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ON EQUI-DERIVATIVES

Abstract

The notion of equi-derivatives is introduced and is compared with
approximate equicontinuity. Moreover, it is proved that a function f
of two variables whose sections fx are equi-derivatives and sections fy

are measurable (derivatives) [have the Baire property] is measurable
(a strong derivative) [has the Baire property].

1 Preliminaries and Notations

Let R be the set of all reals and let µe (µ) denote outer Lebesgue measure
(Lebesgue measure) in R. Let

du(A, x) = lim sup
h→0+

µe(A ∩ (x− h, x+ h))/2h

(dl(A, x) = lim inf
h→0+

µe(A ∩ (x− h, x+ h))/2h)

be the upper (lower) density of a set A ⊂ R at x. A point x ∈ R is called
a density point of a set A ⊂ R if there exists a (Lebesgue) measurable set
B ⊂ A such that dl(B, x) = 1. The family Td = {A ⊂ R; A is measurable
and every point x ∈ A is a density point of A} is a topology called the density
topology [1].

A function f : R→ R is called Td-continuous or approximately continuous
at a point x if it is continuous at x as a function from (R, Td)) into (R, Te),
where Te denotes the Euclidean topology in R.

A family of functions fs : R → R, s ∈ S, is called Td-equicontinuous or
approximately equicontinuous at a point x if the functions fs, s ∈ S, are
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equicontinuous at x as the functions from (R, Td) into (R, Te), i.e. for every
η > 0 there is a set B ∈ Td such that x ∈ B and for all t ∈ B and s ∈ S the
inequality |fs(t)− fs(x)| < η holds.

A family of locally Henstock-Kurzweil integrable functions fs : R → R,
s ∈ S, is called a family of equi-derivatives at a point x ∈ R if for every
positive η there is a r > 0 such that for every real h with 0 < |h| < r and for
every s ∈ S we have ∣∣∣∣∣ 1h

∫ x+h

x

fs(t) dt− fs(x)

∣∣∣∣∣ < η.

2 Equi-derivatives and Approximate Equicontinuity

It is well known [1] that every locally bounded (Lebesgue) measurable function
f which is approximately continuous at a point x is also a derivative at x, i.e.

lim
h→0

1

h

∫ x+h

x

f(t) dt = f(x).

By a similar proof we obtain:

Remark 1 If locally integrable functions fs : R → R, s ∈ S, are approxi-
mately equicontinuous at x and if there are M > 0, r > 0 such that for all
s ∈ S and for all t ∈ (x− r, x+ r) the inequality |fs(t)| < M is true, then the
functions fs, s ∈ S, are equi-derivatives at x.

In the above remark the existence of the constant M is important. Indeed,
if (an)n is a sequence of positive reals such that a1 > a2 > · · · > an > · · · ↘ 0
and

du

( ∞⋃
n=1

[a2n, a2n−1], 0

)
= 0,

then let fn, n = 1, 2, . . ., be a continuous function such that fn(x) = 0 for
x ∈ R \ [a2n, a2n−1] and

∫ a2n−1

a2n
fn(t) dt = na2n−1. Then the functions fn,

n = 1, 2, . . ., are continuous, bounded and approximately equicontinuous, but
they are not equi-derivatives at 0.

From Lipiński’s theorem in [6] it follows that if for all reals a, b with a < b
the functions min(b,max(a, f)) are derivatives, then f is approximately con-
tinuous. So, we obtain the following question:

Suppose that for all reals a, b with a < b the functions min(b,max(a, fs))
are equi-derivatives. Must the functions fs, s ∈ S, be approximately equicon-
tinuous?
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Example 1 shows that the answer is “no”.

