Zbigniew Grande, Mathematics Department, Pedagogical University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland

ON EQUI-DERIVATIVES

Abstract

The notion of equi-derivatives is introduced and is compared with approximate equicontinuity. Moreover, it is proved that a function f of two variables whose sections f_{x} are equi-derivatives and sections f^{y} are measurable (derivatives) [have the Baire property] is measurable (a strong derivative) [has the Baire property].

1 Preliminaries and Notations

Let \mathbb{R} be the set of all reals and let $\mu_{e}(\mu)$ denote outer Lebesgue measure (Lebesgue measure) in \mathbb{R}. Let

$$
\begin{aligned}
& d_{u}(A, x)=\limsup _{h \rightarrow 0^{+}} \mu_{e}(A \cap(x-h, x+h)) / 2 h \\
& \left(d_{l}(A, x)=\liminf _{h \rightarrow 0^{+}} \mu_{e}(A \cap(x-h, x+h)) / 2 h\right)
\end{aligned}
$$

be the upper (lower) density of a set $A \subset \mathbb{R}$ at x. A point $x \in \mathbb{R}$ is called a density point of a set $A \subset \mathbb{R}$ if there exists a (Lebesgue) measurable set $B \subset A$ such that $d_{l}(B, x)=1$. The family $\mathcal{T}_{d}=\{A \subset \mathbb{R} ; A$ is measurable and every point $x \in A$ is a density point of $A\}$ is a topology called the density topology [1].

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called \mathcal{T}_{d}-continuous or approximately continuous at a point x if it is continuous at x as a function from $\left(\mathbb{R}, \mathcal{T}_{d}\right)$) into $\left(\mathbb{R}, \mathcal{T}_{e}\right)$, where \mathcal{T}_{e} denotes the Euclidean topology in \mathbb{R}.

A family of functions $f_{s}: \mathbb{R} \rightarrow \mathbb{R}, s \in S$, is called \mathcal{T}_{d}-equicontinuous or approximately equicontinuous at a point x if the functions $f_{s}, s \in S$, are

[^0]equicontinuous at x as the functions from $\left(\mathbb{R}, \mathcal{T}_{d}\right)$ into $\left(\mathbb{R}, \mathcal{T}_{e}\right)$, i.e. for every $\eta>0$ there is a set $B \in \mathcal{T}_{d}$ such that $x \in B$ and for all $t \in B$ and $s \in S$ the inequality $\left|f_{s}(t)-f_{s}(x)\right|<\eta$ holds.

A family of locally Henstock-Kurzweil integrable functions $f_{s}: \mathbb{R} \rightarrow \mathbb{R}$, $s \in S$, is called a family of equi-derivatives at a point $x \in \mathbb{R}$ if for every positive η there is a $r>0$ such that for every real h with $0<|h|<r$ and for every $s \in S$ we have

$$
\left|\frac{1}{h} \int_{x}^{x+h} f_{s}(t) d t-f_{s}(x)\right|<\eta
$$

2 Equi-derivatives and Approximate Equicontinuity

It is well known [1] that every locally bounded (Lebesgue) measurable function f which is approximately continuous at a point x is also a derivative at x, i.e.

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t=f(x)
$$

By a similar proof we obtain:
Remark 1 If locally integrable functions $f_{s}: \mathbb{R} \rightarrow \mathbb{R}, s \in S$, are approximately equicontinuous at x and if there are $M>0, r>0$ such that for all $s \in S$ and for all $t \in(x-r, x+r)$ the inequality $\left|f_{s}(t)\right|<M$ is true, then the functions $f_{s}, s \in S$, are equi-derivatives at x.

In the above remark the existence of the constant M is important. Indeed, if $\left(a_{n}\right)_{n}$ is a sequence of positive reals such that $a_{1}>a_{2}>\cdots>a_{n}>\cdots \searrow 0$ and

$$
d_{u}\left(\bigcup_{n=1}^{\infty}\left[a_{2 n}, a_{2 n-1}\right], 0\right)=0
$$

then let $f_{n}, n=1,2, \ldots$, be a continuous function such that $f_{n}(x)=0$ for $x \in \mathbb{R} \backslash\left[a_{2 n}, a_{2 n-1}\right]$ and $\int_{a_{2 n}}^{a_{2 n-1}} f_{n}(t) d t=n a_{2 n-1}$. Then the functions f_{n}, $n=1,2, \ldots$, are continuous, bounded and approximately equicontinuous, but they are not equi-derivatives at 0 .

