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A NEW FULL DESCRIPTIVE
CHARACTERIZATION OF

DENJOY-PERRON INTEGRAL

Abstract

It is proved that the absolute continuity of the variational measure
generated by an additive interval function F implies the differentiability
almost everywhere of the function F and gives a full descriptive charac-
terization of the Denjoy-Perron integral.

1 Introduction

It is well known (see for example [8]) that the variational measure generated by
the indefinite Henstock-Kurzweil integral (HK-integral) of any HK-integrable
function is absolutely continuous with respect to Lebesgue measure. This
property which is equivalent to the Strong Lusin Condition (SLC) introduced
in [6] was used by several authors to give a so called (For this terminology see
[8, pages 93 and 115].) partial descriptive characterization of the Henstock-
Kurzweil integral. Namely it was proved (see [2], [7], [8]) that if an additive
interval function F is differentiable almost everywhere and generates an abso-
lutely continuous variational measure (or, in other words, satisfies SLC), then
it is the indefinite HK-integral of F ′.

We show here (Theorem 3) that the above property gives in fact a new full
descriptive characterization of the HK-integral. In view of the above men-
tioned partial descriptive characterization it is enough to this end to prove that
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the absolute continuity of a variational measure implies the differentiability al-
most everywhere of the generating function. This is done here in Theorem 1
and 2 below (see also Corollary 1). As the HK-integral is known (see [1], [3],
[4], [5]) to be equivalent to the Denjoy-Perron integral, we conclude in Theo-
rem 4 that the new characterization is equivalent to the descriptive definition
of the latter integral in terms of ACG∗-functions. In the last section of this
paper we extend our results to the variational measure defined by nonnegative
gauges instead of positive functions δ. This in particular gives an answer in a
special one-dimensional case to a question of W. Pfeffer ([9]) on σ-finiteness
of an absolutely continuous variational measure (see Theorem 5 below).

2 Preliminaries

We introduce some notation. If E ⊂ R, then |E| and E0 denote respectively
the Lebesgue measure and the interior of E. “Almost everywhere” (a.e.) is
always used in the sense of the Lebesgue measure. An interval is always a
compact subinterval in R. A collection of intervals is called nonoverlapping
whenever their interiors are disjoint. In this paper [a, b] is a fixed interval of R.

A partition P in [a, b] is a collection (possibly empty) {(I1, x1), . . ., (Ip, xp)}
where I1, . . . , Ip are nonoverlapping subintervals of [a, b] and xj ∈ Ij , j =
1, . . . , p. A partition P = {(I1, x1), . . . , (Ip, xp)} is called anchored in E ⊂
[a, b] if xj ∈ E for each j = 1, . . . , p. For a given positive function δ on a
set E ⊂ A, a partition P = {(I1, x1), . . . , (Ip, xp)} in [a, b] is called δ-fine if
Ij ⊂ [xj − δ(xj), xj + δ(xj)] for each j = 1, . . . , p. We denote the family of all
δ-fine and anchored in E partitions by P(δ, E).

In this paper we denote by F an additive interval function defined on the
family of all subintervals of [a, b]. We call F continuous if F (I) tends to 0
when |I| does. We can associate with the interval function F a point function
Φ(x) = F ([a, x]), x ∈ [a, b] which is called the distribution function of F . Then
for each interval I = [c, d] ⊂ [a, b] we have

F (I) = Φ(d)− Φ(c). (1)

Conversely if a point function Φ defined on [a, b] is given, then (1) defines an
associated interval function F . Note that in this case F is continuous if and
only if its distribution function Φ is continuous as a point function on [a, b].

For an additive interval function F , a given positive function δ and a set
E ⊂ A we set

Var (F, δ, E) = sup
∑
j

|F (Ij)| , (2)
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where “sup” is taken over all P ∈ P(δ, E). Then we define

VF (E) = inf Var (F, δ, E), (3)

where “inf” is taken over all families of P(δ, E), i.e. over all positive functions
δ defined on E. We call VF the variational measure generated by F (or by Φ
if F is defined by (1)). Note that VF is known to be a metric measure in [a, b]
(see [11]).

Definition 1 A variational measure VF is called absolutely continuous on a
set E ⊂ [a, b] if |N | = 0 implies VF (N) = 0 for any set N ⊂ E.

Definition 2 A point function Φ is said to satisfy the Strong Lusin Condition
(SLC) on a set E ⊂ [a, b] if for any set N ⊂ E of measure zero and any
ε > 0 there exists a positive function δ on N such that

∑
j |F (Ij)| < ε for the

associated function F defined by (1) and for any P ∈ P(δ,N).

The following Proposition is an obvious consequence of the definitions.

Proposition 1 A point function Φ satisfies SLC on E ⊂ [a, b] if and only if
the associated interval function F generates an absolutely continuous varia-
tional measure on E.

