Aleksandra Katafiasz, Instytut Matematyki WSP, Chodkiewicza 30, 85-064 Bydgoszcz, Poland. e-mail: wspb04@@cc.uni.torun.pl

IMPROVABLE DISCONTINUOUS FUNCTIONS

Abstract

In this paper the class of improvable functions is defined and the pasic properties of such functions is examined. Moreover, a necessary and sufficient condition under which a set A is the set of points of continuity of some α -improvable discontinuous function is gives. and it is shown that the classes \mathcal{A}_{α} and \mathcal{A}_{β} are different is $\alpha \neq \beta$.

1 Introduction

If at some point $x \lim_{t\to x} f(t)$ exists and $\lim_{t\to x} f(t) \neq f(x)$, then we can say that f has an improvable discontinuity at the point x. If at each such point we change the value f(x) to $\lim_{t\to x} f(t)$, then we obtain a new function $f_{(1)}$ with the "improved" improvable points of discontinuity of the function f. Repeating this process for the function $f_{(1)}$ and so on, we can create a sequence (even the transfinite sequence) $(f_{(\alpha)})$ in such a way that $f_{(\alpha+1)}$ is obtained from $f_{(\alpha)}$ by "improving" $f_{(\alpha)}$.

2 Preliminaries

The word "function" will mean a bounded real function of a real variable. Let $D \subset \mathbb{R}$.

Definition 1 For each function $f: D \to \mathbb{R}$, let

$$C(f) = \left\{ x \in D; \lim_{t \to x} f(t) = f(x) \right\},$$
$$U(f) = \left\{ x \in D; \lim_{t \to x} f(t) \neq f(x) \right\},$$
$$L(f) = \left\{ x \in D; \lim_{t \to x} f(t) \text{ exists} \right\}.$$

Mathematical Reviews subject classification: Primary: 26A15 Received by the editors February 24, 1993 **Definition 2** A point $x_0 \in U(f)$ is called an improvable point of discontinuity of the function f.

The following remark can be easily seen.

Remark 1 Let $f: D \to \mathbb{R}$. Then $U(f) \cap C(f) = \emptyset$ and $L(f) = U(f) \cup C(f)$.

The following proposition is well known. (Compare to [2].)

Proposition 1 The set U(f) is countable.

We define the functions $f_{(\alpha)}$ on the class of ordinal numbers.

Definition 3 Let $f : D \to \mathbb{R}$ and let $f_{(0)}(x) = f(x)$ for each $x \in D$. For every ordinal number α , let

$$f_{(\alpha)}(x) = \begin{cases} f(x) & \text{if } \{\gamma < \alpha; \ x \in U\left(f_{(\gamma)}\right)\} = \emptyset, \\ \lim_{t \to x} f_{(\gamma_0)}(t) & \text{if } x \in U\left(f_{(\gamma_0)}\right), \\ & \text{where } \gamma_0 = \min\left\{\gamma < \alpha; \ x \in U\left(f_{(\gamma)}\right)\right\} \end{cases}$$

This theorem will be very useful in the paper.

Theorem 1 Let $f: D \to \mathbb{R}$ and let $\alpha > 0$ be an ordinal number. Then

(1, α) for each $x \in D$, $\{\gamma < \alpha; x \in U(f_{(\gamma)})\}$ is the empty set or has only one element,

(2, α) for each ordinal number γ ($\gamma < \alpha$),

$$\left\{x \in D; f_{(\gamma)}(x) \neq f_{(\alpha)}(x)\right\} = \bigcup_{\gamma \leq \beta < \alpha} U\left(f_{(\beta)}\right),$$

