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ON THE DE GIORGI—LETTA INTEGRAL
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VALUES IN RIESZ SPACES

Abstract

A monotone integral is given for scalar function, with respect to
Riesz space values means, and also a necessary and sufficient condition
to obtain a Radon-Nikodym density for two means.

1 Introduction

Integrals like Kurzweil-Stieltjes, Riemann sums and Bochner have been studied
in vector lattices by Duchoň, Riečan and Vrábelová, ([11], [21], [22]), Wright
([26], [27]), McGill ([19]), Šipoš ([24]), Maličký ([18]), Cristescu ([8]), Haluška
([15]), Boccuto ([3], [4]), and others.

In this paper we extend to such spaces the monotone integral, given by
Choquet in 1953 ([6]), and developed by De Giorgi-Letta ([9]), Greco ([13]),
Brooks-Martellotti ([5]), and others ([10], [12], [16], etc.).

Given a mean µ : A → R and a measurable function f : X → R̃+
0 , we say

that f is integrable (in the monotone sense) if the following limit exists in R.

(o)− lim
a→+∞

∫ a

0

µ({x ∈ X : f(x) > t}) dt.

For this integral we obtain some elementary properties and we give some Vitali-
type theorems. We note that in general this integral is different from the one
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introduced in [5] for Banach spaces. Finally we prove a version of Radon-
Nikodym-type theorems for the introduced integral (see also [14]).

Our thanks to Prof. D. Candeloro and A. Martellotti for their helpful
suggestions.

2 Preliminaries

We begin with some definitions.

Definition 2.1. A Riesz space R is called Archimedean if the following prop-
erty holds.

(2.1.1) For every choice of a, b ∈ R, if na ≤ b for all n ∈ N, then a ≤ 0.

Definition 2.2. A Riesz space R is said to be Dedekind complete (resp. σ-
Dedekind complete) if every nonempty (countable) subset of R, bounded from
above, has supremum in R.

The following results are well-known (see [1], [2]).

Proposition 2.3. Every σ-Dedekind complete Riesz space is Archimedean.

Theorem 2.4. Given an Archimedean (Dedekind complete) Riesz space R,
there exists a compact Stonian topological space Ω, unique up to homeomor-
phisms such that R can be embedded as a (solid) subspace of

C∞(Ω) = {f ∈ R̃
Ω
: f is continuous, and {ω : |f(ω)| = +∞}

is nowhere dense in Ω}. Moreover if (aλ)λ∈Λ is any family such that aλ ∈
R ∀λ and a = supλ aλ ∈ R (where the supremum is taken with respect to R),
then a = supλ aλ with respect to C∞(Ω) and the set {ω ∈ Ω : (supλ aλ)(ω) ̸=
supλ aλ(ω)} is meager in Ω.

Definition 2.5. A sequence (rn)n is said to be order-convergent (or (o)-con-
vergent) to r, if there exists a sequence (pn)n ∈ R such that pn ↓ 0 and
|rn − r| ≤ pn, ∀n ∈ N, and we will write (o)− limn rn = r.

As |rn| ≤ |r| + p1 ∀n, every (o)-convergent sequence is bounded. We
note that, if R is a σ-Dedekind complete Riesz space, (o)-convergence can be
formulated in the following equivalent ways (see also [25]).

Proposition 2.6. A sequence (rn)n, bounded in R, (o)-converges to r if and
only if r = (o) − lim supn rn = (o) − lim infn rn, where (o) − lim supn rn =
infn[supm≥n rm], (o)− lim infn rn = supn[infm≥n rm].
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Proposition 2.7. Let R be as above, Ω as in Theorem 2.4. A bounded se-
quence (rn)n, rn ∈ R, (o)-converges to r if and only if the set {ω ∈ Ω :
rn(ω) ̸→ r(ω)} is meager in Ω.

We recall some fundamental properties of the order convergence (see [25]).

Proposition 2.8. If (rn)n(o)-converges to both r and s, then r ≡ s. If
(rn)n(o)-converges to r, (sn)n(o)-converges to s and α ∈ R, then (rn + sn)n,
(rn ∨ sn)n, (rn ∧ sn)n, (αrn)n, (|rn|)n(o)-converge respectively to r + s, r ∨ s,
r ∧ s, αr, |r|.

Definition 2.9. A sequence (rn)n is said to be (o)-Cauchy if there exists a
sequence (pn)n ∈ R such that pn ↓ 0 and |rn−rm| ≤ pn, ∀n ∈ N, and ∀m ≥ n.

Definition 2.10. A Riesz space R is called (o)-complete if every (o)-Cauchy
sequence is (o)-convergent.

