RESEARCH

Zbigniew Grande, Mathematics Department, Pedagogical University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland

ON EQUI-DERIVATIVES

Abstract

The notion of equi-derivatives is introduced and is compared with approximate equicontinuity. Moreover, it is proved that a function f of two variables whose sections f_x are equi-derivatives and sections f^y are measurable (derivatives) [have the Baire property] is measurable (a strong derivative) [has the Baire property].

1 Preliminaries and Notations

Let \mathbb{R} be the set of all reals and let $\mu_e(\mu)$ denote outer Lebesgue measure (Lebesgue measure) in \mathbb{R} . Let

$$d_u(A, x) = \limsup_{h \to 0^+} \mu_e(A \cap (x - h, x + h))/2h$$
$$(d_l(A, x) = \liminf_{h \to 0^+} \mu_e(A \cap (x - h, x + h))/2h)$$

be the upper (lower) density of a set $A \subset \mathbb{R}$ at x. A point $x \in \mathbb{R}$ is called a density point of a set $A \subset \mathbb{R}$ if there exists a (Lebesgue) measurable set $B \subset A$ such that $d_l(B, x) = 1$. The family $\mathcal{T}_d = \{A \subset \mathbb{R}; A \text{ is measurable}$ and every point $x \in A$ is a density point of $A\}$ is a topology called the density topology [1].

A function $f : \mathbb{R} \to \mathbb{R}$ is called \mathcal{T}_d -continuous or approximately continuous at a point x if it is continuous at x as a function from $(\mathbb{R}, \mathcal{T}_d)$ into $(\mathbb{R}, \mathcal{T}_e)$, where \mathcal{T}_e denotes the Euclidean topology in \mathbb{R} .

A family of functions $f_s : \mathbb{R} \to \mathbb{R}$, $s \in S$, is called \mathcal{T}_d -equicontinuous or approximately equicontinuous at a point x if the functions f_s , $s \in S$, are

637

Key Words: approximate equicontinuity , equi-derivatives, density topology, product measurability, Baire property, strong derivative

Mathematical Reviews subject classification: Primary: 26A24,26B15, 28A35, 54C30 Received by the editors September 20, 1995

equicontinuous at x as the functions from $(\mathbb{R}, \mathcal{T}_d)$ into $(\mathbb{R}, \mathcal{T}_e)$, i.e. for every $\eta > 0$ there is a set $B \in \mathcal{T}_d$ such that $x \in B$ and for all $t \in B$ and $s \in S$ the inequality $|f_s(t) - f_s(x)| < \eta$ holds.

A family of locally Henstock-Kurzweil integrable functions $f_s : \mathbb{R} \to \mathbb{R}$, $s \in S$, is called a family of equi-derivatives at a point $x \in \mathbb{R}$ if for every positive η there is a r > 0 such that for every real h with 0 < |h| < r and for every $s \in S$ we have

$$\left|\frac{1}{h}\int_{x}^{x+h}f_{s}(t)\,dt-f_{s}(x)\right|<\eta.$$

2 Equi-derivatives and Approximate Equicontinuity

It is well known [1] that every locally bounded (Lebesgue) measurable function f which is approximately continuous at a point x is also a derivative at x, i.e.

$$\lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) \, dt = f(x).$$

By a similar proof we obtain:

Remark 1 If locally integrable functions $f_s : \mathbb{R} \to \mathbb{R}$, $s \in S$, are approximately equicontinuous at x and if there are M > 0, r > 0 such that for all $s \in S$ and for all $t \in (x - r, x + r)$ the inequality $|f_s(t)| < M$ is true, then the functions f_s , $s \in S$, are equi-derivatives at x.

In the above remark the existence of the constant M is important. Indeed, if $(a_n)_n$ is a sequence of positive reals such that $a_1 > a_2 > \cdots > a_n > \cdots > 0$ and

$$d_u\left(\bigcup_{n=1}^{\infty} [a_{2n}, a_{2n-1}], 0\right) = 0,$$

then let f_n , n = 1, 2, ..., be a continuous function such that $f_n(x) = 0$ for $x \in \mathbb{R} \setminus [a_{2n}, a_{2n-1}]$ and $\int_{a_{2n}}^{a_{2n-1}} f_n(t) dt = na_{2n-1}$. Then the functions f_n , n = 1, 2, ..., are continuous, bounded and approximately equicontinuous, but they are not equi-derivatives at 0.