(3, α) for each ordinal number γ ($\gamma < \alpha$), if $x \in L(f_{(\gamma)})$, then

$$\lim_{t \to x} f_{(\gamma)}(t) = f_{(\alpha)}(x),$$

(4, α) $\bigcup_{0 \le \beta < \alpha} L(f_{(\beta)}) \subset C(f_{(\alpha)}).$

PROOF. It can be easily shown that (1,1), (2,1) and (3,1) hold. Let $x_0 \in L\left(f_{(0)}\right)$. Then, by (3,1), $\lim_{t\to x_0} f_{(0)}(t) = f_{(1)}(x_0)$. Let $\epsilon > 0$. Then there exists $\delta > 0$ such that, for each $t \in (x_0 - \delta, x_0 + \delta) \cap D$, if $t \neq x_0$ then $|f_{(0)}(t) - f_{(1)}(x_0)| < \frac{\epsilon}{2}$. We shall show that, for each $t \in (x_0 - \delta, x_0 + \delta) \cap D$, $|f_{(1)}(t) - f_{(1)}(x_0)| < \epsilon$. Let $t \in (x_0 - \delta, x_0 + \delta) \cap D$. It may be assumed that $t \neq x_0$ and $f_{(0)}(t) \neq f_{(1)}(t)$. Then, by $(2,1), t \in U\left(f_{(0)}\right) \subset L\left(f_{(0)}\right)$ and,

by (3,1), $\lim_{z\to t} f_{(0)}(z) = f_{(1)}(t)$. Since $t \in (x_0 - \delta, x_0 + \delta) \cap D$, there exists $z \in (x_0 - \delta, x_0 + \delta) \cap D$ such that $z \neq x_0$ and $|f_{(0)}(z) - f_{(1)}(t)| < \frac{\epsilon}{2}$. Thus

$$|f_{(1)}(t) - f_{(1)}(x_0)| \le |f_{(1)}(t) - f_{(0)}(z)| + |f_{(0)}(z) - f_{(1)}(x_0)| < \epsilon.$$

Therefore $x_0 \in C(f_{(1)})$ and (4,1) is proved.

Let $\alpha_0 > 1$ be an ordinal number. Assume for each α with $1 \leq \alpha < \alpha_0$, we have $(1, \alpha), (2, \alpha), (3, \alpha), (4, \alpha)$. Let $x \in D$ and $\{\gamma < \alpha_0; x \in U(f_{(\gamma)})\} \neq \emptyset$. Put $\gamma_0 = \min\{\gamma < \alpha_0; x \in U(f_{(\gamma)})\}$. If $\alpha_0 = \gamma_0 + 1$, then

$$\left\{\gamma < \alpha_0; \ x \in U\left(f_{(\gamma)}\right)\right\} = \left\{\gamma_0\right\}.$$

If $\gamma_0 + 1 < \alpha_0$ and $\gamma_0 < \gamma_1 < \alpha_0$, then

$$x \in U\left(f_{(\gamma_0)}\right) \subset L\left(f_{(\gamma_0)}\right) \subset \bigcup_{0 \leq \beta < \gamma_1} L\left(f_{(\beta)}\right).$$

Since $\gamma_1 < \alpha_0$, by $(4,\gamma_1)$, $x \in \bigcup_{0 \le \beta < \gamma_1} L(f_{(\beta)}) \subset C(f_{(\gamma_1)})$ and $x \notin U(f_{(\gamma_1)})$. Thus $\gamma_1 \notin \{\gamma < \alpha_0; x \in U(f_{(\gamma)})\}$. Hence $\{\gamma < \alpha_0; x \in U(f_{(\gamma)})\} = \{\gamma_0\}$ and we have $(1,\alpha_0)$.

Let $\gamma < \alpha_0$. First, assume that $x \notin \bigcup_{\gamma \leq \beta < \alpha_0} U(f_{(\beta)})$. If $\{\beta < \alpha_0; x \in U(f_{(\beta)})\} \neq \emptyset$, then, by $(1,\alpha_0)$, there exists $\beta_0 < \gamma$ such that $\{\beta < \alpha_0; x \in U(f_{(\beta)})\} = \{\beta_0\}$. Thus, by the definitions of the functions $f_{(\alpha_0)}$ and $f_{(\gamma)}$, we have $f_{(\alpha_0)}(x) = \lim_{t \to x} f_{(\beta_0)}(t) = f_{(\gamma)}(x)$. If $\{\beta < \alpha_0; x \in U(f_{(\beta)})\} = \emptyset$, then $f_{(\alpha_0)}(x) = f(x) = f_{(\gamma)}(x)$.

