Vasile Ene, Ovidius University Constanţa, Romania
Current address: 23 August 8717, Jud. Constanţa, Romania.

A NOTE ON AN ASSUMPTION OF P. Y. LEE AND T. S. CHEW

Abstract

In [3] (p. 224), P. Y. Lee and T. S. Chew use Corollary 1 of our paper essentially without proof, and without stating it explicitly, claiming that "it is easy to verify". The same result is also used by P. Y. Lee in [2] (Theorem 10.2, p. 59). The aim of this article is to prove Corollary 1.

In what follows we shall use several classes of functions: $\mathcal{C},(N), V B, V B^{*}$, $A C^{*}, b A C^{*}, A C^{*} G$ (see [1]).

Definition 1 ([1], p. 41.) Let $F:[a, b] \mapsto \mathbb{R}$ and let $P, Q \subseteq[a, b]$ such that $\{(x, y) \in P \times Q: x<y\} \neq \emptyset$. F is said to be $V B(P \wedge Q)$ if there exists $M \in(0,+\infty)$ such that

$$
\sum_{k=1}^{n}\left|F\left(b_{k}\right)-F\left(a_{k}\right)\right|<M
$$

whenever $\left\{\left[a_{k}, b_{k}\right]\right\}, k=\overline{1, n}$ is a finite set of nonoverlapping closed intervals with $a_{k} \in P, b_{k} \in Q$. For $P \subseteq Q \subseteq[a, b]$ we define $V B(P ; Q)=V B(P \wedge Q) \cap$ $V B(Q \wedge P)$.

Lemma 1 ([1], pp. 45-46.) Let $F:[a, b] \mapsto \mathbb{R}, P \subseteq[a, b], c=\inf (P), d=$ $\sup (P)$. The following assertions are equivalent:
(i) $F \in V B^{*}$ on P;
(ii) $F \in V B(P ;[c, d])$.

Key Words: $A C, V B, V B^{*}, V B(P \wedge Q)$, Lusin's (N) condition
Mathematical Reviews subject classification: Primary: 26A39, 26A24
Received by the editors June 10, 1995

Lemma 2 Let $F:[a, b] \mapsto \mathbb{R}$. If F is bounded on $[a, b]$ and $V B^{*}$ on a subset E of $[a, b]$ then F is $V B^{*}$ on $E \cup\{a, b\}$.

Proof. Let $M>0$ such that $|F(x)|<M, x \in[a, b]$ and let M_{1} be the constant given by the fact that $F \in V B^{*}$ on E. Then $F \in V B^{*}$ on $E \cup\{a, b\}$ with the constant $M_{1}+4 M$.

Theorem 1 Let $F:[a, b] \mapsto \mathbb{R}$ and let $E_{i} \subset[a, b], i=\overline{1, n}$. If $F \in V B^{*}$ on each $E_{i} \cup\{a, b\}$ then $F \in V B^{*}$ on $\cup_{i=1}^{n} E_{i} \cup\{a, b\}$.

Proof. By Lemma $1, F \in V B\left(\left(E_{i} \cup\{a, b\}\right) \wedge[a, b]\right)$ with the constant M_{i}, $i=\overline{1, n}$. Let $\left[\alpha_{j}, \beta_{j}\right], j=\overline{1, m}$ be a finite set of nonoverlapping closed intervals, with $\alpha_{j} \in \cup_{i=1}^{n} E_{i} \cup\{a, b\}$ and $\beta_{j} \in[a, b]$. Let $\mathcal{A}_{i}=\left\{a_{j}: a_{j} \in E_{i} \backslash\left(\cup_{k=1}^{i-1} E_{k}\right)\right\}$. Then $\sum_{j=1}^{m}\left|F\left(\beta_{j}\right)-F\left(\alpha_{j}\right)\right|=\sum_{i=1}^{n} \sum_{j \in \mathcal{A}_{i}}\left|F\left(\beta_{j}\right)-F\left(\alpha_{j}\right)\right|<\sum_{i=1}^{n} M_{i}$. Therefore $F \in V B\left(\cup_{i=1}^{n} E_{i} \cup\{a, b\} \wedge[a, b]\right)$. Similarly, we can prove that $F \in V B\left([a, b] \wedge \cup_{i=1}^{n} E_{i} \cup\{a, b\}\right)$. By Lemma 1 it follows that $F \in V B^{*}$ on $\cup_{i=1}^{n} E_{i} \cup\{a, b\}$.

Lemma 3 Let $F:[a, b] \mapsto \mathbb{R}$ and $E_{i}, i=\overline{1, n}$ be closed subsets of $[a, b]$. If F is continuous on $[a, b]$ and F is $A C^{*}$ on each E_{i} then F is $A C^{*}$ on $\cup_{i=1}^{n} E_{i} \cup\{a, b\}$.