From Lipiński's theorem in [6] it follows that if for all reals a, b with a < b the functions $\min(b, \max(a, f))$ are derivatives, then f is approximately continuous. So, we obtain the following question:

Suppose that for all reals a, b with a < b the functions $\min(b, \max(a, f_s))$ are equi-derivatives. Must the functions $f_s, s \in S$, be approximately equicontinuous?

Example 1 shows that the answer is "no".

Example 1 For every positive integer n let $J_n \subset (1/(n+1), 1/n)$ be a closed interval such that $n(n+1)|J_n| > 1 - 1/n$, where $|J_n|$ denotes the length of J_n . Define the continuous function f_n to be 1 on J_n , 0 on $\mathbb{R} \setminus (1/(n+1), 1/n)$ and linear otherwise on \mathbb{R} . The functions f_n , $n = 1, 2, \ldots$, are continuous everywhere on \mathbb{R} and approximately equicontinuous (even equicontinuous) at all points $x \neq 0$. Since $d_u(\bigcup_n J_n, 0) = 1/2$, the functions f_n , $n \geq 1$, are not approximately equicontinuous at 0. To prove that for all a < bthe functions $\min(b, \max(a, f_n))$, $n \geq 1$, are equi-derivatives, it suffices to show that they are equi-derivatives at 0. Fix a, b such that a < b and let $g_n = \min(b, \max(a, f_n))$ for $n \geq 1$. Fix $\eta > 0$. There is a positive integer ksuch that $1/k < \eta$. Let r = 1/(k+1) and let real h be such that 0 < |h| < r. If $a \geq 1$ or $b \leq 0$ or if b > 0, a < 1 and h < 0, then for every $n \geq 1$ we have

$$\left|\frac{1}{h}\int_0^h g_n(t)\,dt - g_n(0)\right| = |g_n(0) - g_n(0)| = 0 < \eta.$$

We proceed similarly in the case a < 1, b > 0 and h > 0 for n < 1/h - 1. If a < 1, b > 0, h > 0 and $n \ge 1/h - 1$, then

$$\int_0^h g_n(t) \, dt \le \min(b, 1) / (n(n+1)) + g_n(0)h \le 1 / (n(n+1)) + g_n(0)h,$$

whence

$$\left|\frac{1}{h}\int_0^h g_n(t)\,dt - g_n(0)\right| < 1/n < \eta.$$

So, the functions g_n , $n \ge 1$, are equi-derivatives.

Remark 2 It is well known ([1, Th. 5.8]) that every lower semi-continuous locally bounded derivative is approximately continuous. Meanwhile the functions f_n , $n \ge 1$, from Example 1 are not approximately equicontinuous at 0, although they are equi-derivatives bounded by a common constant and they are lower semi-equicontinuous at 0, i.e. for every $\eta > 0$ there is a positive real r such that $f_n(0) - f_n(t) < \eta$ for all points $t \in (-r, r)$ and $n \ge 1$.

The next theorem gives some sufficient condition for the approximate equicontinuity of families of equi-derivatives.

Theorem 1 Let measurable functions $f_s : \mathbb{R} \to \mathbb{R}$, $s \in S$, be such that there is a M > 0 with $|f_s| < M$ for all $s \in S$. Suppose that for every $\eta > 0$ there is an approximately continuous positive function $r : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}, s \in S$ and h with 0 < |h| < r(x) the inequality

$$\left|\frac{1}{h}\int_{x}^{x+h}f_{s}(t)\,dt-f_{s}(x)\right|<\eta$$

holds. Then the functions f_s , $s \in S$, are approximately equicontinuous.