Now, let $x \in \bigcup_{\gamma \leq \beta < \alpha_0} U(f_{(\beta)})$. Then, by $(1,\alpha_0)$, there exists β_0 ($\gamma \leq \beta_0 < \alpha_0$) such that $\{\beta < \alpha_0; x \in U(f_{(\beta)})\} = \{\beta_0\}$. Thus

$$f_{(\alpha_0)}(x) = \lim_{t \to x} f_{(\beta_0)}(t) \neq f_{(\beta_0)}(x).$$

If $\beta_0 = \gamma$, then $f_{(\alpha_0)}(x) \neq f_{(\gamma)}(x)$. If $\beta_0 > \gamma$, then $x \notin \bigcup_{\gamma \leq \beta < \beta_0} U(f_{(\beta)})$ and, by $(2,\beta_0)$, $f_{(\gamma)}(x) = f_{(\beta_0)}(x)$. Therefore $f_{(\alpha_0)}(x) \neq f_{(\gamma)}(x)$ and we have $(2,\alpha_0)$. Let $\gamma < \alpha_0$ and $x \in L(f_{(\gamma)})$. Then $x \in C(f_{(\gamma)}) \cup U(f_{(\gamma)})$. First, we assume that $x \in U(f_{(\gamma)})$. Then, by $(1,\alpha_0)$, $\{\beta < \alpha_0; x \in U(f_{(\beta)})\} = \{\gamma\}$ and, by the definition of $f_{(\alpha_0)}$, we get $f_{(\alpha_0)}(x) = \lim_{t \to x} f_{(\gamma)}(t)$. Now, let $x \in C(f_{(\gamma)})$. Then $\lim_{t \to x} f_{(\gamma)}(t) = f_{(\gamma)}(x)$ and $x \notin U(f_{(\gamma)})$. If η is an ordinal number such that $\gamma < \eta < \alpha_0$, then $x \in C(f_{(\gamma)}) \subset L(f_{(\gamma)}) \subset \bigcup_{0 \leq \beta < \eta} L(f_{(\beta)})$ and, by $(4,\eta)$, $x \in C(f_{(\eta)})$ and $x \notin U(f_{(\eta)})$. Thus $x \notin \bigcup_{\gamma \leq \eta < \alpha_0} U(f_{(\eta)})$. Then, by $(2,\alpha_0)$, $f_{(\gamma)}(x) = f_{(\alpha_0)}(x)$. Therefore $\lim_{t \to x} f_{(\gamma)}(t) = f_{(\alpha_0)}(x)$ and we have $(3,\alpha_0)$.

Let $x_0 \in \bigcup_{0 \le \beta < \alpha_0} L(f_{(\beta)})$. Then there exists $\beta_0 < \alpha_0$ such that $x_0 \in L(f_{(\beta_0)})$. Therefore, by $(3,\alpha_0)$, $\lim_{t\to x_0} f_{(\beta_0)}(t) = f_{(\alpha_0)}(x_0)$. If $\beta_0 = 0$, then,

by (4,1),

$$x_0 \in L\left(f_{(0)}\right) \subset \bigcup_{0 \le \eta < 1} L\left(f_{(\eta)}\right) \subset C\left(f_{(1)}\right) \subset L\left(f_{(1)}\right).$$

Thus it may be assumed that $\beta_0 \geq 1$. Let $\epsilon > 0$. Then there exists $\delta > 0$ such that, for each $t \in (x_0 - \delta, x_0 + \delta) \cap D$, if $t \neq x_0$, then $|f_{(\beta_0)}(t) - f_{(\alpha_0)}(x_0)| < \frac{\epsilon}{2}$. We shall show that, for each $t \in (x_0 - \delta, x_0 + \delta) \cap D$, $|f_{(\alpha_0)}(t) - f_{(\alpha_0)}(x_0)| < \epsilon$.