Proof. Since F is continuous on $[a, b], F$ is bounded on $[a, b]$. It follows that $F \in b A C^{*}=V B^{*} \cap A C^{*}$ on each E_{i} (see Proposition 2.12.1. (v) of [1]). By Lemma $2, F \in V B^{*}$ on each $E_{i} \cup\{a, b\}$, and by Theorem $1, F \in V B^{*} \subset V B$ on $\cup_{i=1}^{n} E_{i} \cup\{a, b\}$. It follows that $F \in V B \cap \mathcal{C} \cap A C^{*} G \subset V B \cap \mathcal{C} \cap(N)$ on the closed set $\cup_{i=1}^{n} E_{i} \cup\{a, b\}$. By the Banach-Zarecki theorem (see [1], p.75), $F \in A C$ on $\cup_{i=1}^{n} E_{i} \cup\{a, b\}$. Therefore $F \in A C \cap V B^{*}=b A C^{*}=A C^{*}$ on $\cup_{i=1}^{n} E_{i} \cup\{a, b\}$ (see Theorem 2.12.1., (i), (ii) of [1]).

Remark 1 In Theorem 1, $V B^{*}$ cannot be replaced by $V B$, and in Lemma 3, $A C^{*}$ cannot be replaced by $A C$. Indeed:
Let $F:[0,1] \mapsto \mathbb{R}$,

$$
F(x)=\left\{\begin{array}{lll}
x \cdot \sin \frac{2 \pi}{x} & , & x \in(0,1] \\
0 & , & x=0
\end{array}\right.
$$

Let $E_{1}=\{0\} \cup\{1 / n: n=\overline{2, \infty}\}$ and $E_{2}=\{0\} \cup\{4 /(4 n+1): n=\overline{1, \infty}\}$. Then E_{1} and E_{2} are closed subsets of $[0,1], F(x)=0$ if $x \in E_{1}$ and $F(x)=x$ if $x \in E_{2}$. Therefore $F \in A C \subset V B$ on E_{1} and $F \in A C \subset V B$ on E_{2}. Since $[4 /(4 n+1), 1 / n], n=\overline{1, \infty}$ are nonoverlapping closed intervals, with $4 /(4 n+1) \in E_{2}$ and $1 / n \in E_{1}$ we obtain that $\sum_{n=1}^{\infty}|F(1 / n)-F(4 /(4 n+1))|=$
$\sum_{n=1}^{\infty} 4 /(4 n+1)=+\infty$. It follows that $F \notin V B$ on $E_{1} \cup E_{2}$, hence $F \notin A C$ on $E_{1} \cup E_{2}$.

Corollary 1 Let $F:[a, b] \mapsto \mathbb{R}$ and let $E_{i}, i=\overline{1, n}$ be closed subsets of $[a, b]$. Let $F_{n}:[a, b] \mapsto \mathbb{R}$, such that $F_{n}(x)=F(x)$, for $x \in \cup_{i=1}^{n} E_{i} \cup\{a, b\}$, and F_{n} is linear on the closure of each interval contiguous to $\cup_{i=1}^{n} E_{i} \cup\{a, b\}$. If $F \in \mathcal{C}$ on $[a, b]$ and $F \in A C^{*}$ on each E_{i} then F_{n} is derivable a.e. on $[a, b]$ and F_{n}^{\prime} is summable on $[a, b]$.

Proof. By Lemma $3, F \in A C^{*} \subset A C$ on $\cup_{i=1}^{n} E_{i} \cup\{a, b\}$. By Theorem 2.11.1. (xviii) of [1], $F_{n} \in A C$, and by Corollary 2.14.2. of [1], F_{n} is derivable a.e. on $[a, b]$ and F_{n}^{\prime} is summable on $[a, b]$.

Remark 2 In [3] (p. 224), P. Y. Lee and T. S. Chew use Corollary 1 essentially without proof, claiming that "it is easy to verify". The same result is also used by P. Y. Lee in [2] (see Theorem 10.2, p. 59).

Remark 3 A different proof of this result has been given by P. Y. Lee and C. S. Ding, using Lemma 6.4 (iii) of [2]. C. S. Ding and P. Y. Lee, Generalized Riemann integral, Scientific Press, Beijing, 1989, (in Chinese).

References

[1] V. Ene, Real functions - current topics, Lect. Notes in Math., vol. 1603, Springer-Verlag, 1995.
[2] P. Y. Lee, Lanzhou lectures on Henstock integration, World Scientific, Singapore, 1989.
[3] P. Y. Lee and T. S. Chew, A Riesz-type definition of the Denjoy integral, Real Anal. Exchange 11 (1985-1986), 221-227.
[4] I. P. Natanson, Theory of functions of a real variable, 2nd. rev. ed., Ungar, New York, 1961.
[5] S. Saks, Theory of the integral, 2nd. rev. ed., vol. PWN, Monografie Matematyczne, Warsaw, 1937.