Example 1 For every positive integer n let Jn ⊂ (1/(n+ 1), 1/n) be a closed
interval such that n(n+ 1)|Jn| > 1− 1/n, where |Jn| denotes the length of Jn.
Define the continuous function fn to be 1 on Jn, 0 on R \ (1/(n + 1), 1/n)
and linear otherwise on R. The functions fn, n = 1, 2, . . ., are continu-
ous everywhere on R and approximately equicontinuous (even equicontinuous)
at all points x 6= 0. Since du(

⋃
n Jn, 0) = 1/2, the functions fn, n ≥ 1,

are not approximately equicontinuous at 0. To prove that for all a < b
the functions min(b,max(a, fn)), n ≥ 1, are equi-derivatives, it suffices to
show that they are equi-derivatives at 0. Fix a, b such that a < b and let
gn = min(b,max(a, fn)) for n ≥ 1. Fix η > 0. There is a positive integer k
such that 1/k < η. Let r = 1/(k + 1) and let real h be such that 0 < |h| < r.
If a ≥ 1 or b ≤ 0 or if b > 0, a < 1 and h < 0, then for every n ≥ 1 we
have ∣∣∣∣∣ 1h

∫ h

0

gn(t) dt− gn(0)

∣∣∣∣∣ = |gn(0)− gn(0)| = 0 < η.

We proceed similarly in the case a < 1, b > 0 and h > 0 for n < 1/h− 1.
If a < 1, b > 0, h > 0 and n ≥ 1/h− 1, then∫ h

0

gn(t) dt ≤ min(b, 1)/(n(n+ 1)) + gn(0)h ≤ 1/(n(n+ 1)) + gn(0)h,

whence ∣∣∣∣∣ 1h
∫ h

0

gn(t) dt− gn(0)

∣∣∣∣∣ < 1/n < η.

So, the functions gn, n ≥ 1, are equi-derivatives.

Remark 2 It is well known ([1, Th. 5.8]) that every lower semi-continuous
locally bounded derivative is approximately continuous. Meanwhile the func-
tions fn, n ≥ 1, from Example 1 are not approximately equicontinuous at 0,
although they are equi-derivatives bounded by a common constant and they are
lower semi-equicontinuous at 0, i.e. for every η > 0 there is a positive real r
such that fn(0)− fn(t) < η for all points t ∈ (−r, r) and n ≥ 1.

The next theorem gives some sufficient condition for the approximate
equicontinuity of families of equi-derivatives.

Theorem 1 Let measurable functions fs : R → R, s ∈ S, be such that there
is a M > 0 with |fs| < M for all s ∈ S. Suppose that for every η > 0 there
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is an approximately continuous positive function r : R → R such that for all
x ∈ R, s ∈ S and h with 0 < |h| < r(x) the inequality∣∣∣∣∣ 1h

∫ x+h

x

fs(t) dt− fs(x)

∣∣∣∣∣ < η

holds. Then the functions fs, s ∈ S, are approximately equicontinuous.

Proof. Suppose, to the contrary, that the functions fs, s ∈ S, are not
approximately equicontinuous at a point x. Then there is a η > 0 such that for
every A ∈ Td containing x there are s ∈ S and t ∈ A such that |fs(t)−fs(x)| ≥
η. Let r be a positive function corresponding to η/4 by hypothesis of our
theorem and let A ∈ Td be a set containing x such that |r(t)− r(x)| < r(x)/4
for every t ∈ A. Assume that I ⊂ (x− r(x)/4, x+ r(x)/4) is an open interval
containing x such that for every t ∈ I we have 2M |t − x|/r(x) < η/8 and
(Mr(x)/2)(1/((r(x)/2) − |t − x|) − 2/r(x)) < η/8. There are an index s ∈ S
and a point u ∈ A ∩ I with |fs(u) − fs(x)| ≥ η. We can assume that u > x,
since in the case u < x the proof is analogous. Observe that x < u < h =
x+ r(x)/2 < u+ r(u) and∣∣∣(1/(h− u))

∫ h

u

fs(t) dt− (2/r(x))

∫ h

x

fs(t) dt
∣∣∣

=

∣∣∣∣∣(1/(h− u))

∫ h

u

fs(t) dt− (2/r(x))

∫ h

u

fs(t) dt− (2/r(x))

∫ u

x

fs(t) dt

∣∣∣∣∣
≤|(1/(h− u)− (2/r(x))|

∫ h

u

|fs(t)| dt+ (2/r(x))

∫ u

x

|fs(t)| dt

≤(Mr(x)/2)(1/((r(x)/2)− |u− x|)− 2/r(x)) + 2M |u− x|/r(x)

<
η

8
+
η

8
=
η

4
.