Let $t \in (x_0 - \delta, x_0 + \delta) \cap D$. We may assume that $t \neq x_0$ and $f_{(\alpha_0)}(t) \neq f_{(\beta_0)}(t)$. Then, by $(2,\alpha_0), t \in \bigcup_{\beta_0 \leq \beta < \alpha_0} U(f_{(\beta)})$. Let β_1 be an ordinal number such that $\beta_0 \leq \beta_1 < \alpha_0$ and $t \in U(f_{(\beta_1)})$. Then, by $(3,\alpha_0), \lim_{z \to t} f_{(\beta_1)}(z) = f_{(\alpha_0)}(t)$. Therefore there exists $\eta > 0$ such that $(t - \eta, t + \eta) \subset (x_0 - \delta, x_0 + \delta), x_0 \notin (t - \eta, t + \eta)$ and, for each $z \in (t - \eta, t + \eta) \cap D$, if $z \neq t$, then $|f_{(\beta_1)}(z) - f_{(\alpha_0)}(t)| < \frac{\epsilon}{2}$. Since either $(t - \eta, t) \cap D \neq \emptyset$ or $(t, t + \eta) \cap D \neq \emptyset$, we may assume that $(t - \eta, t) \cap D \neq \emptyset$. If $\beta_1 = \beta_0$, we choose an arbitrary $t_0 \in (t - \eta, t) \cap D$. Now, we assume that $\beta_0 < \beta_1 < \alpha_0$ and let $J = (t - \eta, t) \cap D$. We suppose that $J \subset \bigcup_{\beta_0 \leq \beta < \beta_1} U(f_{(\beta)})$ and let $\beta_2 = \min \{\beta_0 \leq \beta < \beta_1; J \cap U(f_{(\beta)}) \neq \emptyset\}$. Then, by $(1,\beta_1)$, we have, for each $z \in J$, $\{\beta < \beta_2; z \in U(f_{(\beta)})\} = \emptyset$; so $f(z) = f_{(\beta_2)}(z)$. Let $z_0 \in U(f_{(\beta_2)}) \cap J$. Then $\lim_{z \to z_0} f_(z) = \lim_{z \to z_0} f_{(\beta_2)}(z) \neq f_{(\beta_2)}(z_0) = f(z_0)$. Thus $z_0 \in U(f)$ and, by $(1,\beta_1)$ and $\beta_2 > 0, z_0 \notin U(f_{(\beta_2)})$, a contradiction. Therefore $J \setminus \bigcup_{\beta_0 \leq \beta < \beta_1} U(f_{(\beta)}) = f_{(\beta_0)}(t_0)$. Thus

$$|f_{(\alpha_0)}(t) - f_{(\alpha_0)}(x_0)| \le |f_{(\alpha_0)}(t) - f_{(\beta_0)}(t_0)| + |f_{(\beta_0)}(t_0) - f_{(\alpha_0)}(x_0)| < \epsilon.$$

Hence $x_0 \in C(f_{(\alpha_0)})$.

Thus we have shown that, for each ordinal number $\alpha > 0$, the conjunction of these conditions holds, so the proof of the theorem is complete.

The following remarks can be easily established.

Remark 2 Let $f: D \to \mathbb{R}$ and let α be an ordinal number. Then

$$f_{(\alpha+1)}(x) = \begin{cases} f_{(\alpha)}(x), & \text{if } x \notin U\left(f_{(\alpha)}\right), \\ \lim_{t \to x} f_{(\alpha)}(t), & \text{if } x \in U\left(f_{(\alpha)}\right). \end{cases}$$

Remark 3 Let $f: D \to \mathbb{R}$ and let α , β be ordinal numbers such that $0 \leq \alpha < \beta$. Then $C(f_{(\alpha)}) \subset C(f_{(\beta)})$.

Definition 4 For each ordinal number α , we denote

$$\mathcal{A}_{\alpha} = \left\{ f: D \to \mathbb{R}; \ C\left(f_{(\alpha)}\right) = D \right\}.$$

We make the following remark.

Remark 4 The family $(\mathcal{A}_{\alpha})_{\alpha>0}$ has the following properties.

- 1. A_0 is the family of all continuous functions on D.
- 2. For each ordinal number $\alpha > 0$, $\bigcup_{0 \le \beta \le \alpha} \mathcal{A}_{\beta} \subset \mathcal{A}_{\alpha}$.

