Vasile Ene, Ovidius University Constanța, Romania Current address: 23 August 8717, Jud. Constanța, Romania.

A NOTE ON AN ASSUMPTION OF P. Y. LEE AND T. S. CHEW

Abstract

In [3] (p. 224), P. Y. Lee and T. S. Chew use Corollary 1 of our paper essentially without proof, and without stating it explicitly, claiming that "it is easy to verify". The same result is also used by P. Y. Lee in [2] (Theorem 10.2, p. 59). The aim of this article is to prove Corollary 1.

In what follows we shall use several classes of functions: C, (N), VB, VB^* , AC^* , bAC^* , AC^*G (see [1]).

Definition 1 ([1], p. 41.) Let $F : [a, b] \to \mathbb{R}$ and let $P, Q \subseteq [a, b]$ such that $\{(x, y) \in P \times Q : x < y\} \neq \emptyset$. F is said to be $VB(P \land Q)$ if there exists $M \in (0, +\infty)$ such that

$$\sum_{k=1}^{n} |F(b_k) - F(a_k)| < M,$$

whenever $\{[a_k, b_k]\}, k = \overline{1, n}$ is a finite set of nonoverlapping closed intervals with $a_k \in P$, $b_k \in Q$. For $P \subseteq Q \subseteq [a, b]$ we define $VB(P; Q) = VB(P \land Q) \cap VB(Q \land P)$.

Lemma 1 ([1], pp. 45-46.) Let $F : [a,b] \mapsto \mathbb{R}$, $P \subseteq [a,b]$, $c = \inf(P)$, $d = \sup(P)$. The following assertions are equivalent:

- (i) $F \in VB^*$ on P;
- (ii) $F \in VB(P; [c, d])$.

Key Words: AC, VB, VB^* , $VB(P \land Q)$, Lusin's (N) condition Mathematical Reviews subject classification: Primary: 26A39, 26A24 Received by the editors June 10, 1995

Lemma 2 Let $F : [a,b] \mapsto \mathbb{R}$. If F is bounded on [a,b] and VB^* on a subset E of [a,b] then F is VB^* on $E \cup \{a,b\}$.

PROOF. Let M > 0 such that |F(x)| < M, $x \in [a, b]$ and let M_1 be the constant given by the fact that $F \in VB^*$ on E. Then $F \in VB^*$ on $E \cup \{a, b\}$ with the constant $M_1 + 4M$.

Theorem 1 Let $F : [a,b] \mapsto \mathbb{R}$ and let $E_i \subset [a,b]$, $i = \overline{1,n}$. If $F \in VB^*$ on each $E_i \cup \{a,b\}$ then $F \in VB^*$ on $\cup_{i=1}^n E_i \cup \{a,b\}$.

PROOF. By Lemma 1, $F \in VB((E_i \cup \{a, b\}) \land [a, b])$ with the constant M_i , $i = \overline{1, n}$. Let $[\alpha_j, \beta_j], j = \overline{1, m}$ be a finite set of nonoverlapping closed intervals, with $\alpha_j \in \bigcup_{i=1}^n E_i \cup \{a, b\}$ and $\beta_j \in [a, b]$. Let $\mathcal{A}_i = \{a_j : a_j \in E_i \setminus (\bigcup_{k=1}^{i-1} E_k)\}$. Then $\sum_{j=1}^m |F(\beta_j) - F(\alpha_j)| = \sum_{i=1}^n \sum_{j \in \mathcal{A}_i} |F(\beta_j) - F(\alpha_j)| < \sum_{i=1}^n M_i$. Therefore $F \in VB(\bigcup_{i=1}^n E_i \cup \{a, b\} \land [a, b])$. Similarly, we can prove that $F \in VB([a, b] \land \bigcup_{i=1}^n E_i \cup \{a, b\})$. By Lemma 1 it follows that $F \in VB^*$ on $\bigcup_{i=1}^n E_i \cup \{a, b\}$.

Lemma 3 Let $F : [a,b] \mapsto \mathbb{R}$ and E_i , $i = \overline{1,n}$ be closed subsets of [a,b]. If F is continuous on [a,b] and F is AC^* on each E_i then F is AC^* on $\bigcup_{i=1}^{n} E_i \cup \{a,b\}$.

