Aleksander Maliszewski, Department of Mathematics, Pedagogical University, Arciszewskiego 22, 76-200 Słupsk, Poland, e-mail:
wspb05@@pltumk11.bitnet

ON PRODUCTS OF A.E. CONTINUOUS DERIVATIVES

Abstract

In this paper I examine products of a.e. continuous derivatives. Denote by \mathcal{N}_{u} the set of all x for which $u(x) \neq 0$. First I prove that if u is a (bounded and/or non-negative) function with \mathcal{N}_{u} isolated, then u can be written as the product of two (bounded and/or non-negative) a.e. continuous derivatives. Next I show that if u is a.e. continuous and \mathcal{N}_{u} is a union of an isolated set and one with a null closure, then u can be written as the product of two a.e. continuous derivatives. I construct an example that we cannot require the factors be bounded in case u is bounded. Using this example I construct a bounded non-negative a.e. continuous function, v, such that \mathcal{N}_{v} is the union of two isolated sets (so v is a Baire one star function and is the product of two bounded non-negative derivatives) and which cannot be written as the product of two a.e. continuous derivatives.

It is well-known that the class of derivatives is not closed with respect to multiplication (cf., e.g., [15] and [5]). So it is a natural problem to characterize the family of all products of derivatives. There are several papers devoted to this problem, e.g., [1], [12], [3], [10] and [8]. (See also survey papers [5] and [4].) However, no final characterization has been found yet. It is also interesting whether each bounded product of derivatives is a product of bounded derivatives [11, p. 57].

In this paper I consider analogous problems concerning products of a.e. continuous derivatives. As in [3], I focus on functions which vanish a.e.

First we need some notation. The real line $(-\infty,+\infty)$ we denote by \mathbb{R}, the set of integers by \mathbb{Z} and the set of positive integers by \mathbb{N}. We consider

[^0]only functions from \mathbb{R} into \mathbb{R}. The phrase almost everywhere (a.e.) refers to Lebesgue measure on \mathbb{R}. For every set $A \subset \mathbb{R}$ let cl A be its closure, χ_{A} its characteristic function and $|A|$ its outer Lebesgue measure. Symbols like $\int_{a}^{b} f$ or $\int_{A} f$ will always mean the corresponding Lebesgue integral. If the sets A and B are non-empty, then we define $\varrho(A, B)=\inf \{|x-t|: x \in A, t \in B\}$.

Let f be a function. We say that f is:

- a Baire one function, if for each open set $U \subset \mathbb{R}$, the pre-image $f^{-1}(U)$ is an F_{σ} set;
- a Baire one star function, if for each open set $U \subset \mathbb{R}$, the pre-image $f^{-1}(U)$ is a G_{δ} set;
- a derivative, if there is a function F such that $\lim _{t \rightarrow x} \frac{F(t)-F(x)}{t-x}=f(x)$ for each $x \in \mathbb{R}$;
- quasi-continuous in the sense of S. Kempisty [7], if for each $x \in \mathbb{R}$ and each $\varepsilon>0$ there is a non-empty open set $U \subset(x-\varepsilon, x+\varepsilon)$ such that $|f-f(x)|<\varepsilon$ on U.

The symbol \mathcal{D}_{f} stands for the set of points of discontinuity of f.
S. Marcus proved in 1958 [9] that a.e. continuous derivatives are quasicontinuous. (See also [13].) T. Natkaniec showed in 1990 that a function u can be factored into a (finite) product of quasi-continuous functions if and only if it is pointwise discontinuous and each of the sets $u^{-1}((-\infty, 0)), u^{-1}(0)$ and $u^{-1}((0, \infty))$ is the union of an open set and a nowhere dense set [14]. (It was shown later by J. Borsík [2] that the Natkaniec's triple condition can be simplified to the following one. $u^{-1}(0)$ is the union of an open set and a nowhere dense set.) This condition implies that if a function u is the product of a.e. continuous derivatives and $u=0$ a.e., then the set $\mathcal{N}_{u}=\{x \in \mathbb{R}$: $u(x) \neq 0\}$ is nowhere dense. So the function ψ below is not a product of a.e. continuous derivatives, though it is a bounded Baire one function which vanishes a.e. (So by Corollary 4.3 of [3], it can be written as the product of two bounded non-negative derivatives.) and $\mathcal{D}_{\psi} \mathcal{N}_{\psi}$ is countable [6].

