Miroslav Repický, Mathematical Institute of Slovak Academy of Sciences, Jesenná 5, 041 54 Košice, Slovakia, e-mail: repicky@@kosice.upjs.sk

TOWERS AND PERMITTED TRIGONOMETRIC THIN SETS

Abstract

In [3] we introduced the notion of perfect measure zero sets and proved that every perfect measure zero set is permitted for any of the four families of trigonometric thin sets \mathcal{N} , \mathcal{A} , \mathcal{N}_0 , and $p\mathcal{D}$. Now we prove that the unions of less than \mathfrak{t} perfect measure zero sets are permitted for the mentioned families. This strengthens a result of T. Bartoszyński and M. Scheepers [1] saying that every set of cardinality less than \mathfrak{t} is \mathcal{N} -permitted.

1 Introduction

Let \mathcal{F} be a family of sets of reals. Let $A, B \in \mathcal{F}$. We say that a set A is permitted for \mathcal{F} if $A \cup B \in \mathcal{F}$ for every $B \in \mathcal{F}$. Let A be a set of reals. Then A is a pD-set (pseudo Dirichlet set) if there is an increasing sequence of integers $\{n_k\}_{k=0}^{\infty}$ such that the sequence $\{\sin n_k \pi x\}_{k=0}^{\infty}$ converges quasinormally on A; i.e. there is a sequence of positive reals $\{\varepsilon_k\}_{k=0}^{\infty}$ converging to 0 such that $(\forall x \in A)(\forall^{\infty}k) |\sin n_k \pi x| < \varepsilon_k$. A is an N₀-set if there is an increasing sequence of integers $\{n_k\}_{k=0}^{\infty}$ such that $\sum_{k=0}^{\infty} |\sin n_k \pi x| < \infty$ for $x \in A$. A is an A-set if there is an increasing sequence of integers $\{n_k\}_{k=0}^{\infty}$ such that $\{\sin n_k \pi x\}_{k=0}^{\infty}$ converges to 0 for $x \in A$. A is an A-set if there is a sequence of non-negative reals $\{\rho_n\}_{n=0}^{\infty}$ such that $\sum_{n=0}^{\infty} \rho_n = \infty$ and the series $\sum_{n=0}^{\infty} |\rho_n \sin n\pi x|$ converges for $x \in A$. The families of all pD-sets, N_0 -sets, A-sets, and A-sets are denoted by $p\mathcal{D}$, \mathcal{N}_0 , \mathcal{A} , and \mathcal{N} , respectively.

Key Words: N-sets, A-sets, N_0 -sets, pseudo Dirichlet sets, permitted sets, perfect measure zero sets

Mathematical Reviews subject classification: Primary: 42A20. Secondary: 03E05, 03E20

Received by the editors October 12, 1995

^{*}The work has been supported by grant 2/1224/95 of Slovenská grantová agentúra.

A set A has perfect measure zero if for every sequence of positive reals $\{\varepsilon_n\}_{n=1}^{\infty}$ there is an increasing sequence of integers $\{n_k\}_{k=0}^{\infty}$ and a sequence of finite families of intervals $\{\mathcal{I}_n\}_{n=1}^{\infty}$ such that $|\mathcal{I}_n| \leq n$, $|I| < \varepsilon_n$ for every $I \in \mathcal{I}_n$ and $A \subseteq \bigcup_m \bigcap_{k > m} \bigcup \mathcal{I}_{n_k}$.

In [3] it was proved that every perfect measure zero set is permitted for any of the families \mathcal{N} , \mathcal{A} , \mathcal{N}_0 , and $p\mathcal{D}$; every γ -set has perfect measure zero; every perfect measure zero set has strong measure zero; the subgroup of \mathbb{R} , + generated by a set having perfect measure zero has perfect measure zero; and every set of cardinality less than the additivity of Lebesgue measure has perfect measure zero.