PROOF. Since F is continuous on [a, b], F is bounded on [a, b]. It follows that $F \in bAC^* = VB^* \cap AC^*$ on each E_i (see Proposition 2.12.1. (v) of [1]). By Lemma 2, $F \in VB^*$ on each $E_i \cup \{a, b\}$, and by Theorem 1, $F \in VB^* \subset VB$ on $\bigcup_{i=1}^{n} E_i \cup \{a, b\}$. It follows that $F \in VB \cap C \cap AC^*G \subset VB \cap C \cap (N)$ on the closed set $\bigcup_{i=1}^{n} E_i \cup \{a, b\}$. By the Banach-Zarecki theorem (see [1], p.75), $F \in AC$ on $\bigcup_{i=1}^{n} E_i \cup \{a, b\}$. Therefore $F \in AC \cap VB^* = bAC^* = AC^*$ on $\bigcup_{i=1}^{n} E_i \cup \{a, b\}$ (see Theorem 2.12.1., (i), (ii) of [1]).

Remark 1 In Theorem 1, VB^* cannot be replaced by VB, and in Lemma 3, AC^* cannot be replaced by AC. Indeed: Let $F : [0, 1] \mapsto \mathbb{R}$,

$$F(x) = \begin{cases} x \cdot \sin \frac{2\pi}{x} & , x \in (0,1] \\ 0 & , x = 0 \end{cases}$$

Let $E_1 = \{0\} \cup \{1/n : n = \overline{2, \infty}\}$ and $E_2 = \{0\} \cup \{4/(4n+1) : n = \overline{1, \infty}\}$. Then E_1 and E_2 are closed subsets of [0, 1], F(x) = 0 if $x \in E_1$ and F(x) = x if $x \in E_2$. Therefore $F \in AC \subset VB$ on E_1 and $F \in AC \subset VB$ on E_2 . Since [4/(4n+1), 1/n], $n = \overline{1, \infty}$ are nonoverlapping closed intervals, with $4/(4n+1) \in E_2$ and $1/n \in E_1$ we obtain that $\sum_{n=1}^{\infty} |F(1/n) - F(4/(4n+1))| =$ $\sum_{n=1}^{\infty} 4/(4n+1) = +\infty$. It follows that $F \notin VB$ on $E_1 \cup E_2$, hence $F \notin AC$ on $E_1 \cup E_2$.

Corollary 1 Let $F : [a, b] \to \mathbb{R}$ and let E_i , $i = \overline{1, n}$ be closed subsets of [a, b]. Let $F_n : [a, b] \to \mathbb{R}$, such that $F_n(x) = F(x)$, for $x \in \bigcup_{i=1}^n E_i \cup \{a, b\}$, and F_n is linear on the closure of each interval contiguous to $\bigcup_{i=1}^n E_i \cup \{a, b\}$. If $F \in \mathcal{C}$ on [a, b] and $F \in AC^*$ on each E_i then F_n is derivable a.e. on [a, b] and F'_n is summable on [a, b].

PROOF. By Lemma 3, $F \in AC^* \subset AC$ on $\bigcup_{i=1}^n E_i \cup \{a, b\}$. By Theorem 2.11.1. (xviii) of [1], $F_n \in AC$, and by Corollary 2.14.2. of [1], F_n is derivable a.e. on [a, b] and F'_n is summable on [a, b].

Remark 2 In [3] (p. 224), P. Y. Lee and T. S. Chew use Corollary 1 essentially without proof, claiming that "it is easy to verify". The same result is also used by P. Y. Lee in [2] (see Theorem 10.2, p. 59).

Remark 3 A different proof of this result has been given by P. Y. Lee and C. S. Ding, using Lemma 6.4 (iii) of [2]. C. S. Ding and P. Y. Lee, Generalized Riemann integral, Scientific Press, Beijing, 1989, (in Chinese).

References

- V. Ene, *Real functions current topics*, Lect. Notes in Math., vol. 1603, Springer-Verlag, 1995.
- [2] P. Y. Lee, Lanzhou lectures on Henstock integration, World Scientific, Singapore, 1989.
- [3] P. Y. Lee and T. S. Chew, A Riesz-type definition of the Denjoy integral, Real Anal. Exchange 11 (1985-1986), 221–227.
- [4] I. P. Natanson, *Theory of functions of a real variable*, 2nd. rev. ed., Ungar, New York, 1961.
- [5] S. Saks, *Theory of the integral*, 2nd. rev. ed., vol. PWN, Monografie Matematyczne, Warsaw, 1937.