We need some definitions and results from the theory of the Denjoy-Perron
integral. The reader is referred to [10] for the classical notion of ACG∗-
functions. As for the notion of V B∗-functions and V BG∗-functions we are
going to use here the following definitions which are equivalent to the classical
ones. (See for example [11, pp. 77–79].)

Definition 3 An additive interval function F is called a V B∗-function on a
set E ⊂ [a, b] if there exists a constant M > 0 such that

∑
j |F (Ij)| < M for

any finite collection {Ij} of nonoverlapping intervals with I0j ∩ E 6= ∅.

Definition 4 An additive interval function F is called a V BG∗-function on
a set E ⊂ [a, b] if E = ∪∞k=1Ek and F is a V B∗-function on each Ek.

Remark 1 It is common to say that a point function Φ is an ACG∗-function
or a V BG∗-function if the associated interval function F defined by (1) is of
the corresponding type.

A partial descriptive characterization of the HK-integral is given by the
following known result.
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Proposition 2 ([2], [7], [8]) Let F be an additive interval function that is dif-
ferentiable a.e. in [a, b]. Then F generates an absolutely continuous variational
measure on [a, b] if and only if F ′ is HK-integrable and F is an indefinite
HK-integral of F ′.

The following Proposition gives the known descriptive characterization of
the Denjoy-Perron integral.

Proposition 3 ([10]) An additive interval function F is an indefinite Denjoy-
Perron integral on [a, b] if and only if F is an ACG∗-function on [a, b].

Proposition 4 ([1], [3], [4], [5]) The HK-integral is equivalent to the Denjoy-
Perron integral.

Proposition 5 ([10]) If an additive interval function is a V BG∗-function on
a set E, then it is differentiable a.e. on E.

3 Main Theorems

Now we prove the principal technical result of this paper.

Theorem 1 If the variational measure VF generated by an additive function
F is absolutely continuous on a closed set E ⊂ [a, b], then F is a V BG∗-
function on E.

Proof. Suppose that F is not a V BG∗-function on E. Let P ⊂ E be the set
of all the points x ∈ E such that F is not a V BG∗-function on E ∩ I for any
interval I, x ∈ I0. It is clear that P is perfect and F is not a V B∗-function
on P ∩ I for any interval I with P ∩ I0 6= ∅. We shall construct a set N ⊂ P
with |N | = 0 and VF (N) ≥ 1 getting a contradiction to the assumption on the
absolute continuity of VF .

As F is not a V B∗-function on P we can choose a finite collection of non-
overlapping closed intervals {I(1)j } with P ∩ (I

(1)
j )0 6= ∅ for each j such that∑

j |F (I
(1)
j | > 1. We can suppose that the collection contains more than one

interval and that
∑

j |I
(1)
j | < 2−1.

We proceed by induction. Having constructed a collection of intervals

{I(k−1)i }, k > 0, with P ∩ (I
(k−1)
i )0 6= ∅ for each i, we can construct a new

finite collection of non-overlapping closed intervals {I(k)j } such that

(i) P ∩ (I
(k)
j )0 6= ∅,
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(ii) each I
(k)
j is contained in some I

(k−1)
i ,

(iii) each I
(k−1)
i contains at least two intervals I

(k)
j ,

(iv)
∑

j |I
(k)
j | < 2−k,

(v)
∑

j:I
(k)
j ⊂I

(k−1)
i

|F (I
(k)
j )| > 1 for each i.

We put N = ∩k ∪j I(k)j . Because of (i)–(iv) the set N is perfect, N ⊂ P and
|N | = 0. Take any positive function δ(x) defined on N and let

Nn = {x ∈ N : δ(x) > n−1}.

By Baire category theorem, Nn for some n is dense in some portion of N

defined by some interval J . We can find l and i such that I
(l)
i ⊂ J , |I(l)i | < n−1

and so the family (I
(l+1)
j , xj) with xj ∈ I(l+1)

j ∩ Nn, I
(l+1)
j ⊂ I

(l)
i is a δ-fine

partition anchored in N . In view of (v) with k replaced by l + 1 we get

Var(F, δ,N) ≥
∑

j:I
(l+1)
j ⊂I(l)

i

|F (I
(l+1)
j )| > 1

and therefore VF (N) ≥ 1 giving a desired contradiction. �

Theorem 1 combined with Proposition 5 gives the following result.

Theorem 2 If the variational measure generated by an additive function F
is absolutely continuous on [a, b], then F is differentiable a.e. on [a, b].

In view of Proposition 1 we can reformulate this result in terms of SLC.

Corollary 1 If a point function Φ satisfies SLC on [a, b], then Φ is differen-
tiable a.e. on [a, b].

Now Theorem 2 together with Proposition 2 shows that the absolute conti-
nuity of VF is a full descriptive characterization of the HK-integral. Namely
the following proposition holds.

