(1))] is not isolated on the right
[left].) Type II points are those x ∈ (0, 1) for which (x, f(x)) is isolated on
exactly one side. (The points 0 and 1 are never considered type II.) Type III
points are those x ∈ [0, 1] for which (x, f(x)) is isolated.

Theorem 1 Let f : [0, 1] → R be a Baire one function. Then there exists a
trajectory {xn} such that

A) f is first return recoverable with respect to {xn}.

B) If x is a type I point, then f is first return continuous at x with respect
to {xn}.

C) If x is a type II point, then f is first return approachable at x with respect
to {xn}.

Proof. According to a well-known theorem of A. Gleyzal [4], there is an
interval function H which converges to f . This means that H(I) is real valued
for every closed interval I ⊆ [0, 1] and that for every x ∈ [0, 1] and every
sequence {In} of intervals converging to x, we have limn→∞H(In) = f(x),
where by {In} converging to x we mean that x belongs to each In and the
lengths, |In|, of the In tend to 0 as n tends to ∞.

Let {dk}∞k=0 be a trajectory satisfying the statement of Lemma 1 and let
D denote the range of this sequence. Note that all type II and III points
must be in D. Our strategy for proving the theorem will be to produce a
rearrangement {xn}∞n=0 of {dk}∞k=0 with respect to which the statements A),
B), and C) will hold. As an aid in doing this, we shall be utilizing two methods
or operations for selecting an element of D from certain open intervals (a, b).
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The “r-operation” selects the point r(a, b) based on the trajectory {dk}; that
is, throughout this proof r(a, b) will be the first element of {dk} which lies
in (a, b). The “h-operation” will only be applied in certain instances when a
and b belong to D ∪ {0, 1}. If only one endpoint belongs to D, it is called
the “preferred point” and if both belong to D, then the one with smaller
subscript in {dk} is called “preferred.” The only times when the h-operation
will be applied are situations when (preferred point, f(preferred point)) is not
an isolated point of the graph of f |[a, b] (f , restricted to [a, b].) When we apply
the h-operation to such an interval, h(a, b) will be a certain point y ∈ (a, b)∩D
for which

max{|f(preferred point)− f(y)|, |preferred point− y|} < (b− a)/2. (1)

We will often place an even more stringent requirement on how close y is to
the preferred point, but we shall always at least require (1).

We define a sequence {δk}∞k=0 by first choosing 0 < δ0 < 1/3 so small that
if I is any interval containing d0 with |I| < δ0, then |f(d0)−H(I)| < 1. For
k ≥ 1 we choose a positive δk so that

• δk < δk−1/2,

• δk < min {|di − dj |/2 : i, j ≤ k, i 6= j},

• if I is any interval containing dj , j ≤ k and with |I| < δk, then
|f(dj)−H(I)| < 1/(k + 1).

The symbols Rx, Ax, and P lx [Prx] will designate the first return route,
approach, and left [right] path to x based on the trajectory {dk}, while R̂x,
Âx, and P̂ lx [P̂rx] designate the corresponding items based on the trajectory
{xn}.

We shall define the rearrangement {xn} of {dk} inductively in stages. At
the end of the kth stage we will have specified two natural numbers mk and
ik and {xn}mk

n=0 will have been chosen along with partitions {Qi}iki=0 of [0, 1],
satisfying all of the following:

i) For each i = 0, . . . , ik, all points of Qi belong to D ∪ {0, 1}.

ii) For each i = 0, . . . , ik, Qi consists of 2i+1 + 1 points of D ∪ {0, 1} and
Qi was formed by joining to Qi−1 one point from D lying in the interior
of each of the partition intervals of Qi−1, where Q−1 = {0, 1}. If [a, b]
is a partition interval of Qi−1, the newly selected point was chosen by
applying either the r-operation or the h-operation to (a, b).

iii) {d0, d1, . . . , dk} ⊆ Qik .
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iv) ‖Qik‖ < δk, where ‖Qik‖ denotes the mesh of Qik . (In particular, note
that this condition implies that each partition interval of Qik has at most
one intersection with {d0, d1, . . . , dk}.)

v) For each x ∈ [0, 1] we have that if y belongs to P̂ lx ∩ (Qik \ Qik−1
)

[P̂rx ∩ (Qik \ Qik−1
)], then either

a) y ∈ P lx [Prx] , or

b) there is a j ∈ {0, . . . , k−1} and a partition interval, say J , of Qik−1

containing dj and x, and |f(dj)−f(y)| < |J |. Note that this implies

|f(x)− f(y)| ≤ |f(x)−H(J)|+ |H(J)− f(dj)|+
+ |f(dj)− f(y)|

≤ |f(x)−H(J)|+ 1/k + |J |.

vi) if x ∈ {d0, . . . , dk−1} is a type II point and y belongs to Âx∩(Qi \ Qi−1)
for some i ∈ {ik−1 + 1, ik−1 + 2, . . . , ik}, then

|f(x)− f(y)| < ‖Qi−1‖ .

vii) if x ∈ {d0, . . . , dk−1} is a type I point and y belongs to
(
P̂ lx ∪ P̂rx

)
∩

(Qi \ Qi−1) for some i ∈ {ik−1 + 1, ik−1 + 2, . . . , ik}, then

|f(x)− f(y)| < ‖Qi−1‖ .