A result of [1] says that every set of cardinality less than $\mathfrak t$ is permitted for $\mathcal N$. The cardinals $\mathfrak t$ and the additivity of Lebesgue measure are two the best known lower bounds for the minimal size of a set not being permitted for $\mathcal N$. It is worth mentioning that these two bounds are mutually independent. (See a discussion in [3].) Some more bounds of cardinal invariants of other families of trigonometric thin sets can be found in [2] and [1]. Using some ideas of [1] we prove the following result.

Main Theorem 1.1 Let \mathcal{F} be any of the families \mathcal{N} , \mathcal{A} , \mathcal{N}_0 and $p\mathcal{D}$. The unions of less than \mathfrak{t} sets having perfect measure zero are permitted for \mathcal{F} .

Let us recall that \mathfrak{t} is the minimal size of a tower of subsets of ω , \mathfrak{h} is the distributivity number of the Boolean algebra $\mathcal{P}(\omega)/\mathit{fin}$, and \mathfrak{b} is the minimal size of an unbounded family of functions under the eventual dominance. It is well known that $\mathfrak{t} \leq \mathfrak{h} \leq \mathfrak{b}$.

2 The Proof of the Case \mathcal{N}

Let E be an N-set, i.e. there is a sequence $\{\rho_n\}_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} \rho_n = \infty$ and $E = \{x \in \mathbb{R} : \sum_{n=1}^{\infty} \rho_n | \sin n\pi x| < \infty\}$. Let us denote $s_n = \sum_{k=1}^{n} \rho_k$. There is a surjective monotone function $\iota : \omega \to \omega \setminus \{0\}$ such that

$$\sum_{n=1}^{\infty} \frac{\rho_n}{s_n^{1+1/\iota^2(n)}} < \infty.$$

Let $\rho'_n = \rho_n/s_n$ and $\delta_n = s_n^{-1/\iota^2(n)}$. Then $\sum_{n=1}^{\infty} \rho'_n = \infty$ and $\sum_{n=1}^{\infty} \rho'_n \delta_n < \infty$. There is an increasing function $f \in {}^{\omega}\omega$ such that $\sum_{n=f(k)}^{f(k+1)-1} \rho'_n \geq 1$ for all $k \in \omega$. Let us denote $J_k = [f(k), f(k+1))$ and

$$\varepsilon_m = \min \left\{ \frac{\delta_n}{ns_n} : (\exists k) \iota(k) = m \& n \in J_k \right\}.$$
(2.1)

Lemma 2.1 Suppose $Z \subseteq \omega$ is a finite set, $0 < \delta \le 1$ and $x_1, \ldots, x_n \in \mathbb{R}$. There is $Z' \subseteq Z$ such that $|Z'| \ge \delta^n |Z|$ and

$$(\forall i, j \in Z')(\forall l = 1, \dots, n) |\sin(i - j)\pi x_l| < 2\pi\delta.$$

PROOF. First let n=1. Find m such that $1/(2m) < \delta \le 1/m$ and divide the interval [0,1] into m subintervals of length 1/m. There is a set $Z' \subseteq Z$ such that $|Z'| \ge |Z|/m \ge \delta |Z|$ and for all $i \in Z'$, $\{ix_1\}$ are in the same subinterval. (Let us recall that $\{y\}$ denotes the fractional part of a real y.) Hence $|\sin(i-j)\pi x_1| \le \pi/m < 2\pi\delta$ for all $i,j \in Z'$. Now in case n > 1 apply the previous result n times.

Lemma 2.2 There is a system of functions $f_{\alpha} \in {}^{\omega}\mathbb{R}$ for $\alpha < \mathfrak{b}$ such that (1) $(\forall {}^{\infty}n) \ 0 \le f_{\alpha}(n) \le s_n \delta_n^{\iota(n)}$,

- (2) $(\forall k \in \omega) \lim_{n \to \infty} f_{\alpha}(n) \delta_n^{k \iota(n)} = \infty,$
- (3) If $\beta < \alpha < \mathfrak{b}$, then $(\forall^{\infty} n) f_{\alpha}(n) \leq f_{\beta}(n) \delta_n^{\iota(n)}$.