Example 1 Arrange all rationals in a sequence, $\left(q_{n}\right)$. Define $\psi(x)=0$ whenever x is irrational and $\psi\left(q_{n}\right)=1 / n$ for $n \in \mathbb{N}$.

Recall that a set A is isolated, if it contains none of its limit points. Clearly isolated sets are countable (whence F_{σ}), G_{δ}, nowhere dense sets. So for every function u, if \mathcal{N}_{u} is a finite union of isolated sets, then u is a Baire one star function.

Theorem 1 Suppose \mathcal{N}_{u} is isolated. Then there are derivatives f and g such that $u=f g, g$ is bounded and non-negative, and $\mathcal{D}_{f} \cup \mathcal{D}_{g} \subset \mathcal{D}_{u}$. (So in particular, if u is continuous a.e., then f and g are continuous a.e.as well) Moreover, if u is bounded and/or non-negative, then we can require that f be bounded and/or non-negative also.

Proof. Arrange all elements of \mathcal{N}_{u} in a sequence (finite or not), (a_{n}). Fix an n. There is a $\delta_{n}>0$ such that $\left(a_{n}-\delta_{n}, a_{n}+\delta_{n}\right) \cap \mathcal{N}_{u}=\left\{a_{n}\right\}$. Let f_{n}, g_{n} be derivatives such that $\mathcal{D}_{f_{n}}=\mathcal{D}_{g_{n}}=\left\{a_{n}\right\}, 0 \leq f_{n}, g_{n}<2$ on $\mathbb{R}, f_{n} g_{n}=\chi_{\left\{a_{n}\right\}}$ and $f_{n}(x)=g_{n}(x)=0$ whenever $\left|x-a_{n}\right|>2^{-n} \delta_{n} /\left(\left|u\left(a_{n}\right)\right|+1\right)$. (See, e.g., Theorem 4.2 of [12].) Let

$$
f=\sum_{n} f_{n} \operatorname{sgn}\left(u\left(a_{n}\right)\right) \max \left\{\sqrt{\left|u\left(a_{n}\right)\right|},\left|u\left(a_{n}\right)\right|\right\}, g=\sum_{n} g_{n} \min \left\{\sqrt{\left|u\left(a_{n}\right)\right|}, 1\right\} .
$$

It is clear that $u=f g, g$ is bounded and non-negative, and if u is bounded and/or non-negative, then f is bounded and/or non-negative, too. As \mathcal{N}_{u} is isolated, we have $\mathcal{D}_{f} \cup \mathcal{D}_{g} \subset \operatorname{cl} \mathcal{N}_{u}$. But $\mathcal{N}_{u} \subset \mathcal{D}_{u}$, and $x \in \operatorname{cl} \mathcal{N}_{u} \backslash \mathcal{N}_{u}$ implies $u(x)=f(x)=g(x)=0$ and

$$
\limsup _{t \rightarrow x}|g(t)| \leq \limsup _{t \rightarrow x}|f(t)| \leq 2 \limsup _{t \rightarrow x} \max \{\sqrt{|u(t)|},|u(t)|\}
$$

So $\mathcal{D}_{f} \cup \mathcal{D}_{g} \subset \mathcal{D}_{u}$.
Now we will show that f and g are derivatives. Fix an $x \in \mathbb{R}$. If $x \notin \operatorname{cl} \mathcal{N}_{u}$ or $x \in \mathcal{N}_{u}$, then f coincides with f_{n} and g coincides with g_{n} on some neighborhood of x for some n. So assume that $x \in \operatorname{cl} \mathcal{N}_{u} \backslash \mathcal{N}_{u}$. Let $k \in \mathbb{N}$. For each $t \in \mathbb{R}$ with $0<|t-x|<\min \left\{\left|a_{n}-x\right|: n \leq k\right\} / 2$ we have

$$
\begin{aligned}
\max \left\{\left|\frac{\int_{x}^{t} g}{t-x}\right|,\left|\frac{\int_{x}^{t} f}{t-x}\right|\right\} & \leq \sum_{n>k} \frac{\max \left\{\sqrt{\left|u\left(a_{n}\right)\right|},\left|u\left(a_{n}\right)\right|\right\} \int_{a_{n}-\delta_{n}}^{a_{n}+\delta_{n}} \max \left\{f_{n}, g_{n}\right\}}{\delta_{n} / 2} \\
& \leq \sum_{n>k} 2^{3-n}=2^{3-k}
\end{aligned}
$$

This completes the proof.

