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TOWERS AND PERMITTED
TRIGONOMETRIC THIN SETS

Abstract

In [3] we introduced the notion of perfect measure zero sets and
proved that every perfect measure zero set is permitted for any of the
four families of trigonometric thin sets N, A, N, and pD. Now we prove
that the unions of less than t perfect measure zero sets are permitted
for the mentioned families. This strengthens a result of T. Bartoszynski
and M. Scheepers [1] saying that every set of cardinality less than t is
N -permitted.

1 Introduction

Let F be a family of sets of reals. Let A, B € F. We say that a set A is
permitted for F if AU B € F for every B € F. Let A be a set of reals.
Then A is a pD-set (pseudo Dirichlet set) if there is an increasing sequence
of integers {ni}32, such that the sequence {sinn,mx}3°, converges quasi-
normally on A; i.e. there is a sequence of positive reals {e;}72, converging
to 0 such that (Vo € A)(VY k) |sinngmz| < e;. A is an Ng-set if there is
an increasing sequence of integers {nj}2, such that Y p- ,[sinngmz| < oo
for z € A. Ais an A-set if there is an increasing sequence of integers {n}7
such that {sinngmz};° , converges to 0 for z € A. A is an N-set if there is
a sequence of non-negative reals {p,}22, such that >~ p, = oo and the
series Y . |pnsinnma| converges for x € A. The families of all pD-sets,
Np-sets, A-sets, and N-sets are denoted by pD, Ny, A, and N, respectively.
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A set A has perfect measure zero if for every sequence of positive reals
{en}52, there is an increasing sequence of integers {n;}7°, and a sequence
of finite families of intervals {Z,,}22; such that |Z,| < n, |I| < &, for every
I'eZ,and AC U, NismUZn,-

In [3] it was proved that every perfect measure zero set is permitted for
any of the families N, A, Ny, and pD; every v-set has perfect measure zero;
every perfect measure zero set has strong measure zero; the subgroup of R, +
generated by a set having perfect measure zero has perfect measure zero; and
every set of cardinality less than the additivity of Lebesgue measure has perfect
measure zero.

A result of [1] says that every set of cardinality less than t is permitted
for N'. The cardinals t and the additivity of Lebesgue measure are two the best
known lower bounds for the minimal size of a set not being permitted for A/
It is worth mentioning that these two bounds are mutually independent. (See
a discussion in [3].) Some more bounds of cardinal invariants of other families
of trigonometric thin sets can be found in [2] and [1]. Using some ideas of [1]
we prove the following result.

Main Theorem 1.1 Let F be any of the families N, A, Ny and pD. The
unions of less than t sets having perfect measure zero are permitted for F.

Let us recall that t is the minimal size of a tower of subsets of w, § is the
distributivity number of the Boolean algebra P(w)/fin, and b is the minimal
size of an unbounded family of functions under the eventual dominance. It is
well known that t < < b.

2 The Proof of the Case N

Let E be an N-set, i.e. there is a sequence {p,}22; such that > >~ | p, =
and E = {z € R: > 7| py|sinnmz| < co}. Let us denote s, = >.;_; px.
There is a surjective monotone function ¢ : w — w \ {0} such that

oo

Pn
Z T2 m < o
n=1 Sn
Let p!, = pp/sn and §,, = s /™ Then Yoo P =o0cand Yo7, plo, < 00.
There is an increasing function f € “w such that Zi (:k;'(?)_l pn > 1 for all
k € w. Let us denote J, = [f(k), f(k+ 1)) and

em:min{én:(Hk)L(k):m&neJk}. (2.1)
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Lemma 2.1 Suppose Z C w is a finite set, 0 < § < 1 and x1,...,2, € R.
There is Z' C Z such that |Z'| > 6™|Z| and

(Vi,j € ZNYVI=1,...,n)|sin(i — j)mwx;| < 2m0.

PrOOF. First let n = 1. Find m such that 1/(2m) < § < 1/m and divide
the interval [0, 1] into m subintervals of length 1/m. There is a set Z' C Z
such that |Z’'| > |Z]|/m > §|Z| and for all i € Z’, {ix1} are in the same
subinterval. (Let us recall that {y} denotes the fractional part of a real y.)
Hence |sin(i — j)mzi| < 7/m < 2xd for all 4,j € Z'. Now in case n > 1 apply
the previous result n times. Il

Lemma 2.2 There is a system of functions f, € “R for a < b such that
(1) (V) 0 < fa(n) < 503",

(2) (Vk € w) limpy_yoo fa(n)6E™ = o0,
(3) If B < a < b, then (V°°n) fo(n) < fs(n)si™.