The following result holds (see [17], [28]).

Proposition 2.11. Every σ-Dedekind complete Riesz space is (o)-complete.

We note that there are some cases, in which (o)-convergence is not “gen-
erated” by a topology. For example, L0(X,B, µ), where µ is a σ-additive

non-atomic positive R̃-valued measure. We recall that, in such spaces, (o)-
convergence coincides with almost everywhere convergence. (Also see [25].)

3 The Monotone Integral

Definition 3.1. Let X be any set, R a Dedekind complete Riesz space, A ⊂
P(X) an algebra. A map µ : A → R is said to be mean if µ(A) ≥ 0, ∀A ∈ A
and µ(A∪B) = µ(A)+µ(B) whenever A∩B = ∅. A mean µ is countably addi-
tive (or σ-additive) if µ(∩nAn) = infn µ(An), whenever (An)n is a decreasing
sequence in A, such that ∩n An ∈ A.

Given a mapping f : X → R̃+
0 and a mean µ as above for all A ∈ A

and t ∈ R+
0 , set Ef

t,A (or simply Et,A, when no confusion can arise) ≡ {x ∈
A : f(x) > t}; Ef

t (Et) ≡ {x ∈ X : f(x) > t}; and, for every t > 0, let

uA,f (t) ≡ µ(Ef
t,A); uf (t) = u(t) ≡ µ(Et).

Definition 3.2. With the same notation as above, we say that a function
f : X → R̃+

0 is measurable if Ef
t ∈ A, ∀ t ∈ R+.

Now we define a Riemann (Lebesgue)-type integral, for maps, defined in
an interval of the real line and taking values in a Dedekind complete Riesz
space. (For similar integrals existing in the literature, also see [21] and [20].)



796 A. Boccuto and A. R. Sambucini

Definition 3.3. Let a, b ∈ R, a < b, and R be as above. We say that a map
g : [a, b] → R is a step function if there exist n + 1 points x0 ≡ a < x1 <
. . . < xn ≡ b such that g is constant in each interval of the type ]xi−1, xi[ (i =
1, . . . , n). We say that g is simple if there exist n elements of R, a1, . . . , an, and
n pairwise disjoint measurable sets Ei such that g =

∑n
i=1 ai χEi . If g is a step

(simple) function, we put
∫ b

a
g(t) dt ≡

∑n
i=1(xi−xi−1) ·g(ξi)

[∑n
i=1 |Ei| ·g(ξi)

]
,

where ξi is an arbitrary point of ]xi−1, xi[ [Ei].

Definition 3.4. Let u : [a, b] → R be a bounded function. We call the upper
integral (resp. lower integral) of u the element of R given by

inf
v∈Vu

∫ b

a

v(t) dt

[
sup
s∈Su

∫ b

a

s(t) dt

]
,

where

Vu ≡{v : v is a step (simple) function, v(t) ≥ u(t), ∀ t ∈ [a, b]}
Su ≡{s : s is a step (simple) function, s(t) ≤ u(t), ∀ t ∈ [a, b]}.

We say that u is Riemann (Lebesgue) integrable (or (R), resp. (L)-integrable)
if its lower integral coincides with its upper integral and, in this case, we call

integral of u (and write
∫ b

a
u(t) dt) their common value.

It is easy to check that this integral is well-defined, and is a linear monotone
functional, with values in R.

The following result holds.

Proposition 3.5. Every bounded monotone map u : [a, b] → R is Riemann
integrable.

Proof. The proof is almost identical to the classical one.

Now we define an integral for extended real-valued functions with respect
to R-valued means.

Definition 3.6. Let X, R, µ, f : X → R̃+
0 , u = uf be as above. We say that

f is integrable if the quantity

(3.6.1)

∫ +∞

0

u(t) dt ≡ supa>0

∫ a

0

u(t) dt = (o)− lima→+∞

∫ a

0

u(t) dt,

exists in R where the integral in (3.6.1) is intended as in Definition 3.4. If f is

integrable, we denote the element in (3.6.1) by

∫
X

f dµ. A measurable function

f : X → R is integrable if both f+, f− are integrable and, in this case we set∫
X
f dµ =

∫
X
f+ dµ−

∫
X

f− dµ.
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Remark 3.7. We can extend Definition 3.6 when µ : A → R is any finitely
additive bounded map. A measurable function f is integrable if and only if f
is integrable with respect to µ+, µ−, where for every A ∈ A

µ+(A) ≡ ∨B⊂A,B∈A µ(B),

µ−(A) ≡− ∧B⊂A,B∈Aµ(B),

and µ = µ+ − µ−. In this case, we set
∫
X
f dµ ≡

∫
X
f dµ+ −

∫
X
f dµ−. (Also

see [7].)