Theorem 3 An additive function F is an indefinite HK-integral of some
function defined on [a, b] if and only if F generates an absolutely continuous
variational measure. In other words, the class of all indefinite HK-integrals
coincides with the class of all additive functions generating absolutely contin-
uous variational measures.
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It is nice that this descriptive characterization of the HK-integral looks
very similar to the classical characterization of the Lebesgue integral as an
absolutely continuous set function.

Proposition 3, Proposition 4 and Theorem 3 imply the following assertion.

Theorem 4 The class of all ACG∗-functions coincides with the class of all
additive functions F generating absolutely continuous variational measure (or
for point functions: with the class of all functions satisfying SLC).

4 Pfeffer’s Problem

Now we turn to W. Pfeffer’s question on σ-finiteness of a variational measure.
This question in [9] refers to a slightly different variational measure defined
by nonnegative functions δ instead of positive ones. So we introduce some
changes into the definitions of Section 2.

A nonnegative function δ is called a gage on E ⊂ [a, b] whenever its null
set Z = {x ∈ E : δ(x) = 0} is countable. (In the multidimensional case it
should be “thin” in a certain sense (see [8]), but in the one-dimensional case
we are concerned here with, “thin” means countable.)

The definition of δ-fine partition in the case of a gage instead of a positive
function coincides with one given in Section 2 and for the δ-variation defined
by these kind of partitions we keep the notation given by formula (2).

If in the definition given by formula (3) “inf” is taken over all gages defined
on E, we denote by Vg

F the resulting gage-variational measure generated by F .
In these terms a special case of Pfeffer’s question we are considering here

is: If Vg
F is absolutely continuous on a set (in the sense of the Definition 1),

is it σ-finite on this set?
We show that the positive answer to this question follows from the results

of Section 3. We start with proving that in the one-dimensional case the gage-
variational measure Vg

F coincides with the variational measure VF defined by
positive functions δ.

Proposition 6 Let F be an additive continuous function on [a, b]. Then for
each E ⊂ [a, b], we have Vg

F (E) = VF (E).

Proof. We follow the proof given in [8, p. 117] to a proposition which is in
fact a particular case of the present Proposition.

Let E be a fixed set on [a, b]. Since each positive gage is a gage, Vg
F (E) ≤

VF (E). So we are to prove that Vg
F (E) ≥ VF (E). To this end take any

ε > 0, and any gage δ∗ on E. Let {z1, z2, . . . } be an enumeration of the set
Z = {x ∈ E : δ∗(x) = 0}. As F is continuous, there are γn > 0 such that
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|F (I)| < ε2−n, for each interval I ⊂ [a, b] ∩ [zn − γn, zn + γn]. Now define a
positive function δ on E by setting

δ(x) =

{
δ∗(x), if x ∈ E \ Z,
γn, if x = zn and n = 1, 2, . . . ,

and choose a δ-fine partition {(I1, x1), . . . , (Ip, xp)} in [a, b] anchored in E such
that

Var(F, δ, E) ≤
p∑

i=1

|F (Ii)|+ ε. (4)

By choice of γn we have |F (Ii)| < ε2−n if xi = zn. Thus we obtain

p∑
i=1

|F (Ii)| ≤
∑

i:xi /∈Z

|F (Ii)|+
∑

i:xi∈Z
|F (Ii)|

<Var(F, δ∗, E) +

∞∑
n=1

ε2−n = Var(F, δ∗, E) + ε.

This inequality combined with (4) and (3) implies

VF (E) ≤ Var(F, δ, E) < Var(F, δ∗, E) + 2ε.

Since ε is arbitrary and δ∗ does not depend on ε, we have

VF (E) ≤ Var(F, δ∗, E).

Now taking “inf” over all gages δ∗ on E we finally get VF (E) ≤ Vg
F (E). �

So the question related to Vg
F is reduced to the one related to VF . But for

this variational measure the following result is known (see [11, p. 79]).

Proposition 7 The variational measure generated by an additive function F
is σ-finite on a Borel set E ⊂ [a, b] if and only if F is a V BG∗-function on E.

Therefore from Theorem 1 and Proposition 6 we get the following.

Theorem 5 If the gage-variational measure Vg
F generated by an additive con-

tinuous function F is absolutely continuous on a closed set E ⊂ [a, b], then it
is σ-finite on E.
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Note that in the multidimensional case and in the case of partitions by
figures instead of intervals the present proof does not work not only because we
do not have (for the multidimensional case) an analogue to the Proposition 6,
but also because a new parameter of regularity of partitions involved in the
definition of the variational measure in these cases prevents a direct application
of the scheme used here in the proof of Theorem 1. But if the variational
measure is defined by positive gages and by partitions with a fixed parameter
of regularity, then the analogues of Theorems 1 and 5 in the multidimensional
case can be proved essentially in the same way.
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