Consider stage 0 in this process; that is, k = 0. We start with i = 0 and
form the partition Q0 of [0, 1] by applying the r-operation to (0, 1). Suppose
that r(0, 1) = dk0 , so that Q0 = {0, 1, dk0}. Note that k0 will be 0 if d0 /∈ {0, 1}
and k0 > 0 otherwise. In either case, d0 ∈ Q0 and ‖Q0‖ ≥ 1/2 > δ0. We
begin the definition of our rearrangement {xn} of {dk} by ordering the points
of Q0 ∩D from left to right. (Note that we will have defined at least x0 and
at most x0, x1, x2. Further note that d0 is among these.) We move on to
i = 1 and apply the r-operation to (0, dk0) and (dk0 , 1) to obtain points dk1
and dk2 and set Q1 = {0, 1, dk0 , dk1 , dk2}. We then append dk1 and dk2 to
{xn}. If ‖Q1‖ < δ0, we set i0 = 1 and let m0 + 1 denote the number of points
we have placed in {xn} to this point. Note that 2 ≤ m0 ≤ 4. Observe that
the conditions i)–iv) clearly hold for k = 0 and that conditions vi) and vii)
hold vacuously at this stage. Furthermore, condition v), part a) always holds
due to Lemma 2, terminating stage 0. On the other hand, if ‖Q1‖ ≥ δ0, we
proceed inductively to define Q2,Q3, . . . , always applying the r-operation to



172 M. J. Evans and R. J. O’Malley

select new points and always appending the newly selected points to {xn} in
a left to right manner. Clearly, Qi will contain di and, therefore, there is a
first i ≡ i0 for which ‖Qi‖ < δ0. We let m0 + 1 denote the number of terms in
{xn} to this point. Conditions i)–vii) are again easily seen to hold for k = 0.
Stage 0 is therefore completed.

Now assume that for some nonnegative integer k stage k has been com-
pleted; that is, ik and mk have been specified, the finite sequence {xn}mk

n=0

has been designated, the partitions Qi, i = 0, . . . , ik have been chosen, and
conditions i)–vii) are satisfied for k. We consider stage k + 1. For each i > ik
we shall be using the r-operation and the h-operation in picking new points
for Qi.

We start with i = ik+1. To every partition interval of Qik neither of whose
endpoints belong to {d0, . . . , dk} we apply the r operation to select a new point
to be put in the partition Qi. Next, consider the partition interval(s) of Qik
which have some dj , j = 0, . . . , k as an endpoint. Note that by condition (iv),
each interval contains at most one such dj . If (dj , f(dj)) is isolated in the
graph of f from within the partition interval, then apply the r operation to
that interval to select a point to be added to Qi. Do this for each j = 0, . . . , k,
where appropriate. Designate the set of all points selected in this manner by
Ri. Return to each dj , j = 0, . . . , k which is a type I or II point. For each
such dj there are either one or two partition intervals of Qik having dj as an
endpoint and from which no point has yet been selected for Qi. Note that for
each such dj and each such interval J the graph of f is not isolated on the
side of dj containing J . Therefore, since D satisfies Lemma 1, it is also not
isolated from f |D. With dj as the “preferred point”, we apply the h-operation
to each such partition interval, say J , containing dj , finding a point y ∈ D∩J
such that

|y − dj | < min{|J |/2,dist{dj , Ri}}, and

|f(y)− f(dj)| < |J |/2.

Let’s call the set of all of the points selected using the h-operation in this
manner Hi. Then Qi = Qik ∪ Ri ∪ Hi. Next, moving from left to right, we
append the points ofHi to {xn}mk