PROOF. Suppose, to the contrary, that the functions f_s , $s \in S$, are not approximately equicontinuous at a point x. Then there is a $\eta > 0$ such that for every $A \in \mathcal{T}_d$ containing x there are $s \in S$ and $t \in A$ such that $|f_s(t) - f_s(x)| \ge \eta$. Let r be a positive function corresponding to $\eta/4$ by hypothesis of our theorem and let $A \in \mathcal{T}_d$ be a set containing x such that |r(t) - r(x)| < r(x)/4for every $t \in A$. Assume that $I \subset (x - r(x)/4, x + r(x)/4)$ is an open interval containing x such that for every $t \in I$ we have $2M|t - x|/r(x) < \eta/8$ and $(Mr(x)/2)(1/((r(x)/2) - |t - x|) - 2/r(x)) < \eta/8$. There are an index $s \in S$ and a point $u \in A \cap I$ with $|f_s(u) - f_s(x)| \ge \eta$. We can assume that u > x, since in the case u < x the proof is analogous. Observe that x < u < h =x + r(x)/2 < u + r(u) and

$$\begin{split} \left| (1/(h-u)) \int_{u}^{h} f_{s}(t) dt - (2/r(x)) \int_{x}^{h} f_{s}(t) dt \right| \\ &= \left| (1/(h-u)) \int_{u}^{h} f_{s}(t) dt - (2/r(x)) \int_{u}^{h} f_{s}(t) dt - (2/r(x)) \int_{x}^{u} f_{s}(t) dt \right| \\ &\leq |(1/(h-u) - (2/r(x))| \int_{u}^{h} |f_{s}(t)| dt + (2/r(x)) \int_{x}^{u} |f_{s}(t)| dt \\ &\leq (Mr(x)/2)(1/((r(x)/2) - |u-x|) - 2/r(x)) + 2M|u-x|/r(x) \\ &< \frac{\eta}{8} + \frac{\eta}{8} = \frac{\eta}{4}. \end{split}$$

So, we obtain

$$\begin{aligned} |f_s(u) - f_s(x)| &\leq \left| f_s(u) - (1/(h-u)) \int_u^h f_s(t) \, dt \right| \\ &+ \left| (1/(h-u)) \int_u^h f_s(t) \, dt - (1/(h-x)) \int_x^h f_s(t) \, dt \right| \\ &+ \left| (1/(h-x)) \int_x^h f_s(t) \, dt - f_s(x) \right| < \frac{\eta}{4} + \frac{\eta}{4} + \frac{\eta}{4} < \eta, \end{aligned}$$

a contradiction.

We say that a function $f : \mathbb{R} \to \mathbb{R}$ has property SAC if for every $\eta > 0$ there is an approximately continuous positive function $r : \mathbb{R} \to \mathbb{R}$ such that for every x and h with 0 < |h| < r(x) we have

$$\left|\frac{1}{h}\int_{x}^{x+h}f(t)\,dt-f(x)\right|<\eta.$$

It follows from Theorem 1 applied to the family containing one function that every function having the property SAC is also approximately continuous.

Problem 1 Does every approximately continuous function have property SAC?

Remark 3 There is a function $f : \mathbb{R} \to [0,1]$ having property SAC whose set of discontinuities is of positive measure.

PROOF. Let $C \subset (0,1)$ be a Cantor set of positive measure and let $(I_n)_n$ be an enumeration of all components of the set $(0,1) \setminus C$ such that $I_n \neq I_m$ for $n \neq m, n, m = 1, 2, \ldots$ In every interval $I_n, n \geq 1$, we find closed intervals $I_{n,1}, I_{n,2} = [c_n, d_n]$ having the same center as I_n and such that

$$\max((|I_{n,1}|/|I_{n,2}|), (|I_{n,2}|/|I_n|)) < 4^{-n}.$$

Let f be a function which is continuous at every point $x \in \mathbb{R} \setminus C$, equal to 0 at every $x \in \mathbb{R} \setminus \bigcup_n I_{n,1}$ and such that $f(I_{n,1}) = [0,1]$ for $n \ge 1$. Since f is discontinuous at every point $x \in C$, the set of discontinuities of f is of positive measure. Now we will prove that f has property SAC. Fix $\eta > 0$. There is a positive integer k with $4^{-k} + 2(4^{-2k+1})/(1-16^k) < \eta$. Let