So, we obtain

|fs(u)− fs(x)| ≤

∣∣∣∣∣fs(u)− (1/(h− u))

∫ h

u

fs(t) dt

∣∣∣∣∣
+

∣∣∣∣∣(1/(h− u))

∫ h

u

fs(t) dt− (1/(h− x))

∫ h

x

fs(t) dt

∣∣∣∣∣
+

∣∣∣∣∣(1/(h− x))

∫ h

x

fs(t) dt− fs(x)

∣∣∣∣∣ < η

4
+
η

4
+
η

4
< η,
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a contradiction. �

We say that a function f : R → R has property SAC if for every η > 0
there is an approximately continuous positive function r : R → R such that
for every x and h with 0 < |h| < r(x) we have∣∣∣∣∣ 1h

∫ x+h

x

f(t) dt− f(x)

∣∣∣∣∣ < η.

It follows from Theorem 1 applied to the family containing one function
that every function having the property SAC is also approximately continuous.

Problem 1 Does every approximately continuous function have property
SAC?

Remark 3 There is a function f : R→ [0, 1] having property SAC whose set
of discontinuities is of positive measure.

Proof. Let C ⊂ (0, 1) be a Cantor set of positive measure and let (In)n be
an enumeration of all components of the set (0, 1) \ C such that In 6= Im for
n 6= m, n,m = 1, 2, . . .. In every interval In, n ≥ 1, we find closed intervals
In,1, In,2 = [cn, dn] having the same center as In and such that

max((|In,1|/|In,2|), (|In,2|/|In|)) < 4−n.

Let f be a function which is continuous at every point x ∈ R \ C, equal to 0
at every x ∈ R \

⋃
n In,1 and such that f(In,1) = [0, 1] for n ≥ 1. Since f is

discontinuous at every point x ∈ C, the set of discontinuities of f is of positive
measure. Now we will prove that f has property SAC. Fix η > 0. There is a
positive integer k with 4−k + 2(4−2k+1)/(1− 16k) < η. Let

A =
⋃
n≤k

In,2.

Since for every n > k the function f is uniformly continuous on the interval
In,2, there are positive reals rn < |In,1|, n > k, such that for all x, y ∈ In,2
with |x − y| < rn we have |f(x) − f(y)| < η. Similarly there is a positive
real r0 < minj≤k |Ij,1|/4 such that for all x, y ∈ A with |x − y| < r0 we have
|f(x) − f(y)| < η. Put rn = r0 for n ≤ k and a = min(r0,dist(A,C)/4),
where dist(A,C) = inf{|x − y|;x ∈ A, y ∈ C}. Moreover, let dist(x,A) =
inf{|x− y|; y ∈ A} and let

g(x) = a+ min(dist(x,A),dist(x,C))/4 for x ∈ In \ int(In,2), n ≥ 1,
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where int(A) denotes the interior of A. For x ∈ C ∪
⋃