From Lipiński's theorem in [6] it follows that if for all reals a, b with $a<b$ the functions $\min (b, \max (a, f))$ are derivatives, then f is approximately continuous. So, we obtain the following question:

Suppose that for all reals a, b with $a<b$ the functions $\min \left(b, \max \left(a, f_{s}\right)\right)$ are equi-derivatives. Must the functions $f_{s}, s \in S$, be approximately equicontinuous?

Example 1 shows that the answer is "no".
Example 1 For every positive integer n let $J_{n} \subset(1 /(n+1), 1 / n)$ be a closed interval such that $n(n+1)\left|J_{n}\right|>1-1 / n$, where $\left|J_{n}\right|$ denotes the length of J_{n}. Define the continuous function f_{n} to be 1 on $J_{n}, 0$ on $\mathbb{R} \backslash(1 /(n+1), 1 / n)$ and linear otherwise on \mathbb{R}. The functions $f_{n}, n=1,2, \ldots$, are continuous everywhere on \mathbb{R} and approximately equicontinuous (even equicontinuous) at all points $x \neq 0$. Since $d_{u}\left(\bigcup_{n} J_{n}, 0\right)=1 / 2$, the functions $f_{n}, n \geq 1$, are not approximately equicontinuous at 0 . To prove that for all $a<b$ the functions $\min \left(b, \max \left(a, f_{n}\right)\right), n \geq 1$, are equi-derivatives, it suffices to show that they are equi-derivatives at 0. Fix a, b such that $a<b$ and let $g_{n}=\min \left(b, \max \left(a, f_{n}\right)\right)$ for $n \geq 1$. Fix $\eta>0$. There is a positive integer k such that $1 / k<\eta$. Let $r=1 /(k+1)$ and let real h be such that $0<|h|<r$. If $a \geq 1$ or $b \leq 0$ or if $b>0, a<1$ and $h<0$, then for every $n \geq 1$ we have

$$
\left|\frac{1}{h} \int_{0}^{h} g_{n}(t) d t-g_{n}(0)\right|=\left|g_{n}(0)-g_{n}(0)\right|=0<\eta
$$

We proceed similarly in the case $a<1, b>0$ and $h>0$ for $n<1 / h-1$. If $a<1, b>0, h>0$ and $n \geq 1 / h-1$, then

$$
\int_{0}^{h} g_{n}(t) d t \leq \min (b, 1) /(n(n+1))+g_{n}(0) h \leq 1 /(n(n+1))+g_{n}(0) h
$$

whence

$$
\left|\frac{1}{h} \int_{0}^{h} g_{n}(t) d t-g_{n}(0)\right|<1 / n<\eta
$$

So, the functions $g_{n}, n \geq 1$, are equi-derivatives.
Remark 2 It is well known ([1, Th. 5.8]) that every lower semi-continuous locally bounded derivative is approximately continuous. Meanwhile the functions $f_{n}, n \geq 1$, from Example 1 are not approximately equicontinuous at 0 , although they are equi-derivatives bounded by a common constant and they are lower semi-equicontinuous at 0, i.e. for every $\eta>0$ there is a positive real r such that $f_{n}(0)-f_{n}(t)<\eta$ for all points $t \in(-r, r)$ and $n \geq 1$.

The next theorem gives some sufficient condition for the approximate equicontinuity of families of equi-derivatives.

Theorem 1 Let measurable functions $f_{s}: \mathbb{R} \rightarrow \mathbb{R}, s \in S$, be such that there is a $M>0$ with $\left|f_{s}\right|<M$ for all $s \in S$. Suppose that for every $\eta>0$ there
is an approximately continuous positive function $r: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}, s \in S$ and h with $0<|h|<r(x)$ the inequality