PROOF. Let us set $f_0(n) = s_n \delta_n^{\iota(n)}$ and similarly in the non-limit steps let us set $f_{\alpha+1}(n) = f_{\alpha}(n) \delta_n^{\iota(n)}$. Then we get

$$\lim_{n \to \infty} f_0(n) \delta_n^{k\iota(n)} = \lim_{n \to \infty} s_n^{1 - (k+1)/\iota(n)} \ge \lim_{n \to \infty} s_n^{1/2} = \infty$$

and condition (2) can be easily verified also for the non-limit step. Let $\alpha < \mathfrak{b}$ be limit. For each $\beta < \alpha$ there is $g_{\beta} \in {}^{\omega}\omega$ with $\lim_{n \to \infty} g_{\beta}(n) = \infty$ such that $\lim_{n \to \infty} f_{\beta}(n) \delta_n^{g_{\beta}(n)\iota(n)} = \infty$ (by (2) in the induction hypothesis). Let $g \in {}^{\omega}\omega$ be such that $\lim_{n \to \infty} g(n) = \infty$ and $(\forall \beta < \alpha)(\forall^{\infty}n) g(n) \leq g_{\beta}(n)$. Then for any $\beta < \alpha$, $\lim_{n \to \infty} f_{\beta}(n) \delta_n^{g(n)\iota(n)} = \infty$. We can find $h \in {}^{\omega}\omega$ with $\lim_{n \to \infty} h(n) = \infty$ such that $(\forall \beta < \alpha)(\forall^{\infty}n) h(n) \leq f_{\beta}(n) \delta_n^{g(n)\iota(n)}$. Let us set $f_{\alpha}(n) = h(n) \delta_n^{-g(n)\iota(n)}$. Then

$$\lim_{n \to \infty} f_{\alpha}(n) \delta_n^{k\iota(n)} = \lim_{n \to \infty} h(n) \delta_n^{(k-g(n))\iota(n)} \ge \lim_{n \to \infty} h(n) = \infty$$

for all $k \in \omega$ and

$$(\forall^{\infty} n) f_{\alpha}(n) = h(n) \delta_n^{-g(n)\iota(n)} \le f_{\beta+1}(n) \le f_{\beta}(n) \delta_n^{\iota(n)}$$

for all $\beta < \alpha$.

Lemma 2.3 Let $\kappa < \mathfrak{h}$, let A_{α} , $\alpha < \kappa$, be perfectly measure zero sets, let α be an infinite subset of ω and let $\{\varepsilon_n\}_{n=1}^{\infty}$ be a given sequence of positive

reals. There is a sequence of integers $\{n_k\}_{k=0}^{\infty}$ elements of a and a system of sequences of finite systems of intervals $\{\mathcal{I}_n^{\alpha}\}_{n=1}^{\infty}$, $\alpha < \kappa$, such that $|\mathcal{I}_n^{\alpha}| \leq n$, $(\forall I \in \mathcal{I}_n^{\alpha}) |I| < \varepsilon_n$ and $A_{\alpha} \subseteq \bigcup_m \bigcap_{k \geq m} \bigcup \mathcal{I}_{n_k}^{\alpha}$ for each α . (The sequence $\{n_k\}_{k=0}^{\infty}$ is independent of α .)

PROOF. Let \mathfrak{I} be the family of all infinite sequences of finite families of intervals $\{\mathcal{I}_n\}_{n=1}^{\infty}$ such that $|\mathcal{I}_n| \leq n$ and $(\forall I \in \mathcal{I}_n) |I| < \varepsilon_n$. The sets

$$D_{\alpha} = \left\{ b \in [\omega]^{\omega} : (\exists \{\mathcal{I}_n\}_{n=1}^{\infty} \in \mathfrak{I}) A_{\alpha} \subseteq \bigcup_{m} \bigcap_{n \in b \setminus m} \bigcup \mathcal{I}_n \right\}$$

are open dense in $[\omega]^{\omega}$. (See the proof of Theorem 1.2 (iii) of [3].) Choose $b \subseteq a, b \in \bigcap_{\alpha < \kappa} D_{\alpha}$ and let $\{n_k\}_{k=0}^{\infty}$ be the increasing enumeration of the set b.