n≤k In we put r(x) = a.
For the definition of the function r on the intervals In, n > k, we observe
that r(cn) = r(dn). Fix a positive integer n > k. If rn ≥ g(cn), then we put
r(x) = g(cn) for x ∈ In,2 and r(x) = g(x) for x ∈ In \ In,2. If rn < g(cn),
then we find a closed interval In,3 having the same center as In and such
that In,2 ⊂ int(In,3) and |In,3|/|In| < 4−n. Then we define r(x) = rn for
x ∈ In,2, r(x) = g(x) for x ∈ In \ int(In,3) and r is linear on the components of
In,3\int(In,2). The function r is already defined on the interval (0, 1). Observe
u = limx→0+ r(x) and v = limx→1− r(x) exists and are positive. Put r(x) = u
for x ≤ 0 and r(x) = v for x ≥ 1. The positive function r is defined on R,
and continuous at each point x ∈ R \ C. Since the function g is continuous
at each x ∈ C, r(x) = g(x) for all x ∈ C and every x ∈ C is a density
point of the set {x; g(x) = r(x)}, the function r is approximately continuous
at all points of the set C. If x ∈ In,2 for some integer n, and h is such that
0 < h < r(x) = rn < |In,1|, then [x, x + h] ⊂ In and |f(t) − f(x)| < η for all
t ∈ [x, x+ h]. Consequently,∣∣∣∣∣ 1h

∫ x+h

x

f(t) dt− f(x)

∣∣∣∣∣ =

∣∣∣∣∣ 1h
∫ x+h

x

(f(t)− f(x)) dt

∣∣∣∣∣
≤ 1

h

∫ x+h

x

|f(t)− f(x)| dt < 1

h
hη = η.

If x is such that there is not an integer n for which x ∈ In,2 and if h is such
that 0 < h < r(x), then we put K = {i; Ii ⊂ [x, x + h]} and let L be the set
of such indexes ` which are not in K and for which int(I`) ∩ [x, x + h] 6= ∅.
Since r(x) < dist(A,C) for all x, we obtain i > k for every i ∈ K. The set
L contains at most two elements. From the construction of the function r we
obtain that if n ∈ L and n ≤ k, then f(t) = 0 for each t ∈ [x, x+ h] ∩ In. We
have:∣∣∣∣∣ 1h

∫ x+h

x

f(t) dt− f(x)

∣∣∣∣∣ =

∣∣∣∣∣ 1h
∫ x+h

x

f(t) dt

∣∣∣∣∣
=

∣∣∣∣∣ 1h
(∑

n∈K

∫
In

f(t) dt+
∑
l∈L

∫
Il

f(t) dt

)∣∣∣∣∣
≤ 1

h

(∑
n∈K
|In,1|+

∑
l∈L

|Il,1 ∩ [x, x+ h]|

)

<
1

h
(4−k−1h+ 2(4−2l+1h)/(1− 16−l)) < η.
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If −r(x) < h < 0 the proof is analogous. So, the function f has the property
SAC and the proof is finished. �

3 Equi-derivatives and Some Properties of Functions of
Two Variables

Let f : R2 → R be a function. It is well known ([4]) that if all sections
fx(t) = f(x, t), t, x ∈ R, are approximately equicontinuous and if all sections
fy(t) = f(t, y), t, y ∈ R, are (Lebesgue) measurable [have the Baire property],
then f is measurable [has the Baire property] as a function of two variables.
These theorems are also true if we suppose that the sections fx, x ∈ R, are
equi-derivatives.

Theorem 2 Let f : R2 → R be a locally bounded function with all sections
fy, y ∈ R, being measurable (having the Baire property). Suppose that there
is a set B ⊂ R of measure zero (of the first category) such that the sections
fx, x ∈ R \B, are equi-derivatives at every point y ∈ R. Then the function f
is measurable (has the Baire property).