Theorem 2 Let A be isolated, u be a function, $B=\mathcal{N}_{u} \backslash A$ be non-empty and $A \cap \mathrm{cl} B=\emptyset$. Suppose moreover that there is a differentiable function, Φ, such that $\Phi^{\prime}=u$ on $\mathrm{cl} B$. Then there are derivatives f and g such that $u=f g, g$ is non-negative, and $\mathcal{D}_{f} \cup \mathcal{D}_{g} \subset \mathcal{D}_{u} \cup \mathrm{cl} B$.

Proof. Write $U=\mathbb{R} \backslash \operatorname{cl} B$ as the union $\bigcup_{k \in \mathbb{N}} I_{k}$ of non-overlapping compact intervals such that each $x \in U$ belongs to the interior of $I_{k} \cup I_{l}$ for some $k, l \in \mathbb{N}$ and

$$
\begin{equation*}
\max \left\{\left|I_{k}\right|, \sup \left\{|\Phi(y)-\Phi(z)|: y, z \in I_{k}\right\}\right\} \leq\left[\varrho\left(I_{k}, B\right)\right]^{2} \tag{*}
\end{equation*}
$$

for each $k \in \mathbb{N}$. Proceeding as in the proof of Theorem 1 construct derivatives f_{0} and g_{0} such that $u \chi_{U}=f_{0} g_{0}, \mathcal{D}_{f_{0}} \cup \mathcal{D}_{g_{0}} \subset \mathcal{D}_{u}, f_{0}=g_{0}=0$ on $\mathrm{cl} B$ and for each $k \in \mathbb{N}$ the set $\left\{x \in I_{k}: f_{0}(x)=g_{0}(x)=0\right\}$ contains an interval. For each $k \in \mathbb{N}$ construct continuous functions f_{k} and g_{k} such that f_{k} does not change its sign, g_{k} is non-negative, $f_{k}=g_{k}=0$ outside of $I_{k}, f_{k} g_{0}=f_{k} g_{k}=f_{0} g_{k}=0$ on $I_{k}, \int_{I_{k}} f_{k}=\Phi\left(b_{k}\right)-\Phi\left(a_{k}\right)$ and $\int_{I_{k}} g_{k}=\left|I_{k}\right|$, where $\left[a_{k}, b_{k}\right]=I_{k}$. Define

$$
f=f_{0}+\sum_{k \in \mathbb{N}} f_{k}+\Phi^{\prime} \chi_{\mathrm{cl} B} \quad \text { and } \quad g=g_{0}+\sum_{j \in \mathbb{N}} g_{j}+\chi_{\mathrm{cl} B}
$$

Clearly g is non-negative and $\mathcal{D}_{f} \cup \mathcal{D}_{g} \subset \mathcal{D}_{u} \cup \mathrm{cl} B$. Moreover

$$
\begin{aligned}
f g=f_{0} g_{0} & +\sum_{k \in \mathbb{N}} f_{k} g_{0}+\Phi^{\prime} g_{0} \chi_{\mathrm{cl} B}+\sum_{j \in \mathbb{N}} f_{0} g_{j}+\sum_{k \in \mathbb{N}} \sum_{j \in \mathbb{N}} f_{k} g_{j}+\sum_{j \in \mathbb{N}} \Phi^{\prime} g_{j} \chi_{\mathrm{cl} B} \\
& +f_{0} \chi_{\mathrm{cl} B}+\sum_{k \in \mathbb{N}} f_{k} \chi_{\mathrm{cl} B}+\Phi^{\prime} \chi_{\mathrm{cl} B}=u \chi_{U}+u \chi_{\mathrm{cl} B}=u .
\end{aligned}
$$

Now we will show that f and g are derivatives. Let

$$
\begin{array}{ll}
F(x)=\Phi\left(a_{k}\right)+\int_{a_{k}}^{x} f_{k}, & G(x)=a_{k}+\int_{a_{k}}^{x} g_{k}, \text { if } x \in I_{k}, k \in \mathbb{N} \\
F(x)=\Phi(x), & G(x)=x,
\end{array}
$$