The last lemma enables us to choose n_k uniformly for a given family of perfect measure zero sets and so for the case of N-sets in the Main Theorem it is enough to prove the following proposition. Notice that in the proposition $\iota(n_k)$ can be replaced by n_k . (But it is easier handling terms $\iota(n_k)$ in the proof.)

Proposition 2.4 Let $\{n_k\}_{k=0}^{\infty}$ be a given increasing sequence of integers and $\{\varepsilon_n\}_{n=1}^{\infty}$ be the sequence of positive reals defined by (2.1) for a given N-set E. Whenever $\nu < \mathfrak{t}$ and $\{\mathcal{I}_n^{\alpha}\}_{n=1}^{\infty}$, $\alpha \leq \nu$, are sequences of finite families of intervals such that $|\mathcal{I}_n| \leq n$ and $(\forall I \in \mathcal{I}_n) |I| \leq \varepsilon_n$, then $E \cup \bigcup_{\alpha \leq \nu} \bigcup_m \bigcap_{k \geq m} \bigcup_{\mathcal{I}_{\iota(n_k)}^{\alpha}}$ is an N-set.

PROOF. Let $\mathcal{I}_n^{\alpha} = \{[a_{n,l}^{\alpha}, a_{n,l}^{\alpha} + \varepsilon_n]\}_{l=1}^n$ for $n \geq 1$ and $\alpha \leq \nu$ and let us set $P_{\alpha} = \bigcup_m \bigcap_{k \geq m} \bigcup \mathcal{I}_{\iota(n_k)}^{\alpha}$. By induction we build $\{\varphi_{\alpha} : \alpha \leq \nu\}$ and $\{a_{\alpha} : \alpha \leq \nu\} \subseteq [\omega]^{\omega}$ such that

- (1) $\varphi_{\alpha}: \bigcup_{k \in a_{\alpha}} J_{n_k} \to [\omega]^{<\omega}$
- (2) $(\forall k \in a_{\alpha})(\forall n \in J_{n_k})(\forall i, j \in \varphi_{\alpha}(n))(\forall l = 1, \dots, \iota(n_k))$ $|\sin(i-j)n\pi a_{\iota(n_k),l}^{\alpha}| < 2\pi\delta_n,$
- (3) $(\forall n \in \text{dom}(\varphi_{\alpha})) \max \varphi_{\alpha}(n) \leq s_n$
- (4) $(\forall^{\infty} n \in \text{dom}(\varphi_{\alpha})) |\varphi_{\alpha}(n)| \geq f_{\alpha}(n),$
- (5) If $\beta < \alpha$, then $a_{\alpha} \subset^* a_{\beta}$ and $(\forall^{\infty} n \in \text{dom}(\varphi_{\alpha})) \varphi_{\alpha}(n) \subset \varphi_{\beta}(n)$.

For $\alpha=0$ set $a_0=\omega$ and for $n\in J_{n_k}$. Using Lemma 2.1 find $\varphi_0(n)\subseteq\{i:i\leq s_n\}$ so that $|\varphi_0(n)|\geq s_n\delta_n^{\iota(n_k)}\geq s_n\delta_n^{\iota(n_k)}\geq f_0(n)$ and

$$(\forall i, j \in \varphi_0(n)) |\sin(i-j)n\pi a_{\iota(n_k),l}^0| < 2\pi\delta_n$$