An immediate consequence of Definition 3.6 and monotonicity of µ is the
following assertion.

Proposition 3.8. If f is integrable, then for each A ∈ A, sup
a>0

∫ a

0

uA,f (t) dt

exists in R and is denoted by

∫
A

f dµ.

Proposition 3.9. With the same notation as above, if f is integrable, then∫
A

f dµ =

∫
X

f · χA dµ, ∀A ∈ A.

Proof. For each fixed t > 0 and x ∈ X, we have [f ·χA(x) > t] if and only if
[x ∈ A] and [f(x) > t]. So, uX,f ·χA ≡ uA,f . Thus, the assertion follows.

It is easy to check that this integral is a linear R-valued functional and
that, for every positive integrable map f ,

∫
· fdµ is a mean.

We now list a number of technical results.

Proposition 3.10. If f is integrable, then (o)−limt→+∞ µ(Et) = 0 and hence
µ(E∞) = 0, where E∞ ≡ {x ∈ X : f(x) = +∞}.

Proof. For every t > 0, we have

0 ≤ µ(E∞) ≤ µ(Et) =

∫
Et

t dµ

t
≤

∫
Et

f dµ

t
≤

∫
X
f dµ

t
.

Taking the infimum, we obtain 0 ≤ µ(Et) ≤ inft>0

∫
X

f dµ

t = 0.

Proposition 3.11. Let f : X → R̃+
0 be measurable. Then, f is integrable if

and only if supn
∫
X
(f∧n) dµ ∈ R, and in this case supn

∫
X
(f∧n) dµ =

∫
X
f dµ.

Proof. Fix n ∈ N and pick t < n. Then f(x) ∧ n > t if and only if f(x) > t

and so
∫ n

0
uf (t) dt =

∫ n

0
uf∧n(t) dt =

∫ +∞
0

uf∧n(t) dt =
∫
X
(f ∧ n) dµ. So the

first part of the assertion follows immediately. Moreover taking the suprema,
we get supn

∫
X
(f ∧ n) dµ = (o)− limn→+∞

∫ n

0
uf (t) dt =

∫
X
f dµ.
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Proposition 3.12. Let f : X → R+
0 be measurable and bounded and set Sf

(resp. Vf ) ≡ {g : X → R : g ≤ f, g is simple}, (resp. {h : X → R : h ≥ f, h
is simple}). Then

∫
X
f dµ = supg∈Sf

∫
X
g dµ = infh∈Vf

∫
X
h dµ, and f is

integrable.

Proof. It suffices to prove the part involving Sf . Let L = supx∈X f(x)
and, for every fixed n ∈ N, let sn(0) ≡ u(0), and sn(t) ≡ u

(
L i
2n

)
whenever

t ∈
]
L(i−1)

2n , L i
2n

]
(i = 1, . . . , 2n). We have

∫ L

0
sn(t) dt =

∑2n

i=1
L
2nu

(
L
2n i

)
. Put

U
(n)
i ≡

{
x ∈ X : f(x) >

Li

2n

}
;

gn ≡
2n∑
i=1

L

2n
χ
U

(n)
i

,∀n ∈ N, i = 1, 2, . . . , 2n.

Then (Also see [9].)
∫
X
gn dµ =

∑2n

i=1
L
2nµ(U

(n)
i ) =

∑2n

i=1
L
2nu

(
L
2n i

)
. Taking

the supremum, we get∫
X

f dµ =

∫ L

0

u(t) dt = sup
n

∫
X

gn dµ = (o)− lim
n

∫
X

gn dµ.

If g ∈ Sf , then
∫
X
g dµ ≤

∫
X
f dµ, and so

∫
X
f dµ = supn∈N

∫
X
gn dµ ≤

supg∈Sf

∫
X
g dµ ≤

∫
X
f dµ, which completes the proof.

Proposition 3.13. If f : X → R̃
+

0 is integrable, then

∫
X

f dµ = sup
g∈Sf

∫
X

g dµ.

Conversely, if f ≥ 0 is such that the quantity supg∈Sf

∫
X
g dµ exists in R, then

f is integrable and
∫
X
f dµ = supg∈Sf

∫
X
g dµ.

Proof. The assertion follows by Propositions 3.11 and 3.12.

The following result is easy also.