PROOF. Let us set fo(n) = 508 and similarly in the non-limit steps let us
set fas1(n) = fa(n)di™. Then we get

fim fO(n)éﬁL(n) = lim S:L_(kﬂ)ﬁ(n) > lim 8}/2 =00
n—00 n—00 n—00

and condition (2) can be easily verified also for the non-limit step. Let o < b
be limit. For each 8 < « there is g € “w with lim, ,o gs(n) = oo such

that lim, e f5(n)55° ™™ = oo (by (2) in the induction hypothesis). Let
g € “w be such that lim,, . g(n) = co and (V5 < a)(¥>n)g(n) < gg(n).
Then for any 8 < «, lim, s fg(n)ég(n)L(n) = 0o. We can find h € “w with
lim,,_, o0 h(n) = oo such that (V5 < «)(V*°n)h(n) < fg(n)érgl(")b("). Let us
set fa(n) = h(n)dn ™™ Then

lim fo(n)oF"™ = lim h(n)d*F=90DM) > lim h(n) = co

n— oo n—oo n— oo

for all k£ € w and
(V°°n) fo(n) = h(n)s, 9™ < f511(n) < fa(n)s;™
for all 8 < a. 0

Lemma 2.3 Let k < B, let A, a < k, be perfectly measure zero sets, let
a be an infinite subset of w and let {,}22, be a given sequence of positive
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reals. There is a sequence of integers {ny}3, elements of a and a system of
sequences of finite systems of intervals {Z2}5°,, a < K, such that |Z%| < n,
VI e ZN) || < en and Ay € U, Ni>m ULy, for each o (The sequence
{nk}32, is independent of cv.)

PrOOF. Let J be the family of all infinite sequences of finite families of
intervals {Z,,}5 ; such that |Z,,| < n and (VI € Z,) |I| < £,. The sets

Do=Sbew: T} €Al ) Uz

m neb\m

are open dense in [w]“. (See the proof of Theorem 1.2 (iii) of [3].) Choose
bCa,be N, cpDa and let {ng}72, be the increasing enumeration of the
set b. g

The last lemma enables us to choose nj uniformly for a given family of
perfect measure zero sets and so for the case of N-sets in the Main Theorem it is
enough to prove the following proposition. Notice that in the proposition ¢(ny)
can be replaced by ng. (But it is easier handling terms ¢(ny) in the proof.)

Proposition 2.4 Let {n;}32, be a given increasing sequence of integers and
{en}S2, be the sequence of positive reals defined by (2.1) for a given N-set
E. Whenever v < t and {Z3}2%,, o < v, are sequences of finite fam-
ilies of intervals such that |Z,] < n and (VI € Z,)|I| < e,, then EU

Ua<y Ui Mz UL,y is an N-set.

Proor. Let ¢ = {[a; ;, a5, + €]}y for n > 1 and @ < v and let us set
Po = U Nz UZY,,,)- By induction we build {¢q : @ < v} and {aq : o <
v} C [w]¥ such that
(1) ¢a: UkEaa Iy, = W],
(2) Vk€an)(Vne Jy,)Vi,j € va(n)(Vi=1,...,t(ng))
|sin(i — j)nmay,, ) | < 2mon,
(3) (Vn € dom(py)) max @, (n) < sp,
(4) (V**n € dom(pa)) [a(n)] = fa(n),
(5) If B < a, then an C* ag and (V*°n € dom(p.)) pa(n) C wa(n).
For oo = 0 set ag = w and for n € J,,,. Using Lemma 2.1 find ¢o(n) C {i :
i < 8, } so that |o(n)| > snéﬁb(n"‘) > sné,ﬂ(") > fo(n) and

(Vi,j € wo(n))|sin(i — j)nwa?(nk)7l| < 2mé,
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(whenever 4, < 1). Similarly using Lemma 2.1 we can find @,41(n) C pq(n)
so that (2) and (4) hold and we can set aq+1 = ao. Let o < v be limit. For
k€ wlet

Up ={F € 7 (w]<¥) : (Vn € dom(F)) max F(n) < s,

& |F(n)] = faln) & (Vi j € Fm)(V1=1,...,0(n4))

| sin(i — j)mnay,, .| < 210, }.

The set U = |J,,c,, Uk is countably infinite. For 8 < « let
Xg={FeU: (Vnedom(F))F(n) C ¢g(n)}.

For all n € J,,, t(n) > t(ng). Hence for all but finitely many k for all n € J,, ,
fa(n) < fg(n)éfl(n) < fg(n)éil(nk) and using Lemma 2.1 we easily see that X3
is infinite. Moreover, whenever 8 < v < a, then X, C* Xg. Since a < ¢,
there is X C U such that X C* X for all 8 < a. Since each U} is finite we
can choose X so that | X NUg| <1 for each k € w. Let us define ¢, = [JX
and a, = {k: X NU; # 0}.