$$A = \bigcup_{n \le k} I_{n,2}.$$

Since for every n > k the function f is uniformly continuous on the interval $I_{n,2}$, there are positive reals $r_n < |I_{n,1}|, n > k$, such that for all $x, y \in I_{n,2}$ with $|x - y| < r_n$ we have $|f(x) - f(y)| < \eta$. Similarly there is a positive real $r_0 < \min_{j \le k} |I_{j,1}|/4$ such that for all $x, y \in A$ with $|x - y| < r_0$ we have $|f(x) - f(y)| < \eta$. Put $r_n = r_0$ for $n \le k$ and $a = \min(r_0, \operatorname{dist}(A, C)/4)$, where $\operatorname{dist}(A, C) = \inf\{|x - y|; x \in A, y \in C\}$. Moreover, let $\operatorname{dist}(x, A) = \inf\{|x - y|; y \in A\}$ and let

$$g(x) = a + \min(\operatorname{dist}(x, A), \operatorname{dist}(x, C))/4$$
 for $x \in I_n \setminus \operatorname{int}(I_{n,2}), n \ge 1$,

 \Box

where int(A) denotes the interior of A. For $x \in C \cup \bigcup_{n < k} I_n$ we put r(x) = a. For the definition of the function r on the intervals $\overline{I_n}$, n > k, we observe that $r(c_n) = r(d_n)$. Fix a positive integer n > k. If $r_n \ge g(c_n)$, then we put $r(x) = g(c_n)$ for $x \in I_{n,2}$ and r(x) = g(x) for $x \in I_n \setminus I_{n,2}$. If $r_n < g(c_n)$, then we find a closed interval $I_{n,3}$ having the same center as I_n and such that $I_{n,2} \subset \operatorname{int}(I_{n,3})$ and $|I_{n,3}|/|I_n| < 4^{-n}$. Then we define $r(x) = r_n$ for $x \in I_{n,2}, r(x) = g(x)$ for $x \in I_n \setminus int(I_{n,3})$ and r is linear on the components of $I_{n,3} \setminus \operatorname{int}(I_{n,2})$. The function r is already defined on the interval (0,1). Observe $u = \lim_{x \to 0+} r(x)$ and $v = \lim_{x \to 1-} r(x)$ exists and are positive. Put r(x) = ufor $x \leq 0$ and r(x) = v for $x \geq 1$. The positive function r is defined on \mathbb{R} , and continuous at each point $x \in \mathbb{R} \setminus C$. Since the function g is continuous at each $x \in C$, r(x) = g(x) for all $x \in C$ and every $x \in C$ is a density point of the set $\{x; g(x) = r(x)\}$, the function r is approximately continuous at all points of the set C. If $x \in I_{n,2}$ for some integer n, and h is such that $0 < h < r(x) = r_n < |I_{n,1}|$, then $[x, x + h] \subset I_n$ and $|f(t) - f(x)| < \eta$ for all $t \in [x, x + h]$. Consequently,

$$\left| \frac{1}{h} \int_{x}^{x+h} f(t) dt - f(x) \right| = \left| \frac{1}{h} \int_{x}^{x+h} (f(t) - f(x)) dt \right|$$
$$\leq \frac{1}{h} \int_{x}^{x+h} |f(t) - f(x)| dt < \frac{1}{h} h\eta = \eta.$$