Proposition 3.14. Let f : X → R̃
+

0 be an integrable map, g : X → R̃
+

0

measurable such that 0 ≤ g(x) ≤ f(x), ∀x ∈ X. Then g is integrable, and∫
X

g dµ ≤
∫
X

f dµ.

Now we note that if µ : X → R is a mean and C∞(Ω) is as in Theorem 2.4,
then there exists a nowhere dense set Ω′ ⊂ Ω such that µ(A)(ω) is real,
∀ω ̸∈ Ω′, ∀A ∈ A.
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Proposition 3.15. Let R ⊂ C∞(Ω) be a Dedekind complete Riesz space where
Ω′ is as above and set µω(A) ≡ µ(A)(ω), ∀ω ̸∈ Ω′. Assume that f : X → R
is an integrable map. Then there exists a meager set N ⊂ Ω such that f is

integrable with respect to µω and
∫
A
f dµω =

(∫
A

f dµ

)
(ω), ∀ω ∈ N c, ∀A ∈

A.

Proof. Without loss of generality, we can assume that f is nonnegative.
First suppose that f is bounded. There exists a sequence of simple functions
(sn)n such that sn ↑ f and

∫
sn dµ ↑

∫
f dµ. So we have, for every n ∈ N, up

to the complement of a meager set, depending only on X

0 ≤
∣∣∣∣∫

A

f dµω −
(∫

A

f dµ

)
(ω)

∣∣∣∣
≤
∣∣∣∣∫

A

f dµω −
∫
A

sn dµω

∣∣∣∣+ ∣∣∣∣∫
A

sn dµω −
(∫

A

f dµ

)
(ω)

∣∣∣∣
=

∣∣∣∣∫
A

f dµω −
∫
A

sn dµω

∣∣∣∣+ ∣∣∣∣(∫
A

sn dµ

)
(ω)−

(∫
A

f dµ

)
(ω)

∣∣∣∣
≤
∫
X

f − sn dµω +

(∫
X

f − sn dµ

)
(ω).

Then

0 ≤
∣∣∣∣∫

A

f dµω −
(∫

A

f dµ

)
(ω)

∣∣∣∣
≤ lim sup

n

∫
X

f − sn dµω + lim sup
n

(∫
X

f − sn dµ

)
(ω)

= inf
n

∫
X

f − sn dµω + inf
n

(∫
X

f − sn dµ

)
(ω) = 0.

Assume now that f is integrable. By the previous step, there exists a meager
set N∗ such that, ∀n ∈ N, ∀ω ̸∈ N∗, ∀A ∈ A∫

A

(f ∧ n) dµω =

(∫
A

f ∧ ndµ

)
(ω).

The proof is now analogous to the first part. It will be enough to replace sn
with f ∧ n.

Now we prove the following theorem.
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Theorem 3.16. Let f : X → R̃+
0 be an integrable map. Then there exists a

meager set N such that for every A ∈ A and for every ω ̸∈ N ,(∫
A

f dµ

)
(ω) ∈ (µ(A) co {f(x) : x ∈ A})(ω).

Proof. By Proposition 3.15 and classical results we have, up to the comple-
ment of a meager set(∫

A

f dµ

)
(ω) =

∫
A

f dµω ∈ µω(A) co {f(x), x ∈ A}

= co {f(x)µω(A), x ∈ A} = (µ(A) co {f(x), x ∈ A})(ω).

For the definition of absolute continuity and related remarks, see ([4]).

Proposition 3.17. If f : X → R̃+
0 is integrable, then the integral

∫
· f dµ is

absolutely continuous; that is, (o) − limn

∫
An

f dµ = 0 whenever (An)n is a

sequence in A such that (o)− limn µ(An) = 0.

Proof. The assertion is trivial when f is bounded. So we prove absolute
continuity in the general case. Fix n, k ∈ N, and pick (An)n, with (o) −
limn µ(An) = 0. We have

0 ≤
∫
An

f dµ =

∫
An

(f ∧ k) dµ+

∫
An

f − (f ∧ k) dµ

≤
∫
An

(f ∧ k) dµ+

∫
X

f − (f ∧ k) dµ.

As (o) − limk

∫
X

f − (f ∧ k) dµ = 0 and (o) − limn

∫
An

(f ∧ k) dµ = 0 for

each k ∈ N, there exist a sequence (rk)k in R, rk ↓ 0, and a double sequence
(r′n,k)n,k in R, r′n,k ↓ 0 (n → +∞, k = 1, 2, . . .) such that

0 ≤
∫
An

f dµ ≤ r′n,k + rk, ∀n, k ∈ N.

