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ON “LIPSCHITZ” SUBSPACES OF THE
SPACE OF CONTINUOUS FUNCTIONS

Abstract

A theorem of Grothendieck states that every closed subspace of the Ba-
nach space Lp(µ), where µ is a finite measure on a locally compact topo-
logical space, p ≥ 1, consisting of essentially bounded functions must have
finite dimension. An analog of this result is proved concerning subspaces of
the space of continuous functions on a compact metric space consisting of
functions satisfying different Lipschitz-type conditions.

1 Introduction

Consider a Banach space X and a closed subspace S. In some cases we can say that
every element of S is “better” than an arbitrary element of X. This happens, for
example, if elements of X are functions defined on a metric space and elements of
S satisfy some additional estimates or smoothness conditions. A general question
is how big such “good” subspaces can be.

A. Grothendieck [1] proved a very interesting result showing that it is natural
to expect, at least in some cases, that these subspaces are small. Let M be a locally
compact topological space equipped with a finite measure µ and let 1 ≤ p < ∞.
If S is a vector subspace of L∞(µ), closed in Lp(µ), then S is finite-dimensional.

2 Preliminaries

Let K be a compact metric space and let C(K) be a Banach space of all continuous
complex valued functions on K. For any f ∈ C(K) the modulus of continuity
ωf : (0,∞)→ [0,∞) is defined as

ωf (δ) = sup
ρ(x,y)<δ

|f(x)− f(y)|.

Clearly ωf is an increasing function and lim
δ→0

ωf (δ) = 0.
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Definition 1 Let ω : (0,∞)→ (0,∞). We will say that ω is modulus-type if

(i) lim
δ→0

ω(δ) = 0,

(ii) ω is increasing.

By S we will denote a closed, linear subspace of C(K); its dimension is denoted
by dimS. The following statement is a variation on a theme of Grothendieck.

Proposition 1 Let ω be a modulus-type function. If for every f ∈ S

sup
δ>0

ωf (δ)

ω(δ)
<∞,

then dimS <∞.

3 First Proof of Proposition 1

A shorter proof of the Proposition using Ascoli’s theorem and Riesz lemma will
be outlined later. We would like to present a more direct approach. We start with
the following simple observation.

Lemma 1 Suppose dimS = ∞ and {x1, x2, . . . , xn} ⊂ K. Then there exists a
function f ∈ S, such that f 6= 0, but f(x1) = f(x2) = · · · = f(xn) = 0.

Proof. Suppose not. Consider a linear map B : S → Rn given by

B(f) = (f(x1), f(x2), . . . , f(xn)).

Clearly, B is linear and kerB = {0}. Hence

dimS = dim(kerB) + dim(B(S)) = 0 + n = n.

But this contradicts the assumption that dimS =∞. �
Proof of the Proposition Let ω be a modulus type function. We shall show
that there is a constant M such that for all δ > 0

ωf (δ)

ω(δ)
≤M ‖ f ‖C(K) (1)

Let

Y = {f ∈ C(K) : sup
δ>0

ωf (δ)

ω(δ)
<∞}.

If

‖ f ‖Y = sup
x∈K
|f(x)|+ sup

δ>0

ωf (δ)

ω(δ)
,
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then (Y, ‖ · ‖Y ) is a Banach space.
Consider an identity map I : S → Y i.e. If = f for f ∈ S. (S is treated as

a subspace of a Banach space C(K).) Obviously I is linear. It is easy to deduce
from the Closed Graph Theorem that I is also bounded as a linear operator.
Let {fn}n∈N be a sequence of functions in S, such that ‖ fn − f ‖S→ 0 and
‖ Ifn − g ‖Y→ 0. Then

‖ fn − g ‖C(K)≤‖ fn − g ‖Y =‖ Ifn − g ‖Y .

Hence g = lim
n→∞

fn and trivially g = f . Therefore by the Closed Graph Theorem

I is a bounded linear operator, i.e. there exists a constant M1 such that for all

f ∈ S we have ‖ f ‖Y≤ M1 ‖ f ‖C(K) Since ‖ f ‖Y =‖ f ‖C(K) + sup
δ>0

ωf (δ)
ω(δ) , for

M = M1 − 1 we obtain (1).
Since lim

δ→0
ω(δ) = 0, let us fix δ0 > 0 such that ω(δ0) < 1

M K is a compact

metric space, so there exists a δ0-net, i.e. a set
{x1, x2, . . . , xn} ⊂ K such that for every x ∈ K there is an i ∈ {1, 2, . . . , n} such
that ρ(x, xi) < δ0.

Suppose that dimS =∞. By Lemma 1, there is a function f ∈ S, f 6= 0, such
that f(x1) = f(x2) = · · · = f(xn) = 0. Since K is compact, ‖ f ‖C(K)= |f(x0)|
for some x0 ∈ K. Therefore, by (3) we obtain for some i ∈ {1, 2, . . . , n}

ωf (δ0) = sup
ρ(x,y)<δ0

|f(x)− f(y)| ≥ |f(x0)− f(xi)|

= |f(x0)− 0| =‖ f ‖C(K)= M ‖ f ‖C(K)
1

M
> M ‖ f ‖C(K) ω(δ0)

or
ωf (δ0)
ω(δ0)

> M ‖ f ‖C(K) contrary to (1). �

4 Second Proof of Proposition 1

We used the Closed Graph Theorem to show that norms ‖ · ‖C(K) and ‖ · ‖Y are
equivalent on S. The same fact can be established if we apply Banach’s theorem
on isomorphism. Let us consider Φ = S ∩ {f ∈ C(K) :‖ f ‖C(K)≤ 1}. From the
equivalence of norms ‖ · ‖C(K) and ‖ · ‖Y we obtain that Φ is an equicontinuous
family of functions in C(K), bounded by 1. Since Φ is closed, Ascoli’s theorem
gives compactness of Φ. But the unit ball in a Banach space is compact if and
only if its dimension is finite (the Riesz lemma). Hence dimS <∞.

5 Consequences

Let us notice some straightforward corollaries from the Proposition:
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Corollary 1 If S ⊂ Lipα(K), then dimS <∞.

Proof. Take ω(δ) = δα and apply Proposition. �

Corollary 2 If S is a closed linear subspace of C[0, 1] and every f ∈ S is contin-
uously differentiable (S ⊂ C1[0, 1]), then dimS <∞.

Proof. Since C1[0, 1] ⊂ Lip[0, 1], this follows from Corollary 1. �

The above corollary is one more statement illustrating the well known fact
that a “typical” continuous function is not differentiable ([2]).

6 Example

It is required in Corollary 2 that all functions in S have continuous derivatives on
[0, 1]. This example shows that it is not enough to assume only the existence of
such derivatives on a subset of [0, 1].

It is well known that given an interval (a, b), there exists a function fa,b ∈
C∞(R) such that

(i) fa,b(x) = 0 for all x ∈ R\(a, b),

(ii) sup
x∈R
|fa,b(x)| = 1.

We can take for instance

fa,b(x) =

{
ca,be

− 1
(x−a)2(x−b)2 , x ∈ (a, b)

0, x ∈ R\(a, b)

where ca,b = e
16

(a−b)4 . Let gn = f2−n,2−n+1 and let S be the closed linear manifold
generated by {gn}∞n=1. Then dimS = ∞ and every function in S has continuous
derivatives in (0, 1]. Also g =

∑∞
n=1

√
ngn ∈ S and g has no derivative at 0.
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