We will show that $F^{\prime}=f-f_{0}$ and $G^{\prime}=g-g_{0}$ on \mathbb{R}.
Fix an $x \in \mathbb{R}$. If $x \in I_{k}$ for some $k \in \mathbb{N}$. Then clearly $F^{\prime}(x)=f_{k}(x)$ and $G^{\prime}(x)=g_{k}(x)$. So assume that $x \in \operatorname{cl} B$. For each $t \in \mathbb{R}$, if $t \in \operatorname{cl} B$, then $F(t)-F(x)=\Phi(t)-\Phi(x)$ and $G(t)-G(x)=t-x$, and if $t \in I_{k}$ for some $k \in \mathbb{N}$, then by $(*)$,

$$
\begin{aligned}
& \left|\frac{(F(t)-F(x))-(\Phi(t)-\Phi(x))}{t-x}\right| \leq \frac{\int_{I_{k}}\left|f_{k}\right|+\left|\Phi(t)-\Phi\left(a_{k}\right)\right|}{|t-x|} \\
& \leq \frac{2 \sup \left\{|\Phi(y)-\Phi(z)|: y, z \in I_{k}\right\}}{\varrho\left(I_{k}, \operatorname{cl} B\right)} \leq \varrho\left(I_{k}, \operatorname{cl} B\right) \leq|t-x|
\end{aligned}
$$

and

$$
\left|\frac{G(t)-G(x)}{t-x}-1\right| \leq \frac{\int_{I_{k}}\left|g_{k}-1\right|}{|t-x|} \leq \frac{\left|I_{k}\right|}{\varrho\left(I_{k}, \operatorname{cl} B\right)} \leq \varrho\left(I_{k}, \operatorname{cl} B\right) \leq|t-x|
$$

This completes the proof.

Remark 1 In the above theorem, if the function u is a.e. continuous and the closure of the set B has Lebesgue measure zero (e.g., if B is finite), then the derivatives f and g are a.e. continuous. The example below shows that we cannot require that they are bounded if u is bounded, even in case B is a singleton.

Example 2 There is a bounded non-negative function u and an isolated set A such that $\mathcal{D}_{u}=\mathcal{N}_{u}=A \cup\{0\}$, and f is unbounded whenever f and g are derivatives, f is a.e. continuous and $u=f g$.

Construction. Set $I_{n}=[1 /(n+1), 1 / n]$ for $n \in \mathbb{N}$. Fix an $n \in \mathbb{N}$. Let $F_{n} \subset I_{n}$ be a nowhere dense closed set of measure $(1-1 / n)\left|I_{n}\right|$ such that both end points of I_{n} belong to F_{n}. Let $A_{n}=\left\{x_{n, k}: k \in \mathbb{N}\right\} \subset I_{n} \backslash F_{n}$ be an isolated set with $F_{n} \subset \operatorname{cl} A_{n}$. Let $A=\bigcup_{n \in \mathbb{N}} A_{n}$ and define

$$
u(x)= \begin{cases}1 /(n+k) & \text { if } x=x_{n, k}, n, k \in \mathbb{N} \\ 1 & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

Evidently the set A is isolated and $\mathcal{D}_{u}=\mathcal{N}_{u}=A \cup\{0\}$. Moreover u is bounded and non-negative. Suppose that there exist derivatives f and g such that f is bounded and a.e. continuous, and $u=f g$. Observe first that f is equal to 0 a.e. on cl A.

Indeed, otherwise there would be a point $x \in \operatorname{cl} A$ at which f is non-zero and continuous. So f is non-zero in some neighborhood U of x, and since u is equal to 0 a.e., g is equal to 0 a.e. in U. As g is a derivative, it must be equal to 0 everywhere in U. So u also equals 0 everywhere in U. But $x \in \operatorname{cl} A$ and $u(t) \neq 0$ for $t \in A$, a contradiction.

Since $f(0) \neq 0$ (because $u(0)=f(0) g(0)=1$), we may assume that $f(0)=$ 1. Find a $\delta>0$ such that $\left|h^{-1} \int_{0}^{h} f-1\right|<1 / 2$ for $h \in(0, \delta)$. Set $M=$ $\sup \{|f(x)|: x \in \mathbb{R}\}$ and take an $m>\max \{2 M, 1 / \delta\}$. Then $1 / m \in(0, \delta)$ and

$$
\begin{aligned}
\left|m \int_{0}^{1 / m} f-1\right| & \geq 1-m \int_{0}^{1 / m}|f| \geq 1-m M \cdot|(0,1 / m) \backslash \mathrm{cl} A| \\
& =1-m M \sum_{n \geq m}\left|I_{n} \backslash F_{n}\right|=1-m M \sum_{n \geq m}\left|I_{n}\right| / n \\
& >1-M \sum_{n \geq m}\left|I_{n}\right|=1-M \cdot|(0,1 / m)|=1-M / m>1 / 2
\end{aligned}
$$

We obtained a contradiction with the previous inequality.

