Wojciech Kosek, North Dakota State University, Fargo, ND 58105 e-mail: kosek@@planin.nodak.edu

ON "LIPSCHITZ" SUBSPACES OF THE SPACE OF CONTINUOUS FUNCTIONS

Abstract

A theorem of Grothendieck states that every closed subspace of the Banach space $L^p(\mu)$, where μ is a finite measure on a locally compact topological space, $p \ge 1$, consisting of essentially bounded functions must have finite dimension. An analog of this result is proved concerning subspaces of the space of continuous functions on a compact metric space consisting of functions satisfying different Lipschitz-type conditions.

1 Introduction

Consider a Banach space X and a closed subspace S. In some cases we can say that every element of S is "better" than an arbitrary element of X. This happens, for example, if elements of X are functions defined on a metric space and elements of S satisfy some additional estimates or smoothness conditions. A general question is how big such "good" subspaces can be.

A. Grothendieck [1] proved a very interesting result showing that it is natural to expect, at least in some cases, that these subspaces are small. Let M be a locally compact topological space equipped with a finite measure μ and let $1 \leq p < \infty$. If S is a vector subspace of $L^{\infty}(\mu)$, closed in $L^{p}(\mu)$, then S is finite-dimensional.

2 Preliminaries

Let K be a compact metric space and let C(K) be a Banach space of all continuous complex valued functions on K. For any $f \in C(K)$ the modulus of continuity $\omega_f: (0, \infty) \to [0, \infty)$ is defined as

$$\omega_f(\delta) = \sup_{\rho(x,y) < \delta} |f(x) - f(y)|.$$

Clearly ω_f is an increasing function and $\lim_{\delta \to 0} \omega_f(\delta) = 0$.

Key Words: Banach space, Closed Graph Theorem

Mathematical Reviews subject classification: Primary: 26A16 Secondary: 46E15 Received by the editors June 1, 1994

Definition 1 Let $\omega : (0, \infty) \to (0, \infty)$. We will say that ω is modulus-type if

- $(i) \lim_{\delta \to 0} \omega(\delta) = 0,$
- (ii) ω is increasing.

By S we will denote a closed, linear subspace of C(K); its dimension is denoted by dim S. The following statement is a variation on a theme of Grothendieck.

Proposition 1 Let ω be a modulus-type function. If for every $f \in S$

$$\sup_{\delta>0}\frac{\omega_f(\delta)}{\omega(\delta)}<\infty,$$

then dim $S < \infty$.

3 First Proof of Proposition 1

A shorter proof of the Proposition using Ascoli's theorem and Riesz lemma will be outlined later. We would like to present a more direct approach. We start with the following simple observation.

Lemma 1 Suppose dim $S = \infty$ and $\{x_1, x_2, \ldots, x_n\} \subset K$. Then there exists a function $f \in S$, such that $f \neq 0$, but $f(x_1) = f(x_2) = \cdots = f(x_n) = 0$.

PROOF. Suppose not. Consider a linear map $B: S \to \mathbb{R}^n$ given by

$$B(f) = (f(x_1), f(x_2), \dots, f(x_n)).$$

Clearly, B is linear and ker $B = \{0\}$. Hence

$$\dim S = \dim(\ker B) + \dim(B(S)) = 0 + n = n.$$

But this contradicts the assumption that dim $S = \infty$. PROOF OF THE PROPOSITION Let ω be a modulus type function. We shall show that there is a constant M such that for all $\delta > 0$

$$\frac{\omega_f(\delta)}{\omega(\delta)} \le M \parallel f \parallel_{C(K)} \tag{1}$$

Let

$$Y = \{ f \in C(K) : \sup_{\delta > 0} \frac{\omega_f(\delta)}{\omega(\delta)} < \infty \}.$$

If

$$\| f \|_{Y} = \sup_{x \in K} |f(x)| + \sup_{\delta > 0} \frac{\omega_{f}(\delta)}{\omega(\delta)},$$

then $(Y, \|\cdot\|_Y)$ is a Banach space.

Consider an identity map $I: S \to Y$ i.e. If = f for $f \in S$. (S is treated as a subspace of a Banach space C(K).) Obviously I is linear. It is easy to deduce from the Closed Graph Theorem that I is also bounded as a linear operator. Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of functions in S, such that $|| f_n - f ||_S \to 0$ and $|| If_n - g ||_Y \to 0$. Then

$$|| f_n - g ||_{C(K)} \le || f_n - g ||_Y = || I f_n - g ||_Y$$

Hence $g = \lim_{n \to \infty} f_n$ and trivially g = f. Therefore by the Closed Graph Theorem *I* is a bounded linear operator, i.e. there exists a constant M_1 such that for all $f \in S$ we have $|| f ||_Y \leq M_1 || f ||_{C(K)}$ Since $|| f ||_Y = || f ||_{C(K)} + \sup_{\delta > 0} \frac{\omega_f(\delta)}{\omega(\delta)}$, for $M = M_1 - 1$ we obtain (1).