It follows that

0 ≤ (o)− lim sup
n→+∞

∫
An

f dµ ≤ ((o)− lim sup
n→+∞

r′n,k) + rk = rk, ∀ k ∈ N.

By the arbitrariness of k, we get (o) − lim supn→+∞
∫
An

f dµ = 0 and hence

(o)− limn→+∞
∫
An

f dµ = 0.

Now we will prove a Vitali-type theorem for our integral.
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Definition 3.18. Let (fn : X → R̃)n be a sequence of integrable functions.
We say that (fn)n is uniformly integrable if supn

∫
X

|fn| dµ ∈ Rand (o) −
limn supk≥n

(∫
An

|fk| dµ
)
= 0,whenever (o)− limk µ(Ak) = 0.

Definition 3.19. Under the same hypotheses and notation as above, we say
that (fn)n converges in L1 to f if (o)− limn

∫
X
|fn − f | dµ = 0.

Remark 3.20. It is easy to check that (fn)n converges in L1 to f if and only
if
∫
A
f dµ = (o)− limn→+∞

∫
A
fn dµ uniformly with respect to A ∈ A.

Theorem 3.21. (Vitali’s theorem) Under the same notation as above, let
(fn)n be a uniformly integrable sequence of functions, convergent in measure
to f . Then f is integrable and (fn)n converges in L1 to f .

Conversely, every sequence (fn) of integrable functions, convergent in L1

to an integrable map f , is convergent in measure to f and uniformly integrable.

Proof. To obtain the integrability of |f |, it is enough to prove that

supS|f | ≡ sup

{∫
X

φdµ : 0 ≤ φ ≤ |f | and φ is simple

}
∈ R, (1)

by virtue of Proposition 3.13. Let φ ∈ S|f |, φ =
∑k

j=1 cj χBj . Fix j =

1, 2, . . . , k and for every n ∈ N, set An ≡ E
|f−fn|
1 . If x ∈ An

c ∩ Bj , we have
φ(x) = cj ≤ |fn(x)| + 1 and hence

∫
Bj∩Ac

n
φ(x) dµ ≤

∫
Bj

|fn(x)| dµ + µ(Bj).

As to An ∩Bj , we have
∫
Bj∩An

φ(x) dµ ≤ cjµ(An). Thus

∫
Bj

φ(x) dµ ≤
∫
Bj

|fn(x)| dµ+ µ(Bj) + cjµ(An),∫
X

φ(x) dµ ≤
∫
X

|fn(x)| dµ+ µ(X) + µ(An)
k∑

j=1

cj .

By convergence in measure, (o) − limn→+∞ µ(An)
∑k

j=1 cj = 0 and since n

is arbitrary,
∫
X
φdµ ≤ supn

∫
X
|fn| dµ + µ(X) ∈ R.Since the right hand side

does not depend on φ, (1) follows. So |f | is integrable. By Proposition 3.14,
f+ and f− are integrable and so is f .

Now fix ε > 0 and n ∈ N. As fn is integrable by hypothesis, so is f − fn.
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We have∫
X

|fn − f | dµ ≤
∫
{x∈X:|fn−f |≤ε}

|fn − f | dµ+

∫
{x∈X:|fn−f |>ε}

|fn − f | dµ

≤
∫
X

ε dµ+

∫
{x∈X:|fn−f |>ε}

|fn| dµ+

∫
{x∈X:|fn−f |>ε}

|f | dµ

≤ ε · µ(X) + sup
k≥n

∫
{x∈X:|fn−f |>ε}

|fk| dµ+

∫
{x∈X:|fn−f |>ε}

|f | dµ.

As (o)− limn µ({x ∈ X : |f − fn| > ε}) = 0, by virtue of uniform integrability
of (fk)k, integrability of f and absolute continuity of the integral we get

(o)− lim
n→+∞

[
sup
k≥n

∫
{x∈X:|fn−f |>ε}

|fk| dµ+

∫
{x∈X:|fn−f |>ε}

|f | dµ

]
= 0.

So there exists a sequence (rn)n in R, rn ↓ 0 such that

0 ≤
∫
X

|fn − f | dµ ≤ ε · µ(X) + rn, ∀n ∈ N.

Thus we obtain

0 ≤(o)− lim sup
n→+∞

∫
X

|fn − f | dµ ≤ ε · µ(X) + (o)− lim sup
n→+∞

rn

=ε · µ(X) + inf
n∈N

rn = ε · µ(X).

Since ε > 0 was arbitrary, we get (o)− limn→+∞
∫
X
|fn − f | dµ = 0.