Let ¢ = ¢, and let a C w be the set of all k € a,, such that for each n € J,,,
there are iy, jn, € @(n), jn < i,, and for each such n let us put A, = i,, — jn;
An < s,. The set a contains all but finitely many k& € a,,. We prove that the

series
E E o | sin \pnmx|
k€an€dn,
P,. This finishes the proof since

> Y e

k€a nGJnk

converges for x € EUJ

a<v

First notice that by (2) for all but finitely many k € a and for all n € J,,
|sin Apnmay,, )| < 2w, for l=1,... ¢(ng)

and since
|Sin )\nnﬂ—EL(nk)‘ < )\nngL(nk) < SnNE, (ny,) <o,

we obtain that
|sin Apnma| < 376, for z € UL, ) and n € Jy, (2.2)

holds for all but finitely many k € a.
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Let z € Py, a < v. There is m such that z € UZJ,,, ) and (2.2) holds for
all k € a\ m. Then

Z Z phsin Anrx| < Z Z 3p.,0n < 00.

k€a\m nEJnk kea\mnEJnk
If x € E, then
o0
E E o | sin \pnmra| < E E prAn]sinnrx| < E pnlsinnrz| < co.
kea nEJnk kea nEJnk n=1

O

3 The Proof of the Cases pD, N;, A

All these proofs are the same and we will outline the case of Ny-sets. Let
E = {z : Y2, |sinmpra] < oo} with {my};2, strictly increasing. Let
0, = 1/n? and € = 6,,/my, for k = E;;l(l/dj)j?. The particular steps of the
proof are analogous to the case of N-sets.

Lemma 3.1 There is a system of functions fo € “R for a < b such that
(1) (V)0 < fa(n) < (1/8,)" 67,
(2) (Vk € w) limy o0 fa(n)oy" = o0,
(3) If B < a < b, then (V°°n) fo(n) < fa(n)or.
PROOF. Same as the proof of Lemma 2.2. O

Again it is enough to prove the following proposition. (Notice that the
same proposition holds for pD-sets and A-sets. It is enough to consider either
quasinormal or pointwise convergence in the definition of the set E instead of
absolute convergence of a series.)

Proposition 3.2 Let {n;}32, be a given increasing sequence of integers and
v<t If{Z¥}52,, a < v, are sequences of finite families of intervals such that
Z,| <nand (VI € I,) [I| < e, then EUU, <, U, Nism ULy, is an No-set.

k
ProOF. Let Zy = {[a;, ;, a5y ; + €n]}j; and put
P=J N UL
m k>m

In the same way as in the proof of Proposition 2.4 we build {¢, : @ < v} and
{ta : & < v} C [w]¥ by induction so that
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(1) vo : {nk: k €ag} — [w]<¥,

(2) (Vn € dom(pa))(Vi,j € @a(n))(VI = 1,...,n)|sin(m; — m;)ma | <
270,

(3) (vVn € dom(pa))(¥i € pa(n) X521 (1/0;) < i < 325, (1/8;),
(4) (V*n € dom(ea)) [@a(n)| = fa(n),
(5) If B < a, then an C* ag and (V*>°n € dom(p,)) pa(n) C wa(n).

For a < v limit let U,, be the set of all pairs (n, F') such that F € [w]<¥,

F > faln), (Vi € F) SIH1/60° < j < 0, (1/8)7, and (V] e
)Vl = 1,...,n)[sin(m; — my)mag ;| < 216,. The set U = U, ,Un is
countably infinite and for 8 < « the sets Xg = {(n, F) : F C @g(n)} are
infinite and decreasing with respect to C*. There is an infinite set X C U
such that X C* Xz for all § < o and | X NU,| < 1 for each n. Let us set
0o =X and ao = {k : U,, N X # 0}.

Let ¢ = ¢, and let a be the set of all k € a, for which there are two
different members i, jr € @(nk), jr < ik, and for each such k let us set
Ak = m;, —m;,. Notice that both sequences {i;}7°, and {ji}72, are strictly
increasing. Given a < v for all but finitely many k € a, nj, € dom(p, ). Hence
for all but finitely many k € a

|sin \gray, ;| <278, forl=1,... ng

and
|sin Agmen, | < (my, — mj )men, < mi men, < Ty, .

Consequently
|sin Az < 376, for x € JZy, (3.1)

for all but finitely many & € a. We prove that ), . [sin \gmx| converges for
re EU,<, Pa-

Let € P,. There is m such that z € (JZg, for all k > m and such
that (3.1) holds for all k € a\m. Then 3=, .\, [sin Aemx| < 3750 o0, 370, <
oo. Forx € B, Y, |sin\gma| < 37, [sinmg, x| + )2, o, [sinmy, x|
< 00.
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