n=1; then, moving from left to right, we append
the points of Ri. If ‖Qi‖ < δk+1 and dk+1 ∈ Qi, we terminate stage k + 1
here, setting ik+1 = i and mk+1 + 1 equal to the number of terms in {xn} to
date. Conditions i)–vii) hold for k + 1. On the other hand, if ‖Qi‖ ≥ δk+1 or
dk+1 /∈ Qi, then we repeat the procedure until both conditions are satisfied.
Conditions i)–vii) are seen to hold for k+ 1 and the inductive construction of
the rearrangement {xn} is complete. However, we must pause to verify that we
will indeed encounter a jk for which both ‖Qik+jk‖ < δk+1 and dk+1 ∈ Qik+jk .
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To verify both parts of this claim simultaneously, we shall show that
for each nonnegative integer m there is a jm for which Qik+jm contains
{d0, . . . , dm}. Clearly this is true for m = 0. Assume it is true for some
nonnegative integer m; that is, assume that Qik+jm contains {d0, . . . , dm}.
If dm+1 ∈ Qik+jm , we are done. So, suppose that dm+1 /∈ Qik+jm . Then
there is a unique partition interval J of Qik+jm which contains dm+1. If the
r-operation is applied to J , then dm+1 must be selected for membership in
Qik+jm+1 and we are done. However, if the h-operation is applied to J , then
dm+1 might not be selected for membership in Qik+jm+1. Suppose that it is
not. The fact that the h-operation was applied implies that J has some dj0 ,
0 ≤ j0 ≤ k, as an endpoint with other endpoint not in {dj : j = 0, . . . , k},
and (dj0 , f(dj0)) is not isolated in the graph of f |J . The point y1 selected via
the h-operation will have the property that |y1 − dj0 | < |J |/2. Note that if
|dm+1 − dj0 | > |y1 − dj0 | then in forming Qik+jm+2 the r-operation will be
applied to the unique partition interval of Qik+jm+1 containing dm+1 and thus
it will be selected. On the other hand if |dm+1 − dj0 | < |y1 − dj0 |, then the
h-operation will be applied instead, yielding a point y2 which might not equal
dm+1. This process can continue, but notice that the yl’s are converging to-
ward dj0 and hence we will encounter a situation when |dm+1−dj0 | > |yl−dj0 |.
Once this situation is encountered, the r-operation will be applied and dm+1

will have to be selected for membership in Qik+jm+l+1. Thus, we could set
jm+1 = jm + l + 1 and our claim is established.

Next, note that {xn}∞n=0 is, indeed, an ordering of D; that is, it is a
rearrangement of {dk}∞k=0, this following from condition iii). Now we must
show that statements A), B) and C) are valid with respect to this trajectory
{xn}.

First, note that if x is a type III point in D, then x is an element in {xn}
and thus f is first return recoverable at x with respect to {xn}.

Next, suppose that x is a type II point in D; say x = dk. Let ε > 0 be
given and choose N ≥ mk+1 so large that ‖QN‖ < ε. Then from vi) we see
that every xn ∈ Âx with xn /∈ QN satisfies |f(x)− f(xn)| < ε, indicating that
f is first return approachable at x with respect to {xn}.

Similarly, suppose that x is a type I point in D; say x = dk. Let ε > 0 be
given and choose N ≥ mk+1 so large that ‖QN‖ < ε. Then from vii) we see
that every xn ∈ P̂ lx ∪ P̂rx with xn /∈ QN satisfies |f(x)− f(xn)| < ε, indicating
that f is first return continuous at x with respect to {xn}.

To complete the proof of the theorem, it only remains to show that f is
first return continuous at each x ∈ [0, 1] \D. Consider such an x and let {ul}
be any sequence from P̂ lx ∪ P̂rx converging to x. We use condition v) to break
{ul} into two subsequences. (We shall proceed, without loss of generality,
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assuming that both subsequences are, indeed, infinite.) We let {vj}∞j=1 denote

the subsequence whose terms belong to P lx ∪ Prx and let {vm}∞m=1 denote the
remaining subsequence. From Lemma 1 we know that limj→∞ f(vj) = f(x).

Next, let ε > 0 and choose δ > 0 such that if I is any interval containing x
with |I| < δ, then |H(I)−f(x)| < ε/3. Let K ∈ N be so large that 1/K < ε/3
and ‖QiK‖ < min{δ, ε/3}. Choose M ∈ N so large that for all m > M we
have |vm − x| < min{|x− dk| : dk ∈ QiK}. Consider any m > M . Choose the
first k so that vm ∈ Qik and observe that k > K. From condition v) at stage
k, it follows that there is some j ∈ {0, 1, . . . k − 1} such that dj and x belong
to a partition interval, say J , of Qik−1

and

|f(x)− f(vm)| < |f(x)−H(J)|+ 1/k + |J | < ε

3
+
ε

3
+
ε

3
= ε,

showing that f is first return continuous at x with respect to {xn} and com-
pleting the proof of the theorem. �

We remark that not just any trajectory {dj} with respect to which f is first
return recoverable can be rearranged to form a trajectory yielding statements
A), B), and C) of Theorem 1. Indeed, an example is given in [1] of a Baire one
f and a trajectory {dj} with respect to which f is first return approachable,
but for which, given any ordering {xn} of {dj}, the set of points at which
f is not first return continuous with respect to {xn} is uncountable (in fact,
perfectly dense in [0, 1]), whereas it is well–known that at most countably
many points can fail to be type III points.

The authors wish to thank the referee for carefully reading the original
manuscript and offering suggestions which have resulted in an improved expo-
sition.
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