(whenever $\delta_n \leq 1$). Similarly using Lemma 2.1 we can find $\varphi_{\alpha+1}(n) \subseteq \varphi_{\alpha}(n)$ so that (2) and (4) hold and we can set $a_{\alpha+1} = a_{\alpha}$. Let $\alpha \leq \nu$ be limit. For $k \in \omega$ let

$$U_{k} = \{ F \in {}^{J_{n_{k}}}([\omega]^{<\omega}) : (\forall n \in \text{dom}(F)) \max F(n) \le s_{n} \\ \& |F(n)| \ge f_{\alpha}(n) \& (\forall i, j \in F(n))(\forall l = 1, \dots, \iota(n_{k})) \\ |\sin(i - j)\pi n a^{\alpha}_{\iota(n_{k}), l}| < 2\pi \delta_{n} \}.$$

The set $U = \bigcup_{k \in \omega} U_k$ is countably infinite. For $\beta < \alpha$ let

$$X_{\beta} = \{ F \in U : (\forall n \in \text{dom}(F)) F(n) \subseteq \varphi_{\beta}(n) \}.$$

For all $n \in J_{n_k}$, $\iota(n) \ge \iota(n_k)$. Hence for all but finitely many k for all $n \in J_{n_k}$, $f_{\alpha}(n) \le f_{\beta}(n) \delta_n^{\iota(n)} \le f_{\beta}(n) \delta_n^{\iota(n_k)}$ and using Lemma 2.1 we easily see that X_{β} is infinite. Moreover, whenever $\beta < \gamma < \alpha$, then $X_{\gamma} \subseteq^* X_{\beta}$. Since $\alpha < \mathfrak{t}$, there is $X \subseteq U$ such that $X \subseteq^* X_{\beta}$ for all $\beta < \alpha$. Since each U_k is finite we can choose X so that $|X \cap U_k| \le 1$ for each $k \in \omega$. Let us define $\varphi_{\alpha} = \bigcup X$ and $a_{\alpha} = \{k : X \cap U_k \neq \emptyset\}$.

Let $\varphi = \varphi_{\nu}$ and let $a \subseteq \omega$ be the set of all $k \in a_{\nu}$ such that for each $n \in J_{n_k}$ there are $i_n, j_n \in \varphi(n), j_n < i_n$, and for each such n let us put $\lambda_n = i_n - j_n$; $\lambda_n \leq s_n$. The set a contains all but finitely many $k \in a_{\nu}$. We prove that the series

$$\sum_{k \in a} \sum_{n \in J_{n_k}} \rho_n' |\sin \lambda_n n \pi x|$$

converges for $x \in E \cup \bigcup_{\alpha \le \nu} P_{\alpha}$. This finishes the proof since

$$\sum_{k \in a} \sum_{n \in J_{n_k}} \rho'_n = \infty.$$

First notice that by (2) for all but finitely many $k \in a$ and for all $n \in J_{n_k}$

$$|\sin \lambda_n n \pi a_{\iota(n_k)}^{\alpha}| \le 2\pi \delta_n$$
 for $l = 1, \dots, \iota(n_k)$

and since

$$|\sin \lambda_n n\pi \varepsilon_{\iota(n_h)}| \le \lambda_n n\varepsilon_{\iota(n_h)} \le s_n n\varepsilon_{\iota(n_h)} \le \delta_n$$

we obtain that

$$|\sin \lambda_n n \pi x| \le 3\pi \delta_n \quad \text{for } x \in \bigcup \mathcal{I}_{\iota(n_k)}^{\alpha} \text{ and } n \in J_{n_k}$$
 (2.2)

holds for all but finitely many $k \in a$.

Let $x \in P_{\alpha}$, $\alpha \leq \nu$. There is m such that $x \in \bigcup \mathcal{I}_{\iota(n_k)}^{\alpha}$ and (2.2) holds for all $k \in a \setminus m$. Then

$$\sum_{k \in a \setminus m} \sum_{n \in J_{n_k}} \rho_n' |\sin \lambda_n n \pi x| \le \sum_{k \in a \setminus m} \sum_{n \in J_{n_k}} 3\rho_n' \delta_n < \infty.$$