$$
\left|\frac{1}{h} \int_{x}^{x+h} f_{s}(t) d t-f_{s}(x)\right|<\eta
$$

holds. Then the functions $f_{s}, s \in S$, are approximately equicontinuous.
Proof. Suppose, to the contrary, that the functions $f_{s}, s \in S$, are not approximately equicontinuous at a point x. Then there is a $\eta>0$ such that for every $A \in \mathcal{T}_{d}$ containing x there are $s \in S$ and $t \in A$ such that $\left|f_{s}(t)-f_{s}(x)\right| \geq$ η. Let r be a positive function corresponding to $\eta / 4$ by hypothesis of our theorem and let $A \in \mathcal{T}_{d}$ be a set containing x such that $|r(t)-r(x)|<r(x) / 4$ for every $t \in A$. Assume that $I \subset(x-r(x) / 4, x+r(x) / 4)$ is an open interval containing x such that for every $t \in I$ we have $2 M|t-x| / r(x)<\eta / 8$ and $(\operatorname{Mr}(x) / 2)(1 /((r(x) / 2)-|t-x|)-2 / r(x))<\eta / 8$. There are an index $s \in S$ and a point $u \in A \cap I$ with $\left|f_{s}(u)-f_{s}(x)\right| \geq \eta$. We can assume that $u>x$, since in the case $u<x$ the proof is analogous. Observe that $x<u<h=$ $x+r(x) / 2<u+r(u)$ and

$$
\begin{aligned}
& \left|(1 /(h-u)) \int_{u}^{h} f_{s}(t) d t-(2 / r(x)) \int_{x}^{h} f_{s}(t) d t\right| \\
= & \left|(1 /(h-u)) \int_{u}^{h} f_{s}(t) d t-(2 / r(x)) \int_{u}^{h} f_{s}(t) d t-(2 / r(x)) \int_{x}^{u} f_{s}(t) d t\right| \\
\leq & \mid\left(1 /(h-u)-(2 / r(x))\left|\int_{u}^{h}\right| f_{s}(t)\left|d t+(2 / r(x)) \int_{x}^{u}\right| f_{s}(t) \mid d t\right. \\
\leq & (M r(x) / 2)(1 /((r(x) / 2)-|u-x|)-2 / r(x))+2 M|u-x| / r(x) \\
< & \frac{\eta}{8}+\frac{\eta}{8}=\frac{\eta}{4}
\end{aligned}
$$

So, we obtain

$$
\begin{aligned}
\left|f_{s}(u)-f_{s}(x)\right| \leq & \left|f_{s}(u)-(1 /(h-u)) \int_{u}^{h} f_{s}(t) d t\right| \\
& +\left|(1 /(h-u)) \int_{u}^{h} f_{s}(t) d t-(1 /(h-x)) \int_{x}^{h} f_{s}(t) d t\right| \\
& +\left|(1 /(h-x)) \int_{x}^{h} f_{s}(t) d t-f_{s}(x)\right|<\frac{\eta}{4}+\frac{\eta}{4}+\frac{\eta}{4}<\eta
\end{aligned}
$$

a contradiction.
We say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ has property SAC if for every $\eta>0$ there is an approximately continuous positive function $r: \mathbb{R} \rightarrow \mathbb{R}$ such that for every x and h with $0<|h|<r(x)$ we have

$$
\left|\frac{1}{h} \int_{x}^{x+h} f(t) d t-f(x)\right|<\eta
$$

It follows from Theorem 1 applied to the family containing one function that every function having the property SAC is also approximately continuous.

Problem 1 Does every approximately continuous function have property $S A C$?

Remark 3 There is a function $f: \mathbb{R} \rightarrow[0,1]$ having property $S A C$ whose set of discontinuities is of positive measure.

Proof. Let $C \subset(0,1)$ be a Cantor set of positive measure and let $\left(I_{n}\right)_{n}$ be an enumeration of all components of the set $(0,1) \backslash C$ such that $I_{n} \neq I_{m}$ for $n \neq m, n, m=1,2, \ldots$. In every interval $I_{n}, n \geq 1$, we find closed intervals $I_{n, 1}, I_{n, 2}=\left[c_{n}, d_{n}\right]$ having the same center as I_{n} and such that

$$
\max \left(\left(\left|I_{n, 1}\right| /\left|I_{n, 2}\right|\right),\left(\left|I_{n, 2}\right| /\left|I_{n}\right|\right)\right)<4^{-n}
$$