Example 3 There is a bounded non-negative function v such that $\mathcal{D}_{v}=\mathcal{N}_{v}$ is the union of two isolated sets, and f is not a.e. continuous whenever f and g are derivatives and $v=f g$.

Construction. Let K be a nowhere dense perfect set of positive measure and let $\left\{\left(x_{n}-\delta_{n}, x_{n}+\delta_{n}\right): n \in \mathbb{N}\right\}$ be the family of all bounded components of $\mathbb{R} \backslash K$. Let u be the function defined in Example 2. Define the function v by

$$
v(x)= \begin{cases}u\left(\left(x-x_{n}\right) / \delta_{n}\right) / n & \text { if }\left|x-x_{n}\right|<\delta_{n}, n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathcal{D}_{v}=\mathcal{N}_{v}$ is the union of two isolated sets: $B=\left\{x_{n}: n \in \mathbb{N}\right\}$ and $\mathcal{N}_{v} \backslash B$. Suppose that there are derivatives f and g such that f is a.e. continuous and $v=f g$. By the properties of the function u, f is unbounded on every interval $\left(x_{n}-\delta_{n}, x_{n}+\delta_{n}\right)(n \in \mathbb{N})$. But this implies that $\mathcal{D}_{f} \supset K$ and $\left|\mathcal{D}_{f}\right| \geq|K|>0$, a contradiction.

Remark 2 Similarly to the proof of Theorem 2 it can be proved that both the function u of Example 2 and the function v of Example 3 can be written as the product of two bounded non-negative a.e. continuous Darboux quasi-continuous functions.

References

[1] S. J. Agronsky, R. Biskner, A. M. Bruckner and J. Mařík, Representations of functions by derivatives, Trans. Amer. Math. Soc., 263, no. 2 (1981), 493-500.
[2] J. Borsík, Products of simply continuous and quasicontinuous functions, Math. Slovaca, 45 (1995), 445-452.
[3] A. M. Bruckner, J. Mařík and C. E. Weil, Baire one, null functions, Contemporary Math., 42 (1985), 29-41.
[4] A. M. Bruckner, J. Mařík and C. E. Weil, Some aspects of products of derivatives, Amer. Math. Monthly, 99, no. 2 (1992), 134-145.
[5] R. J. Fleissner, Multiplication and the fundamental theorem of calculus - a survey, Real Anal. Exchange, 2, no. 1 (1976), 7-34.
[6] Z. Grande, Sur le fonctions cliquish, Časopis Pěst. Mat., 110 (1985), 225-236.
[7] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math., 19 (1932), 184-197.
[8] A. Maliszewski, Characteristic functions and products of bounded derivatives, Proc. Amer. Math. Soc., 123 No. 7 (1995), 2203-2211.
[9] S. Marcus, Sur les fonctions dérivées, intégrables au sens de Riemann et sur les dérivées partielles mixtes, Proc. Amer. Math. Soc., 9 (1958), 973-978.
[10] J. Mařík, Characteristic functions and products of derivatives, Real Anal. Exchange, 16, no. 1 (1990-91), 245-254.
[11] J. Mařík and C. E. Weil, Products of derivatives and approximate continuity, Real Anal. Exchange, 7, no. 1 (1981-82), 54-57.
[12] J. Mařík and C. E. Weil, Products of powers of nonnegative derivatives, Trans. Amer. Math. Soc., 276, no. 1 (1983), 361-373.
[13] A. V. Martin, A note on derivatives and neighborly functions, Proc. Amer. Math. Soc., 8 (1957), 465-467.
[14] T. Natkaniec, Products of quasi-continuous functions, Math. Slovaca, 40, no. 4 (1990), 401-405.
[15] W. H. Young, A note on the property of being a differential coefficient, Proc. London Math. Soc., 9 (1911), 360-368.

[^0]: Key Words: derivative, a.e. continuous function
 Mathematical Reviews subject classification: Primary: 26A24. Secondary: 26A21
 Received by the editors February 27, 1995