If x is such that there is not an integer n for which $x \in I_{n,2}$ and if h is such that 0 < h < r(x), then we put $K = \{i; I_i \subset [x, x+h]\}$ and let L be the set of such indexes ℓ which are not in K and for which $\operatorname{int}(I_\ell) \cap [x, x+h] \neq \emptyset$. Since $r(x) < \operatorname{dist}(A, C)$ for all x, we obtain i > k for every $i \in K$. The set L contains at most two elements. From the construction of the function r we obtain that if $n \in L$ and $n \leq k$, then f(t) = 0 for each $t \in [x, x+h] \cap I_n$. We have:

$$\begin{aligned} \left| \frac{1}{h} \int_{x}^{x+h} f(t) \, dt - f(x) \right| &= \left| \frac{1}{h} \int_{x}^{x+h} f(t) \, dt \right| \\ &= \left| \frac{1}{h} \left(\sum_{n \in K} \int_{I_{n}} f(t) \, dt + \sum_{l \in L} \int_{I_{l}} f(t) \, dt \right) \right| \\ &\leq \frac{1}{h} \left(\sum_{n \in K} |I_{n,1}| + \sum_{l \in L} |I_{l,1} \cap [x, x+h]| \right) \\ &< \frac{1}{h} (4^{-k-1}h + 2(4^{-2l+1}h)/(1-16^{-l})) < \eta. \end{aligned}$$

If -r(x) < h < 0 the proof is analogous. So, the function f has the property SAC and the proof is finished.

3 Equi-derivatives and Some Properties of Functions of Two Variables

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function. It is well known ([4]) that if all sections $f_x(t) = f(x,t), t, x \in \mathbb{R}$, are approximately equicontinuous and if all sections $f^y(t) = f(t,y), t, y \in \mathbb{R}$, are (Lebesgue) measurable [have the Baire property], then f is measurable [has the Baire property] as a function of two variables. These theorems are also true if we suppose that the sections $f_x, x \in \mathbb{R}$, are equi-derivatives.

Theorem 2 Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a locally bounded function with all sections $f^y, y \in \mathbb{R}$, being measurable (having the Baire property). Suppose that there is a set $B \subset \mathbb{R}$ of measure zero (of the first category) such that the sections $f_x, x \in \mathbb{R} \setminus B$, are equi-derivatives at every point $y \in \mathbb{R}$. Then the function f is measurable (has the Baire property).

PROOF. It suffices to prove that for every bounded closed interval $I \subset \mathbb{R}$ the restricted function $f|(I \times I)$ is measurable. Assume that I = [a, b]. Since the set $I \times I$ is compact, the function $f|(I \times I)$ is bounded. Let g(x, y) = f(x, y) for $x \in I \setminus B$ and and let g(x, y) = 0 otherwise on $I \times I$. Observe that the restricted function $f|(I \times I)$ is measurable if and only if the function g is measurable. All sections $g_x, x \in I$, are derivatives. So, by Lipiński's Theorem 3 from [7], for the measurability of g it suffices to prove that for every $t \in I$ the function

$$h(x)=\int_a^t g(x,y)\,dy,\ x\in I,$$

is measurable. Fix $t \in I$. We will prove that the function h satisfies the hypothesis of Davies' Lemma from [3]. Let η be a positive real and let $C \subset I$ be a measurable set of positive measure. For every $y \in I$ there is a positive number r(y) such that for every h with 0 < |h| < r(y) and for every $x \in I \setminus B$ we have

$$\left|\frac{1}{h} \int_{y}^{y+h} g(x,v) \, dv - g(x,y)\right| < \eta/(4(t-a))$$

The family $\{(y - r(y), y + r(y)); y \in I\}$ is an open covering of the compact [a, t]. So, there are points

$$a = t_0 < t_1 < \ldots < t_{n-1} < t_n = t$$

such that for every $x \in I \setminus B$ and $i = 1, \ldots, n$ we have

$$\left| (1/(t_i - t_{i-1})) \int_{t_{i-1}}^{t_i} g(x, y) \, dy - g(x, t_{i-1}) \right| < \eta/(4(t-a)).$$