Let f be a function which is continuous at every point $x \in \mathbb{R} \backslash C$, equal to 0 at every $x \in \mathbb{R} \backslash \bigcup_{n} I_{n, 1}$ and such that $f\left(I_{n, 1}\right)=[0,1]$ for $n \geq 1$. Since f is discontinuous at every point $x \in C$, the set of discontinuities of f is of positive measure. Now we will prove that f has property SAC. Fix $\eta>0$. There is a positive integer k with $4^{-k}+2\left(4^{-2 k+1}\right) /\left(1-16^{k}\right)<\eta$. Let

$$
A=\bigcup_{n \leq k} I_{n, 2}
$$

Since for every $n>k$ the function f is uniformly continuous on the interval $I_{n, 2}$, there are positive reals $r_{n}<\left|I_{n, 1}\right|, n>k$, such that for all $x, y \in I_{n, 2}$ with $|x-y|<r_{n}$ we have $|f(x)-f(y)|<\eta$. Similarly there is a positive real $r_{0}<\min _{j \leq k}\left|I_{j, 1}\right| / 4$ such that for all $x, y \in A$ with $|x-y|<r_{0}$ we have $|f(x)-f(y)|<\eta$. Put $r_{n}=r_{0}$ for $n \leq k$ and $a=\min \left(r_{0}, \operatorname{dist}(A, C) / 4\right)$, where $\operatorname{dist}(A, C)=\inf \{|x-y| ; x \in A, y \in C\}$. Moreover, let $\operatorname{dist}(x, A)=$ $\inf \{|x-y| ; y \in A\}$ and let

$$
g(x)=a+\min (\operatorname{dist}(x, A), \operatorname{dist}(x, C)) / 4 \text { for } x \in I_{n} \backslash \operatorname{int}\left(I_{n, 2}\right), \quad n \geq 1
$$

where $\operatorname{int}(A)$ denotes the interior of A. For $x \in C \cup \bigcup_{n \leq k} I_{n}$ we put $r(x)=a$. For the definition of the function r on the intervals $\bar{I}_{n}, n>k$, we observe that $r\left(c_{n}\right)=r\left(d_{n}\right)$. Fix a positive integer $n>k$. If $r_{n} \geq g\left(c_{n}\right)$, then we put $r(x)=g\left(c_{n}\right)$ for $x \in I_{n, 2}$ and $r(x)=g(x)$ for $x \in I_{n} \backslash I_{n, 2}$. If $r_{n}<g\left(c_{n}\right)$, then we find a closed interval $I_{n, 3}$ having the same center as I_{n} and such that $I_{n, 2} \subset \operatorname{int}\left(I_{n, 3}\right)$ and $\left|I_{n, 3}\right| /\left|I_{n}\right|<4^{-n}$. Then we define $r(x)=r_{n}$ for $x \in I_{n, 2}, r(x)=g(x)$ for $x \in I_{n} \backslash \operatorname{int}\left(I_{n, 3}\right)$ and r is linear on the components of $I_{n, 3} \backslash \operatorname{int}\left(I_{n, 2}\right)$. The function r is already defined on the interval $(0,1)$. Observe $u=\lim _{x \rightarrow 0+} r(x)$ and $v=\lim _{x \rightarrow 1-r} r(x)$ exists and are positive. Put $r(x)=u$ for $x \leq 0$ and $r(x)=v$ for $x \geq 1$. The positive function r is defined on \mathbb{R}, and continuous at each point $x \in \mathbb{R} \backslash C$. Since the function g is continuous at each $x \in C, r(x)=g(x)$ for all $x \in C$ and every $x \in C$ is a density point of the set $\{x ; g(x)=r(x)\}$, the function r is approximately continuous at all points of the set C. If $x \in I_{n, 2}$ for some integer n, and h is such that $0<h<r(x)=r_{n}<\left|I_{n, 1}\right|$, then $[x, x+h] \subset I_{n}$ and $|f(t)-f(x)|<\eta$ for all $t \in[x, x+h]$. Consequently,

$$
\begin{aligned}
\left|\frac{1}{h} \int_{x}^{x+h} f(t) d t-f(x)\right| & =\left|\frac{1}{h} \int_{x}^{x+h}(f(t)-f(x)) d t\right| \\
& \leq \frac{1}{h} \int_{x}^{x+h}|f(t)-f(x)| d t<\frac{1}{h} h \eta=\eta
\end{aligned}
$$