Proof. It suffices to prove that for every bounded closed interval I ⊂ R the
restricted function f |(I × I) is measurable. Assume that I = [a, b]. Since the
set I×I is compact, the function f |(I×I) is bounded. Let g(x, y) = f(x, y) for
x ∈ I\B and and let g(x, y) = 0 otherwise on I×I. Observe that the restricted
function f |(I × I) is measurable if and only if the function g is measurable.
All sections gx, x ∈ I, are derivatives. So, by Lipiński’s Theorem 3 from [7],
for the measurability of g it suffices to prove that for every t ∈ I the function

h(x) =

∫ t

a

g(x, y) dy, x ∈ I,

is measurable. Fix t ∈ I. We will prove that the function h satisfies the
hypothesis of Davies’ Lemma from [3]. Let η be a positive real and let C ⊂ I
be a measurable set of positive measure. For every y ∈ I there is a positive
number r(y) such that for every h with 0 < |h| < r(y) and for every x ∈ I \B
we have ∣∣∣∣∣ 1h

∫ y+h

y

g(x, v) dv − g(x, y)

∣∣∣∣∣ < η/(4(t− a)).

The family {(y − r(y), y + r(y)); y ∈ I} is an open covering of the compact
[a, t]. So, there are points

a = t0 < t1 < . . . < tn−1 < tn = t
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such that for every x ∈ I \B and i = 1, . . . , n we have∣∣∣∣∣(1/(ti − ti−1))

∫ ti

ti−1

g(x, y) dy − g(x, ti−1)

∣∣∣∣∣ < η/(4(t− a)).

Since all sections gti , i = 0, 1, . . . , n, are measurable, there is a density point
u ∈ C at which all sections gti , i = 0, 1, . . . , n, are approximately continuous.
Thus there is a measurable set E ⊂ C of positive measure such that |g(v, ti)−
g(w, ti)| < η/(2n) for all v, w ∈ E and i = 0, . . . , n. Fix v, w ∈ E. Then

|h(v)−h(w)| =
∣∣∣∣∫ t

a

g(v, y) dy −
∫ t

a

g(w, y) dy

∣∣∣∣
=

∣∣∣∣∫ t

a

(g(v, y)− g(w, y)) dy

∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

∫ ti

ti−1

(g(v, y)− g(w, y)) dy

∣∣∣∣∣
=

∣∣∣∣ n∑
i=1

∫ ti

ti−1

(g(v, y)−g(v, ti−1)) dy +

n∑
i=1

∫ ti

ti−1

(g(v, ti−1)−g(w, ti−1)) dy

+

n∑
i=1

∫ ti

ti−1

(g(w, ti−1)− g(w, y)) dy

∣∣∣∣
=

∣∣∣∣ n∑
i=1

(∫ ti

ti−1

g(v, y) dy − g(v, ti−1)(ti − ti−1)

)

+

n∑
i=1

(g(v, ti−1)− g(w, ti−1))(ti − ti−1)

+

n∑
i=1

(g(w, ti−1)(ti − ti−1)−
∫ ti

ti−1

g(w, y) dy)

∣∣∣∣
≤

n∑
i=1

(ti − ti−1)

[∣∣∣∣(1/(ti − ti−1))

∫ ti

ti−1

g(v, y) dy − g(v, ti−1)

∣∣∣∣
+

∣∣∣∣(1/(ti − ti−1))

∫ ti

ti−1

g(w, y) dy − g(w, ti−1)

∣∣∣∣]+ nη/(2n)

≤
n∑

i=1

(ti − ti−1)(η/(4(t− a)) + η/(4(t− a))) + η/2 = η.

So, osc(h) ≤ η on the set E and by Davies’ lemma from [3] the function h is
measurable. This completes the proof of the first part of our theorem for the
measurability. The proof of the second part is similar. Instead of Lipiński’s
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theorem from [7] we apply an analogous theorem for the property of Baire from
[4] and instead of Davies’ lemma from [3] we apply an analogous theorem for
the Baire property from [5]. �

In [7] Ślezak proved that if all sections fx, x ∈ R, are approximately
continuous and if all sections fy, y ∈ R, are of Baire class α ≥ 1, then f is
also of Baire class α. So, we obtain the following:

Problem 2 Let f : R2 7→ R be a function such that all sections fx are equi-
derivatives and all sections fy are of Baire class α. Is the function f of Baire
class α?