Since all sections g^{t_i} , i = 0, 1, ..., n, are measurable, there is a density point $u \in C$ at which all sections g^{t_i} , i = 0, 1, ..., n, are approximately continuous. Thus there is a measurable set $E \subset C$ of positive measure such that $|g(v, t_i) - g(w, t_i)| < \eta/(2n)$ for all $v, w \in E$ and i = 0, ..., n. Fix $v, w \in E$. Then

$$\begin{split} |h(v)-h(w)| &= \left| \int_{a}^{t} g(v,y) \, dy - \int_{a}^{t} g(w,y) \, dy \right| \\ &= \left| \int_{a}^{t} (g(v,y) - g(w,y)) \, dy \right| = \left| \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} (g(v,y) - g(w,y)) \, dy \right| \\ &= \left| \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} (g(v,y) - g(v,t_{i-1})) \, dy + \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} (g(v,t_{i-1}) - g(w,t_{i-1})) \, dy \right| \\ &+ \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} (g(w,t_{i-1}) - g(w,y)) \, dy \right| \\ &= \left| \sum_{i=1}^{n} \left(\int_{t_{i-1}}^{t_{i}} g(v,y) \, dy - g(v,t_{i-1}) (t_{i} - t_{i-1}) \right) \right. \\ &+ \sum_{i=1}^{n} (g(v,t_{i-1}) - g(w,t_{i-1})) (t_{i} - t_{i-1}) \\ &+ \sum_{i=1}^{n} (g(w,t_{i-1}) (t_{i} - t_{i-1}) - \int_{t_{i-1}}^{t_{i}} g(w,y) \, dy - g(v,t_{i-1}) \right| \\ &+ \left| (1/(t_{i} - t_{i-1})) \int_{t_{i-1}}^{t_{i}} g(w,y) \, dy - g(w,t_{i-1}) \right| \right| + n\eta/(2n) \\ &\leq \sum_{i=1}^{n} (t_{i} - t_{i-1}) (\eta/(4(t-a))) + \eta/(4(t-a))) + \eta/2 = \eta. \end{split}$$

So, $\operatorname{osc}(h) \leq \eta$ on the set E and by Davies' lemma from [3] the function h is measurable. This completes the proof of the first part of our theorem for the measurability. The proof of the second part is similar. Instead of Lipiński's

theorem from [7] we apply an analogous theorem for the property of Baire from [4] and instead of Davies' lemma from [3] we apply an analogous theorem for the Baire property from [5]. \Box

In [7] Ślezak proved that if all sections $f_x, x \in \mathbb{R}$, are approximately continuous and if all sections $f^y, y \in \mathbb{R}$, are of Baire class $\alpha \ge 1$, then f is also of Baire class α . So, we obtain the following:

Problem 2 Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that all sections f_x are equiderivatives and all sections f^y are of Baire class α . Is the function f of Baire class α ?

By a standard proof we observe that if all sections f_x , $x \in \mathbb{R}$, are approximately equicontinuous and if all sections f^y , $y \in \mathbb{R}$, are approximately equicontinuous, then f is $(\mathcal{T}_d \times \mathcal{T}_d)$ -continuous as a function of two variables. For the equi-derivatives we obtain the following:

Theorem 3 Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a locally bounded function such that all its sections $f_x, x \in \mathbb{R}$, are equi-derivatives at every point $y \in \mathbb{R}$ and all its sections $f^y, y \in \mathbb{R}$, are derivatives. Then f is a strong derivative at every point $(x, y) \in \mathbb{R}^2$, i.e. for every (x, y) the equality

$$\lim_{h,k\to 0} \left(\int_{x-h}^{x+h} \int_{y-k}^{y+k} f(u,v) \, du \, dv \right) / (4hk) = f(x,y).$$

PROOF. Fix a point $(x, y) \in \mathbb{R}^2$ and a $\eta > 0$. Since all sections $f_x, x \in \mathbb{R}$, are equi-derivatives at the point y, there is a r > 0 such that for every h with 0 < |h| < r and for every $u \in \mathbb{R}$ we have

$$\left|\frac{1}{h}\int_{y}^{y+h}f(u,v)\,dv-f(u,y)\right|<\frac{\eta}{4}.$$

By the hypothesis the section f^y is a derivative at the point x. Thus there is a s > 0 such that for every k with 0 < |k| < s the inequality