If x is such that there is not an integer n for which $x \in I_{n, 2}$ and if h is such that $0<h<r(x)$, then we put $K=\left\{i ; I_{i} \subset[x, x+h]\right\}$ and let L be the set of such indexes ℓ which are not in K and for which $\operatorname{int}\left(I_{\ell}\right) \cap[x, x+h] \neq \emptyset$. Since $r(x)<\operatorname{dist}(A, C)$ for all x, we obtain $i>k$ for every $i \in K$. The set L contains at most two elements. From the construction of the function r we obtain that if $n \in L$ and $n \leq k$, then $f(t)=0$ for each $t \in[x, x+h] \cap I_{n}$. We have:

$$
\begin{aligned}
\left|\frac{1}{h} \int_{x}^{x+h} f(t) d t-f(x)\right| & =\left|\frac{1}{h} \int_{x}^{x+h} f(t) d t\right| \\
& =\left|\frac{1}{h}\left(\sum_{n \in K} \int_{I_{n}} f(t) d t+\sum_{l \in L} \int_{I_{l}} f(t) d t\right)\right| \\
& \leq \frac{1}{h}\left(\sum_{n \in K}\left|I_{n, 1}\right|+\sum_{l \in L}\left|I_{l, 1} \cap[x, x+h]\right|\right) \\
& <\frac{1}{h}\left(4^{-k-1} h+2\left(4^{-2 l+1} h\right) /\left(1-16^{-l}\right)\right)<\eta .
\end{aligned}
$$

If $-r(x)<h<0$ the proof is analogous. So, the function f has the property SAC and the proof is finished.

3 Equi-derivatives and Some Properties of Functions of Two Variables

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function. It is well known ([4]) that if all sections $f_{x}(t)=f(x, t), t, x \in \mathbb{R}$, are approximately equicontinuous and if all sections $f^{y}(t)=f(t, y), t, y \in \mathbb{R}$, are (Lebesgue) measurable [have the Baire property], then f is measurable [has the Baire property] as a function of two variables. These theorems are also true if we suppose that the sections $f_{x}, x \in \mathbb{R}$, are equi-derivatives.

Theorem 2 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a locally bounded function with all sections $f^{y}, y \in \mathbb{R}$, being measurable (having the Baire property). Suppose that there is a set $B \subset \mathbb{R}$ of measure zero (of the first category) such that the sections $f_{x}, x \in \mathbb{R} \backslash B$, are equi-derivatives at every point $y \in \mathbb{R}$. Then the function f is measurable (has the Baire property).

Proof. It suffices to prove that for every bounded closed interval $I \subset \mathbb{R}$ the restricted function $f \mid(I \times I)$ is measurable. Assume that $I=[a, b]$. Since the set $I \times I$ is compact, the function $f(I \times I)$ is bounded. Let $g(x, y)=f(x, y)$ for $x \in I \backslash B$ and and let $g(x, y)=0$ otherwise on $I \times I$. Observe that the restricted function $f \mid(I \times I)$ is measurable if and only if the function g is measurable. All sections $g_{x}, x \in I$, are derivatives. So, by Lipiński's Theorem 3 from [7], for the measurability of g it suffices to prove that for every $t \in I$ the function

$$
h(x)=\int_{a}^{t} g(x, y) d y, \quad x \in I
$$

is measurable. Fix $t \in I$. We will prove that the function h satisfies the hypothesis of Davies' Lemma from [3]. Let η be a positive real and let $C \subset I$ be a measurable set of positive measure. For every $y \in I$ there is a positive number $r(y)$ such that for every h with $0<|h|<r(y)$ and for every $x \in I \backslash B$ we have

$$
\left|\frac{1}{h} \int_{y}^{y+h} g(x, v) d v-g(x, y)\right|<\eta /(4(t-a))
$$

The family $\{(y-r(y), y+r(y)) ; y \in I\}$ is an open covering of the compact $[a, t]$. So, there are points

$$
a=t_{0}<t_{1}<\ldots<t_{n-1}<t_{n}=t
$$

such that for every $x \in I \backslash B$ and $i=1, \ldots, n$ we have

$$
\left|\left(1 /\left(t_{i}-t_{i-1}\right)\right) \int_{t_{i-1}}^{t_{i}} g(x, y) d y-g\left(x, t_{i-1}\right)\right|<\eta /(4(t-a))
$$