Conversely, suppose that (fn)n converges in L1 to f . Fix ε > 0 and set

E|f−fn|
ε ≡ {x ∈ X : |fn(x)− f(x)| > ε}, ∀n ∈ N.

Then ∫
X
|fn − f | dµ

ε
≥

∫
E

|f−fn|
ε

|fn − f | dµ
ε

≥ µ(E|f−fn|
ε ) ≥ 0,

and hence (o)− limn µ(E
|f−fn|
ε ) = 0.

Now we prove uniform integrability. By convergence in L1, it follows im-
mediately that supk

∫
X
|fk| dµ ∈ R. Let (An)n be a sequence in A such that

(o)− limn µ(An) = 0. Fix n ∈ N. For every k ≥ n we have∫
An

|fk| dµ ≤
∫
An

|fk − f | dµ+

∫
An

|f | dµ ≤
∫
X

|fk − f | dµ+

∫
An

|f | dµ.



The De Giorgi–Letta Integral 803

By convergence in L1, there exists a sequence (rk)k in R, rk ↓ 0 such that∫
X
|fk − f | dµ ≤ rk ≤ rn. Thus supk≥n

∫
An

|fk| dµ ≤ rn +
∫
An

|f | dµ. So

0 ≤ (o)− lim sup
n→+∞

sup
k≥n

∫
An

|fk| dµ ≤ inf
n

rn + (o)− lim sup
n→+∞

∫
An

|f | dµ = 0

and hence (o)− limn→+∞ supk≥n

∫
An

|fk| dµ = 0.

A consequence of Vitali’s theorem is the following theorem.

Theorem 3.22. (Lebesgue dominated convergence theorem) Let (fn)n, fn be
a sequence of measurable functions and suppose that there exists an integrable
map h such that |fn(x)| ≤ |h(x)| for all n ∈ N and almost everywhere with
respect to x. Furthermore assume that (fn)n converges in measure to f . Then
for every n ∈ N, fn is integrable and (fn)n converges in L1 to f .

Proof. Without loss of generality, we suppose that

|fn(x)| ≤ |h(x)|, ∀n ∈ N, ∀x ∈ X.

By integrability of |h| and Proposition 3.14, fn is integrable for every n ∈ N.
Moreover by virtue of absolute continuity of the integral of h, the hypotheses
of Theorem 3.21 hold. So the assertion follows.

As a consequence of Theorem 3.22, we prove the following theorem, that
is a sufficient condition for the convergence in L1, inspired by a well-known
result of Scheffé’s ([23]):

Theorem 3.23. With the same notation as above, let (fn)n : X → R̃
+

0 be
a sequence of integrable functions, convergent in measure to a nonnegative
integrable mapping f. Assume that

∫
X
fn dµ(o)-converges to

∫
X
f dµ. Then

(fn)n converges in L1 to f .

Proof. Let hn(x) = fn(x)− f(x), ∀x ∈ X. Thus 0 ≤ [hn(x)]
− ≤ f(x), ∀x.

Let Hn(x) = [hn(x)]
−, ∀x. Then f , Hn are integrable for every n and

(Hn)n converges in measure to 0. By Theorem 3.22, we have 0 = (o) −
limn

∫
X
[hn(x)]

− dµ and so (o)− limn

∫
X
[hn(x)]

+ dµ = (o)− limn

∫
X
hn dµ = 0,

by hypothesis. Finally we get

(o)− lim
n

∫
X

|hn| dµ =(o)− lim
n

∫
X

[hn(x)]
+ dµ (2)

+ (o)− lim
n

∫
X

[hn(x)]
− dµ = 0.

We now state a version of the monotone convergence theorem.
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Theorem 3.24. With the same notation as above, let (fn)n be an increasing
sequence of non negative integrable maps, convergent in measure to an inte-
grable function f. Then

∫
X
f dµ = (o) − limn

∫
X
fn dµ and therefore fn → f

in L1.

Proof. It is an immediate consequence of Vitali’s Theorem.

4 Countably Additive Case

If µ is countably additive, convergence almost everywhere implies convergence
in measure; this can be proved along classical lines. Hence we simply state
the results. So both Levi’s theorem and Fatou’s lemma hold.

Proposition 4.1. Let R be a Dedekind complete Riesz space, A ⊂ P(X) a
σ-algebra, and assume that µ : A → R is a σ-additive mean. Set

Aε
n ≡ {x ∈ X : |fn(x)− f(x)| > ε}, ∀ ε > 0.

Then, fn converges almost everywhere to f if and only if µ(lim supn Aε
n) = 0,

∀ ε > 0.

It is easy to prove the following.