If $x \in E$, then

$$\sum_{k \in a} \sum_{n \in J_{n_k}} \rho'_n |\sin \lambda_n n\pi x| \le \sum_{k \in a} \sum_{n \in J_{n_k}} \rho'_n \lambda_n |\sin n\pi x| \le \sum_{n=1}^{\infty} \rho_n |\sin n\pi x| < \infty.$$

3 The Proof of the Cases $p\mathcal{D}$, \mathcal{N}_0 , \mathcal{A}

All these proofs are the same and we will outline the case of N_0 -sets. Let $E = \{x : \sum_{k=0}^{\infty} |\sin m_k \pi x| < \infty\}$ with $\{m_k\}_{k=0}^{\infty}$ strictly increasing. Let $\delta_n = 1/n^2$ and $\varepsilon = \delta_n/m_k$ for $k = \sum_{j=1}^n (1/\delta_j)^{j^2}$. The particular steps of the proof are analogous to the case of N-sets.

Lemma 3.1 There is a system of functions $f_{\alpha} \in {}^{\omega}\mathbb{R}$ for $\alpha < \mathfrak{b}$ such that

- (1) $(\forall^{\infty} n) 0 \le f_{\alpha}(n) \le (1/\delta_n)^{n^2} \delta_n^n$,
- (2) $(\forall k \in \omega) \lim_{n \to \infty} f_{\alpha}(n) \delta_n^{kn} = \infty,$
- (3) If $\beta < \alpha < \mathfrak{b}$, then $(\forall^{\infty} n) f_{\alpha}(n) \leq f_{\beta}(n) \delta_{n}^{n}$.

PROOF. Same as the proof of Lemma 2.2.

Again it is enough to prove the following proposition. (Notice that the same proposition holds for pD-sets and A-sets. It is enough to consider either quasinormal or pointwise convergence in the definition of the set E instead of absolute convergence of a series.)

Proposition 3.2 Let $\{n_k\}_{k=0}^{\infty}$ be a given increasing sequence of integers and $\nu < \mathfrak{t}$. If $\{\mathcal{I}_n^{\alpha}\}_{n=1}^{\infty}$, $\alpha \leq \nu$, are sequences of finite families of intervals such that $|\mathcal{I}_n| \leq n$ and $(\forall I \in \mathcal{I}_n) |I| \leq \varepsilon_n$, then $E \cup \bigcup_{\alpha \leq \nu} \bigcup_m \bigcap_{k \geq m} \bigcup \mathcal{I}_{n_k}^{\alpha}$ is an N_0 -set.

PROOF. Let $\mathcal{I}_n^{\alpha} = \{[a_{n,l}^{\alpha}, a_{n,l}^{\alpha} + \varepsilon_n]\}_{l=1}^n$ and put

$$P_{\alpha} = \bigcup_{m} \bigcap_{k > m} \bigcup \mathcal{I}_{n_k}^{\alpha}.$$

In the same way as in the proof of Proposition 2.4 we build $\{\varphi_{\alpha} : \alpha \leq \nu\}$ and $\{a_{\alpha} : \alpha \leq \nu\} \subseteq [\omega]^{\omega}$ by induction so that

- $(1) \varphi_{\alpha}: \{n_k: k \in a_{\alpha}\} \to [\omega]^{<\omega},$
- (2) $(\forall n \in \text{dom}(\varphi_{\alpha}))(\forall i, j \in \varphi_{\alpha}(n))(\forall l = 1, \dots, n) |\sin(m_i m_j)\pi a_{n,l}^{\alpha}| < 2\pi\delta_n$
- (3) $(\forall n \in \text{dom}(\varphi_{\alpha}))(\forall i \in \varphi_{\alpha}(n)) \sum_{j=1}^{n-1} (1/\delta_{j})^{j^{2}} \le i < \sum_{j=1}^{n} (1/\delta_{j})^{j^{2}},$
- (4) $(\forall^{\infty} n \in \text{dom}(\varphi_{\alpha})) |\varphi_{\alpha}(n)| \ge f_{\alpha}(n),$
- (5) If $\beta \leq \alpha$, then $a_{\alpha} \subseteq^* a_{\beta}$ and $(\forall^{\infty} n \in \text{dom}(\varphi_{\alpha})) \varphi_{\alpha}(n) \subseteq \varphi_{\beta}(n)$.