Since all sections $g^{t_{i}}, i=0,1, \ldots, n$, are measurable, there is a density point $u \in C$ at which all sections $g^{t_{i}}, i=0,1, \ldots, n$, are approximately continuous. Thus there is a measurable set $E \subset C$ of positive measure such that $\mid g\left(v, t_{i}\right)-$ $g\left(w, t_{i}\right) \mid<\eta /(2 n)$ for all $v, w \in E$ and $i=0, \ldots, n$. Fix $v, w \in E$. Then

$$
\begin{aligned}
\mid h(v)- & h(w)\left|=\left|\int_{a}^{t} g(v, y) d y-\int_{a}^{t} g(w, y) d y\right|\right. \\
= & \left|\int_{a}^{t}(g(v, y)-g(w, y)) d y\right|=\left|\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}(g(v, y)-g(w, y)) d y\right| \\
= & \mid \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left(g(v, y)-g\left(v, t_{i-1}\right)\right) d y+\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left(g\left(v, t_{i-1}\right)-g\left(w, t_{i-1}\right)\right) d y \\
& +\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left(g\left(w, t_{i-1}\right)-g(w, y)\right) d y \mid \\
= & \mid \sum_{i=1}^{n}\left(\int_{t_{i-1}}^{t_{i}} g(v, y) d y-g\left(v, t_{i-1}\right)\left(t_{i}-t_{i-1}\right)\right) \\
& +\sum_{i=1}^{n}\left(g\left(v, t_{i-1}\right)-g\left(w, t_{i-1}\right)\right)\left(t_{i}-t_{i-1}\right) \\
& +\sum_{i=1}^{n}\left(g\left(w, t_{i-1}\right)\left(t_{i}-t_{i-1}\right)-\int_{t_{i-1}}^{t_{i}} g(w, y) d y\right) \mid \\
\leq & \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)\left[\left|\left(1 /\left(t_{i}-t_{i-1}\right)\right) \int_{t_{i-1}}^{t_{i}} g(v, y) d y-g\left(v, t_{i-1}\right)\right|\right. \\
& \left.+\left|\left(1 /\left(t_{i}-t_{i-1}\right)\right) \int_{t_{i-1}}^{t_{i}} g(w, y) d y-g\left(w, t_{i-1}\right)\right|\right]+n \eta /(2 n) \\
\leq & \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)(\eta /(4(t-a))+\eta /(4(t-a)))+\eta / 2=\eta
\end{aligned}
$$

So, $\operatorname{osc}(h) \leq \eta$ on the set E and by Davies' lemma from [3] the function h is measurable. This completes the proof of the first part of our theorem for the measurability. The proof of the second part is similar. Instead of Lipiński's
theorem from [7] we apply an analogous theorem for the property of Baire from [4] and instead of Davies' lemma from [3] we apply an analogous theorem for the Baire property from [5].

In [7] Slezak proved that if all sections $f_{x}, x \in \mathbb{R}$, are approximately continuous and if all sections $f^{y}, y \in \mathbb{R}$, are of Baire class $\alpha \geq 1$, then f is also of Baire class α. So, we obtain the following:

Problem 2 Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ be a function such that all sections f_{x} are equiderivatives and all sections f^{y} are of Baire class α. Is the function f of Baire class α ?

By a standard proof we observe that if all sections $f_{x}, x \in \mathbb{R}$, are approximately equicontinuous and if all sections $f^{y}, y \in \mathbb{R}$, are approximately equicontinuous, then f is $\left(\mathcal{T}_{d} \times \mathcal{T}_{d}\right)$-continuous as a function of two variables. For the equi-derivatives we obtain the following:

Theorem 3 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a locally bounded function such that all its sections $f_{x}, x \in \mathbb{R}$, are equi-derivatives at every point $y \in \mathbb{R}$ and all its sections $f^{y}, y \in \mathbb{R}$, are derivatives. Then f is a strong derivative at every point $(x, y) \in \mathbb{R}^{2}$, i.e. for every (x, y) the equality

$$
\lim _{h, k \rightarrow 0}\left(\int_{x-h}^{x+h} \int_{y-k}^{y+k} f(u, v) d u d v\right) /(4 h k)=f(x, y)
$$