By a standard proof we observe that if all sections fx, x ∈ R, are ap-
proximately equicontinuous and if all sections fy, y ∈ R, are approximately
equicontinuous, then f is (Td × Td)-continuous as a function of two variables.
For the equi-derivatives we obtain the following:

Theorem 3 Let f : R2 → R be a locally bounded function such that all its
sections fx, x ∈ R, are equi-derivatives at every point y ∈ R and all its
sections fy, y ∈ R, are derivatives. Then f is a strong derivative at every
point (x, y) ∈ R2, i.e. for every (x, y) the equality

lim
h,k→0

(∫ x+h

x−h

∫ y+k

y−k
f(u, v) du dv

)
/(4hk) = f(x, y).

Proof. Fix a point (x, y) ∈ R2 and a η > 0. Since all sections fx, x ∈ R,
are equi-derivatives at the point y, there is a r > 0 such that for every h with
0 < |h| < r and for every u ∈ R we have

∣∣∣∣∣ 1h
∫ y+h

y

f(u, v) dv − f(u, y)

∣∣∣∣∣ < η

4
.

By the hypothesis the section fy is a derivative at the point x. Thus there is
a s > 0 such that for every k with 0 < |k| < s the inequality

∣∣∣∣∣1k
∫ x+k

x

f(u, y) du− f(x, y)

∣∣∣∣∣ < η

4
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is true. Fix h, k such that 0 < h < r and 0 < k < s. Then for every
u ∈ (x− s, x+ s) we obtain:∣∣∣∣ 1

2h

∫ y+h

y−h
f(u, v) dv − f(u, y)

∣∣∣∣
≤
∣∣∣∣ 1

2h

∫ y

y−h
f(u, v) dv − f(u, y)/2

∣∣∣∣+

∣∣∣∣ 1

2h

∫ y+h

y

f(u, v) dv − f(u, y)/2

∣∣∣∣
=

1

2

[∣∣∣∣ 1

−h

∫ y−h

y

f(u, v) dv − f(u, y)

∣∣∣∣+

∣∣∣∣ 1h
∫ y+h

y

f(u, v) dv − f(u, y)

∣∣∣∣]
<

1

2

(η
4

+
η

4

)
=
η

4
.

Since f is locally bounded, we can assume that it is bounded on the set
D = [x−k, x+k]× [y−h, y+h]. By Theorem 2 the function f is measurable,
so it is integrable on the rectangle D. For u ∈ (x− s, x+ s) we have

2h(f(u, y)− η/4) <

∫ y+h

y−h
f(u, v) dv < 2h(f(u, y) + η/4).

Consequently,

2h

∫ x+k

x−k
(f(u, y)− η/4) du ≤

∫ x+k

x−k

∫ y+h

y−h
f(u, v) dv du

≤ 2h

∫ x+k

x−k
(f(u, y) + η/4) du.

As above we can prove that

2k(f(x, y)− η/4) <

∫ x+k

x−k
f(u, y) du < 2k(f(x, y) + η/4).

From the above we obtain

2h

∫ x+k

x−k
(f(u, y)− η/4) du ≥ 4hkf(x, y)− 2hkη = 4hk(f(x, y)− η/2)

and

2h

∫ x+k

x−k
(f(u, y) + η/4) du ≤ 4hk(f(x, y) + η/2).

So, ∣∣∣∣∣ 1

4hk

∫ x+k

x−k

∫ y+h

y−h
f(u, v) du dv − f(x, y)

∣∣∣∣∣ ≤ η

2
< η,

and the proof is finished. �
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Remark 4 Observe that in the above theorem the hypothesis that f is locally
bounded can be replaced by the hypothesis that f is locally integrable. Then the
proof is the same, but we needn’t rely on Theorem 2 for the measurability of
the function f .
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[7] J. S. Lipiński, On the measurability of functions of two variables, Bull.
Acad. Polon. Sci., Série Sci. Math., Astr. Phys., 20 (1972), 131–135.
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