For $\alpha \leq \nu$ limit let U_n be the set of all pairs (n,F) such that $F \in [\omega]^{<\omega}$, $|F| \geq f_{\alpha}(n)$, $(\forall i \in F) \sum_{j=1}^{n-1} (1/\delta_j)^{j^2} \leq j < \sum_{j=1}^{n} (1/\delta_j)^{j^2}$, and $(\forall i,j \in F)(\forall l=1,\ldots,n) |\sin(m_i-m_j)\pi a_{n,l}^{\alpha}| < 2\pi\delta_n$. The set $U=\bigcup_{n\in\omega}U_n$ is countably infinite and for $\beta < \alpha$ the sets $X_{\beta} = \{(n,F) : F \subseteq \varphi_{\beta}(n)\}$ are infinite and decreasing with respect to \subseteq^* . There is an infinite set $X \subseteq U$ such that $X \subseteq^* X_{\beta}$ for all $\beta < \alpha$ and $|X \cap U_n| \leq 1$ for each n. Let us set $\varphi_{\alpha} = X$ and $a_{\alpha} = \{k : U_{n_k} \cap X \neq \emptyset\}$.

Let $\varphi = \varphi_{\nu}$ and let a be the set of all $k \in a_{\nu}$ for which there are two different members $i_k, j_k \in \varphi(n_k)$, $j_k < i_k$, and for each such k let us set $\lambda_k = m_{i_k} - m_{j_k}$. Notice that both sequences $\{i_k\}_{k=0}^{\infty}$ and $\{j_k\}_{k=0}^{\infty}$ are strictly increasing. Given $\alpha \leq \nu$ for all but finitely many $k \in a$, $n_k \in \text{dom}(\varphi_{\alpha})$. Hence for all but finitely many $k \in a$

$$|\sin \lambda_k \pi a_{n_k,l}^{\alpha}| \le 2\pi \delta_{n_k}$$
 for $l = 1, \dots, n_k$

and

$$|\sin \lambda_k \pi \varepsilon_{n_k}| \le (m_{i_k} - m_{j_k}) \pi \varepsilon_{n_k} \le m_{i_k} \pi \varepsilon_{n_k} \le \pi \delta_{n_k}$$
.

Consequently

$$|\sin \lambda_k \pi x| \le 3\pi \delta_{n_k} \quad \text{for } x \in \bigcup \mathcal{I}_{n_k}^{\alpha}$$
 (3.1)

for all but finitely many $k \in a$. We prove that $\sum_{k \in a} |\sin \lambda_k \pi x|$ converges for $x \in E \cup \bigcup_{\alpha \le \nu} P_{\alpha}$.

Let $x \in P_{\alpha}$. There is m such that $x \in \bigcup \mathcal{I}_{n_k}^{\alpha}$ for all $k \geq m$ and such that (3.1) holds for all $k \in a \setminus m$. Then $\sum_{k \in a \setminus m} |\sin \lambda_k \pi x| \leq \sum_{k \in a \setminus m} 3\pi \delta_{n_k} < \infty$. For $x \in E$, $\sum_{k \in a} |\sin \lambda_k \pi x| \leq \sum_{k \in a} |\sin m_{i_k} \pi x| + \sum_{k \in a} |\sin m_{j_k} \pi x| < \infty$.

References

[1] T. Bartoszyński and M. Scheepers, Remarks on sets related to trigonometric series, Topology Appl., **64** (1995), 133–140.

- [2] L. Bukovský, N. N. Kholshchevnikova and M. Repický, *Thin sets of harmonic analysis and infinite combinatorics*, Real Analysis Exchange, **20** (1994-95), 454–509.
- [3] M. Repický, A family of permitted trigonometric thin sets, Proc. Amer. Math. Soc., to appear.