Proof. Fix a point $(x, y) \in \mathbb{R}^{2}$ and a $\eta>0$. Since all sections $f_{x}, x \in \mathbb{R}$, are equi-derivatives at the point y, there is a $r>0$ such that for every h with $0<|h|<r$ and for every $u \in \mathbb{R}$ we have

$$
\left|\frac{1}{h} \int_{y}^{y+h} f(u, v) d v-f(u, y)\right|<\frac{\eta}{4}
$$

By the hypothesis the section f^{y} is a derivative at the point x. Thus there is a $s>0$ such that for every k with $0<|k|<s$ the inequality

$$
\left|\frac{1}{k} \int_{x}^{x+k} f(u, y) d u-f(x, y)\right|<\frac{\eta}{4}
$$

is true. Fix h, k such that $0<h<r$ and $0<k<s$. Then for every $u \in(x-s, x+s)$ we obtain:

$$
\begin{aligned}
& \left|\frac{1}{2 h} \int_{y-h}^{y+h} f(u, v) d v-f(u, y)\right| \\
\leq & \left|\frac{1}{2 h} \int_{y-h}^{y} f(u, v) d v-f(u, y) / 2\right|+\left|\frac{1}{2 h} \int_{y}^{y+h} f(u, v) d v-f(u, y) / 2\right| \\
= & \frac{1}{2}\left[\left|\frac{1}{-h} \int_{y}^{y-h} f(u, v) d v-f(u, y)\right|+\left|\frac{1}{h} \int_{y}^{y+h} f(u, v) d v-f(u, y)\right|\right] \\
< & \frac{1}{2}\left(\frac{\eta}{4}+\frac{\eta}{4}\right)=\frac{\eta}{4} .
\end{aligned}
$$

Since f is locally bounded, we can assume that it is bounded on the set $D=[x-k, x+k] \times[y-h, y+h]$. By Theorem 2 the function f is measurable, so it is integrable on the rectangle D. For $u \in(x-s, x+s)$ we have

$$
2 h(f(u, y)-\eta / 4)<\int_{y-h}^{y+h} f(u, v) d v<2 h(f(u, y)+\eta / 4)
$$

Consequently,

$$
\begin{aligned}
2 h \int_{x-k}^{x+k}(f(u, y)-\eta / 4) d u & \leq \int_{x-k}^{x+k} \int_{y-h}^{y+h} f(u, v) d v d u \\
& \leq 2 h \int_{x-k}^{x+k}(f(u, y)+\eta / 4) d u
\end{aligned}
$$

As above we can prove that

$$
2 k(f(x, y)-\eta / 4)<\int_{x-k}^{x+k} f(u, y) d u<2 k(f(x, y)+\eta / 4) .
$$

From the above we obtain

$$
2 h \int_{x-k}^{x+k}(f(u, y)-\eta / 4) d u \geq 4 h k f(x, y)-2 h k \eta=4 h k(f(x, y)-\eta / 2)
$$

and

$$
2 h \int_{x-k}^{x+k}(f(u, y)+\eta / 4) d u \leq 4 h k(f(x, y)+\eta / 2)
$$

So,

$$
\left|\frac{1}{4 h k} \int_{x-k}^{x+k} \int_{y-h}^{y+h} f(u, v) d u d v-f(x, y)\right| \leq \frac{\eta}{2}<\eta
$$

and the proof is finished.

Remark 4 Observe that in the above theorem the hypothesis that f is locally bounded can be replaced by the hypothesis that f is locally integrable. Then the proof is the same, but we needn't rely on Theorem 2 for the measurability of the function f.

References

[1] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math., 659 (1978), Springer-Verlag.
[2] A. M. Bruckner, Differentiation of integrals, Amer. Math. Monthly, 78 (1971), 1-51.
[3] R. O. Davies, Separate approximate continuity implies measurability, Proc. Cambr. Philos. Soc., 73 (1973), 461-465.
[4] Z. Grande, Sur les fonctions de deux variables équicontinues par rapport à une variable, Fund. Math., 111 (1981), 155-160.
[5] Z. Grande Z., Sur la propriété de Baire d'une fonction de deux variables ponctuellement discontinue par rapport à une variable, Bull. Acad. Polon. Sci., Série Sci. Math., Astr. Phys., 25 (1977), 533-537.
[6] J. S. Lipiński, Sur les fonctions approximativement continues, Colloq. Math., 5 (1958), 172-175.
[7] J. S. Lipiński, On the measurability of functions of two variables, Bull. Acad. Polon. Sci., Série Sci. Math., Astr. Phys., 20 (1972), 131-135.
[8] W. Śl ezak, Concerning to Baire class of transformations on product spaces, Real Anal. Exch., 13, no. 2 (1987-88), 355-362.

[^0]: Key Words: approximate equicontinuity , equi-derivatives, density topology, product measurability, Baire property, strong derivative

 Mathematical Reviews subject classification: Primary: 26A24,26B15, 28A35, 54C30
 Received by the editors September 20, 1995