Since $\lim_{\delta \to 0} \omega(\delta) = 0$, let us fix $\delta_0 > 0$ such that $\omega(\delta_0) < \frac{1}{M} K$ is a compact metric space, so there exists a δ_0 -net, i.e. a set

 $\{x_1, x_2, \ldots, x_n\} \subset K$ such that for every $x \in K$ there is an $i \in \{1, 2, \ldots, n\}$ such that $\rho(x, x_i) < \delta_0$.

Suppose that dim $S = \infty$. By Lemma 1, there is a function $f \in S$, $f \neq 0$, such that $f(x_1) = f(x_2) = \cdots = f(x_n) = 0$. Since K is compact, $|| f ||_{C(K)} = |f(x_0)|$ for some $x_0 \in K$. Therefore, by (3) we obtain for some $i \in \{1, 2, \ldots, n\}$

$$\omega_f(\delta_0) = \sup_{\rho(x,y) < \delta_0} |f(x) - f(y)| \ge |f(x_0) - f(x_i)|$$

= $|f(x_0) - 0| = || f ||_{C(K)} = M || f ||_{C(K)} \frac{1}{M}$
> $M || f ||_{C(K)} \omega(\delta_0)$

or $\frac{\omega_f(\delta_0)}{\omega(\delta_0)} > M \parallel f \parallel_{C(K)}$ contrary to (1).

4 Second Proof of Proposition 1

We used the Closed Graph Theorem to show that norms $\|\cdot\|_{C(K)}$ and $\|\cdot\|_{Y}$ are equivalent on S. The same fact can be established if we apply Banach's theorem on isomorphism. Let us consider $\Phi = S \cap \{f \in C(K) : \|f\|_{C(K)} \leq 1\}$. From the equivalence of norms $\|\cdot\|_{C(K)}$ and $\|\cdot\|_{Y}$ we obtain that Φ is an equicontinuous family of functions in C(K), bounded by 1. Since Φ is closed, Ascoli's theorem gives compactness of Φ . But the unit ball in a Banach space is compact if and only if its dimension is finite (the Riesz lemma). Hence dim $S < \infty$.

5 Consequences

Let us notice some straightforward corollaries from the Proposition:

698

"LIPSCHITZ" SUBSPACES

Corollary 1 If $S \subset Lip_{\alpha}(K)$, then dim $S < \infty$.

PROOF. Take
$$\omega(\delta) = \delta^{\alpha}$$
 and apply Proposition.

Corollary 2 If S is a closed linear subspace of C[0,1] and every $f \in S$ is continuously differentiable $(S \subset C^1[0,1])$, then dim $S < \infty$.

PROOF. Since $C^1[0,1] \subset Lip[0,1]$, this follows from Corollary 1.

The above corollary is one more statement illustrating the well known fact that a "typical" continuous function is not differentiable ([2]).

6 Example

It is required in Corollary 2 that all functions in S have continuous derivatives on [0, 1]. This example shows that it is not enough to assume only the existence of such derivatives on a subset of [0, 1].

It is well known that given an interval (a, b), there exists a function $f_{a,b} \in C^{\infty}(\mathbb{R})$ such that

- (i) $f_{a,b}(x) = 0$ for all $x \in \mathbb{R} \setminus (a, b)$, (ii) $\sup_{x \to a} |f_{a,b}(x)| = 1$
- (ii) $\sup_{x \in \mathbb{R}} |f_{a,b}(x)| = 1.$

We can take for instance

$$f_{a,b}(x) = \begin{cases} c_{a,b}e^{-\frac{1}{(x-a)^2(x-b)^2}}, & x \in (a,b) \\ 0, & x \in \mathbb{R} \setminus (a,b) \end{cases}$$

where $c_{a,b} = e^{\frac{16}{(a-b)^4}}$. Let $g_n = f_{2^{-n},2^{-n+1}}$ and let S be the closed linear manifold generated by $\{g_n\}_{n=1}^{\infty}$. Then dim $S = \infty$ and every function in S has continuous derivatives in (0,1]. Also $g = \sum_{n=1}^{\infty} \sqrt{n}g_n \in S$ and g has no derivative at 0.

7 Acknowledgment

The author would like to express his gratitude to Professor Isaak Kornfeld for his comments and encouragement to write this paper.

References

- A. Grothendieck, Sur certains sous-espaces vectoriels de L^p, Can. J. Math., 6 (1954), 157–160.
- [2] T. Pytlik and J. Gorniak, *Functional Analysis in Exercises*, Technical University of Wroclaw, Wroclaw, 1992, 84.