$$\left|\frac{1}{k}\int_{x}^{x+k}f(u,y)\,du - f(x,y)\right| < \frac{\eta}{4}$$

is true. Fix h, k such that 0 < h < r and 0 < k < s. Then for every $u \in (x - s, x + s)$ we obtain:

$$\begin{split} & \left| \frac{1}{2h} \int_{y-h}^{y+h} f(u,v) \, dv - f(u,y) \right| \\ \leq & \left| \frac{1}{2h} \int_{y-h}^{y} f(u,v) \, dv - f(u,y)/2 \right| + \left| \frac{1}{2h} \int_{y}^{y+h} f(u,v) \, dv - f(u,y)/2 \right| \\ = & \frac{1}{2} \left[\left| \frac{1}{-h} \int_{y}^{y-h} f(u,v) \, dv - f(u,y) \right| + \left| \frac{1}{h} \int_{y}^{y+h} f(u,v) \, dv - f(u,y) \right| \right] \\ < & \frac{1}{2} \left(\frac{\eta}{4} + \frac{\eta}{4} \right) = \frac{\eta}{4}. \end{split}$$

Since f is locally bounded, we can assume that it is bounded on the set $D = [x - k, x + k] \times [y - h, y + h]$. By Theorem 2 the function f is measurable, so it is integrable on the rectangle D. For $u \in (x - s, x + s)$ we have

$$2h(f(u,y) - \eta/4) < \int_{y-h}^{y+h} f(u,v) \, dv < 2h(f(u,y) + \eta/4).$$

Consequently,

$$2h \int_{x-k}^{x+k} (f(u,y) - \eta/4) \, du \le \int_{x-k}^{x+k} \int_{y-h}^{y+h} f(u,v) \, dv \, du$$
$$\le 2h \int_{x-k}^{x+k} (f(u,y) + \eta/4) \, du.$$

As above we can prove that

$$2k(f(x,y) - \eta/4) < \int_{x-k}^{x+k} f(u,y) \, du < 2k(f(x,y) + \eta/4).$$

From the above we obtain

$$2h \int_{x-k}^{x+k} (f(u,y) - \eta/4) \, du \ge 4hkf(x,y) - 2hk\eta = 4hk(f(x,y) - \eta/2)$$

and

So,

$$2h \int_{x-k}^{x+k} (f(u,y) + \eta/4) \, du \le 4hk(f(x,y) + \eta/2).$$
$$\left| \frac{1}{4hk} \int_{x-k}^{x+k} \int_{y-h}^{y+h} f(u,v) \, du \, dv - f(x,y) \right| \le \frac{\eta}{2} < \eta,$$

and the proof is finished.

Remark 4 Observe that in the above theorem the hypothesis that f is locally bounded can be replaced by the hypothesis that f is locally integrable. Then the proof is the same, but we needn't rely on Theorem 2 for the measurability of the function f.

References

- A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math., 659 (1978), Springer-Verlag.
- [2] A. M. Bruckner, Differentiation of integrals, Amer. Math. Monthly, 78 (1971), 1–51.
- [3] R. O. Davies, Separate approximate continuity implies measurability, Proc. Cambr. Philos. Soc., 73 (1973), 461–465.
- [4] Z. Grande, Sur les fonctions de deux variables équicontinues par rapport à une variable, Fund. Math., 111 (1981), 155–160.
- [5] Z. Grande Z., Sur la propriété de Baire d'une fonction de deux variables ponctuellement discontinue par rapport à une variable, Bull. Acad. Polon. Sci., Série Sci. Math., Astr. Phys., 25 (1977), 533–537.
- [6] J. S. Lipiński, Sur les fonctions approximativement continues, Colloq. Math., 5 (1958), 172–175.
- [7] J. S. Lipiński, On the measurability of functions of two variables, Bull. Acad. Polon. Sci., Série Sci. Math., Astr. Phys., 20 (1972), 131–135.
- [8] W. Ślezak, Concerning to Baire class of transformations on product spaces, Real Anal. Exch., 13, no. 2 (1987-88), 355–362.