Proposition 4.2. Let R, A and µ be as above, and assume that µ is σ-
additive. Then for each sequence (An) in A one has

µ(lim inf
n

An) ≤ lim inf
n

µ(An) ≤ lim sup
n

µ(An) ≤ µ(lim sup
n

An).

A straightforward consequence of Proposition 4.2 is the following.

Theorem 4.3. Let fn, f and µ be as above. If (fn) converges to f almost
everywhere, (fn) converges to f in measure.

From Theorems 3.24 and 4.3, and by the proceeding as in the classical
case, the next theorem follows.

Theorem 4.4. With the same notation and hypotheses as above, let (fn)n
be an increasing sequence of nonnegative measurable maps. Then f(x) ≡
limn fn(x) is integrable if and only if limn

∫
X
fn dµ ∈ R and in this case∫

X

f dµ = (o)− lim
n

∫
X

fn dµ.

A consequence of Beppo Levi’s Theorem is the following version of Fatou’s
Lemma.
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Theorem 4.5. Let X, R, µ be as above, (fn)n a sequence of nonnegative
integrable maps, f(x) ≡ lim infn fn(x), ∀x ∈ X. If lim infn

∫
X
fn dµ ∈ R,

then f is integrable and lim infn
∫
X
fn dµ ≥

∫
X
f dµ.

5 Radon-Nikodym Theorem

In this section we give a Greco-type condition for the existence of a Radon-
Nikodym derivative for the monotone integral introduced in the previous sec-
tion (see [14]). We show that the Radon-Nikodym problem, in general, has
no solutions. Indeed, there exist two R2-valued σ-additive means µ and ν,
with ν ≪ µ, such that there is no function f : X ≡ {0, 1} → R such that
ν =

∫
X
f dµ.

Let X ≡ {0, 1}, A ≡ P(X), R ≡ R2 (endowed with componentwise order-
ing), µ, ν : P(X) → R2 defined by setting

µ({0}) = (1, 0), µ({1}) = (0, 1), ν({0}) = (0, 1), ν({1}) = (1, 0).

It is easy to check that µ and ν are σ-additive, ν is absolutely continuous with
respect to µ and µ is absolutely continuous with respect to ν. However there
is no function f : X → R such that ν(A) =

∫
A
f dµ, ∀A ∈ P(X) for otherwise,

we would have (1, 0) = ν({1}) =
∫
{1} f dµ = f(1)µ({1}) = (0, f(1)), which is

a contradiction.

Furthermore it is easy to see that for every r > 0 there exists no Hahn
decomposition for the map ν − rµ.

Now we introduce two preliminary lemmas.

Proposition 5.1. Let µ, ν : A → R be two means with ν ≪ µ. If there exists
an A-measurable function f : X → R̃+

0 such that, for every E ∈ A

ν(E) =

∫
E

f dµ,

then, for every r > 0, the set Ar = {x ∈ X : f(x) > r} satisfies

(5.1.1) ν(E) ≥ rµ(E) for every E ∈ Ar ∩ A,

(5.1.2) ν(E) ≤ rµ(E) for every E ∈ Ac
r ∩ A,

(5.1.3) (o)− limr→+∞ ν(Ar) = 0.
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Proof. Ar ∈ A for every r > 0 since f is measurable. Moreover for every
r > 0 and for every E ∈ Ar ∩ A, F ∈ Ac

r ∩ A we have

ν(E) =

∫
E

f dµ ≥
∫
E

r dµ = rµ(E)

ν(F ) =

∫
F

f dµ ≤
∫
F

r dµ = rµ(F ).

This proves (5.1.1) and (5.1.2).
(5.1.3) is a consequence of (5.1.1). In fact (5.1.1) yields

µ(Ar) ≤
ν(Ar)

r
≤ ν(X)

r
, ∀ r > 0.

So (o)− limr→+∞ µ(Ar) = 0, and hence (o)− limr→+∞ ν(Ar) = 0.

Proposition 5.2. Let µ, ν : A → R be two means with ν ≪ µ. Let D ≡
{

i
2n ,

i, n ∈ N
}
. If there exists a decreasing family (Ar)r∈D such that A0 = X and

satisfying (5.1.1) and (5.1.2), then the function f : X → [0,+∞], defined by
f(x) ≡ sup{r ∈ D : x ∈ Ar}, is integrable and ν(E) =

∫
E
f dµ, ∀E ∈ A.

Proof. f is A-measurable, since, ∀ t > 0, {x ∈ X : f(x) > t} = ∪r∈D,r>tAr.

Let fn ≡ 1
2n

∑n2n

k=1 χA k
2n

, for every n ∈ N. Then f ∧n−f ∧ 1
2n ≤ fn ≤ f, ∀n.

By construction for every E ∈ A,

∫
E

fn dµ =
1

2n

n2n∑
k=1

µ(A k
2n

)

=
n2n−1∑
k=1

k

2n

[
µ(A k

2n
∩ E)− µ(A k+1

2n
∩ E)

]
+ nµ(An ∩ E)

≤
n2n−1∑
k=1

[
ν(A k

2n
∩ E)− ν(A k+1

2n
∩ E)

]
+ nν(An ∩ E) ≤ ν(E).

So supn
∫
X
fn dµ ≤ ν(X) ∈ R and thus

sup
n

∫
X

(f ∧ n) dµ ≤ sup
n

∫
X

(fn + 1) dµ ≤ ν(X) + µ(X).

So by Proposition 3.11, f is integrable and hence, by Proposition 3.8, f · χE
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is integrable, ∀E ∈ A. Thus

(o)− lim
n

[∫
E

(f ∧ n) dµ−
∫
E

(
f ∧ 1

2n

)
dµ

]
=(o)− lim

n

∫
E

(f ∧ n) dµ

=

∫
E

f dµ,

and therefore (o) − limn

∫
E
fn dµ =

∫
E
f dµ and

∫
E
f dµ ≤ ν(E), ∀E ∈ A.

On the other hand,

∫
E

fn dµ =
n2n−1∑
k=1

k + 1

2n

[
µ(A k

2n
∩ E)− µ(A k+1

2n
∩ E)

]
+ nµ(An ∩ E)+

− 1

2n

n2n−1∑
k=1

[
µ(A k

2n
∩ E)− µ(A k+1

2n
∩ E)

]
≥ν(A 1

2n
∩ E)− ν(An ∩ E)− 1

2n

(
µ(A k

2n
)− µ(An ∩ E)

)
.

Taking the (o)-limits as n → ∞, we obtain
∫
E
f dµ = ν(E).

A consequence of Proposition 5.1 and 5.2 is the following Radon-Nikodym
Theorem.

Theorem 5.3. Let µ, ν : A → R be two means with ν ≪ µ. Then the following
are equivalent:

(5.3.a) there exists an A-measurable function f : X → R̃+
0 such that, for

every E ∈ A we have ν(E) =
∫
E
f dµ,

(5.3.b) there exists a family (Ar)r>0 of measurable sets such that for every
r > 0

(5.3.b.1) ν(E) ≥ rµ(E) for every E ∈ Ar ∩ A,

(5.3.b.2) ν(E) ≤ rµ(E) for every E ∈ Ac
r ∩ A.

The following is a different formulation of Theorem 5.3.

Theorem 5.4. Let µ, ν : A → R be two means with ν ≪ µ. Then the following
are equivalent:

(5.4.a) there exists a A-measurable function f : X → R̃+
0 such that, for every

E ∈ A we have ν(E) =
∫
E
f dµ,
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(5.4.b) for every r > 0 the measure ν − rµ admits a Hahn decomposition,
namely there exist two disjoint measurable sets (Br, Cr) such that, ∀E ∈
A

(ν − rµ)+(E) =(ν − rµ)(E ∩Br)

(ν − rµ)−(E) =(ν − rµ)(E ∩ Cr).

Proof. (5.4.a) =⇒ (5.4.b)
By Theorem 5.3, there exists a family (Ar)r>0 of measurable sets such

that, for every r > 0

(5.3.b.1) ν(E) ≥ rµ(E) for every E ∈ Ar ∩ A,

(5.3.b.2) ν(E) ≤ rµ(E) for every E ∈ Ac
r ∩ A.

Set Br ≡ Ar, Cr ≡ Ac
r. For every E ∈ Ar ∩ A we have

(ν − rµ)+(E) =(ν − rµ)+(E ∩Ar) + (ν − rµ)+(E ∩Ac
r)

=(ν − rµ)+(E ∩Ar) = (ν − rµ)(E ∩Ar)

from (5.3.b.1), since (ν − rµ)(F ) ≤ 0, ∀F ∈ E ∩ Ac
r ∩ A. So we obtain, for

every E ∈ A, (ν − rµ)+(E) = (ν − rµ)(E ∩Br). Analogously for each E ∈ A,
(ν − rµ)−(E) = (ν − rµ)(E ∩ Cr). (5.4.b) =⇒ (5.4.a)

It is easy to check that, if (5.4.b) holds, then (5.3.b.1.) and (5.3.b.2.) are
satisfied. The assertion follows by Proposition 5.2.
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