Definition 5 If a function $f: D \to \mathbb{R}$ belongs to $\mathcal{A}_{\alpha} \setminus \left(\bigcup_{0 \leq \beta < \alpha} \mathcal{A}_{\beta}\right)$, then it will be called an α -improvable discontinuous function.

Theorem 2 Let $f : D \to \mathbb{R}$. Then, for every ordinal number α , $C(f_{(\alpha)}) \subset cl(L(f))$.

PROOF. Let $H = D \setminus \operatorname{cl}(L(f))$. Then H is open in D. We suppose that $\{\beta < \alpha; H \cap U(f_{(\beta)}) \neq \emptyset\} \neq \emptyset$. Let $\beta_0 = \min\{\beta < \alpha; H \cap U(f_{(\beta)}) \neq \emptyset\}$. Since $U(f) \subset L(f)$, we have $\beta_0 > 0$. Then $H \cap \bigcup_{0 \le \gamma < \beta_0} U(f_{(\gamma)}) = \emptyset$ and, by Theorem 1 $(2,\beta_0), H \subset \{x \in D; f(x) = f_{(\beta_0)}(x)\}$. Thus $H \cap U(f_{(\beta_0)}) = H \cap U(f) = \emptyset$, a contradiction. Therefore $\{\beta < \alpha; H \cap U(f_{(\beta)}) \neq \emptyset\} = \emptyset$ and $H \cap \bigcup_{0 \le \beta < \alpha} U(f_{(\beta)}) = \emptyset$. By Theorem 1 $(2,\alpha), H \subset \{x \in D; f(x) = f_{(\alpha)}(x)\}$. Then

$$C(f_{(\alpha)}) \cap H = C(f) \cap H \subset L(f) \cap H = \emptyset \text{ and } C(f_{(\alpha)}) \subset \operatorname{cl}(L(f)).$$

Corollary 1 Let $f : D \to \mathbb{R}$ and let α be an ordinal number such that $C(f_{(\alpha)})$ is a dense subset of D. Then L(f) is also a dense subset of D.

Definition 6 Let $f : D \to \mathbb{R}$. For each interval $I = (a, b) \cap D \neq \emptyset$, the quantity $\omega(f, I) = \sup_{x \in I} f(x) - \inf_{x \in I} f(x)$ is called the oscillation of f on I. For each fixed x, the function $\omega(f, (x - \delta, x + \delta) \cap D)$ decreases with $\delta > 0$ and approaches a limit $\omega(f, x) = \lim_{\delta \to 0} \omega(f, (x - \delta, x + \delta) \cap D)$ called the oscillation of f at x.

We have shown that if $C(f_{(\alpha)})$ is a dense subset of D, then L(f) is also a dense subset of D. We can ask whether C(f) is a dense subset of D. The answer in general is negative.

Proposition 2 There exists a subset D of \mathbb{R} and a function $f: D \to \mathbb{R}$, such that $C(f) = \emptyset$ and $C(f_{(1)}) = D$.

PROOF. Let $D = \mathbb{Q}$ where \mathbb{Q} is the set of all rational numbers. Let $\mathbb{Q} = (x_n)_{n=1}^{\infty}$ and $f(x_n) = \frac{1}{n}$, for each $n \in \mathbb{N}$. We observe that, for each $n \in \mathbb{N}$, $f(x_n) > \lim_{t \to x_n} f(t) = 0$; so $x_n \in U(f)$. Hence $C(f) = \emptyset$ and $f_{(1)}(x) = 0$ for each $x \in D$.

Theorem 3 Let $f: D \to \mathbb{R}$ and let α be an ordinal number. If $C(f_{(\alpha)}) = D$ and D is closed, then the set C(f) is a dense subset of D.

PROOF. We suppose that the set C(f) is not dense in D. Then there exists (a, b) such that $(a, b) \cap D \neq \emptyset$ and $(a, b) \cap D \cap C(f) = \emptyset$. Thus

$$(a,b) \cap D \subset \bigcup_{n=1}^{\infty} \left\{ x \in D; \ \omega(f,x) \ge \frac{1}{n} \right\}.$$

Since $(a, b) \cap D$ is a set of the second category in $D \cap [a, b]$, there exist $n_0 \in \mathbb{N}$ and an open interval $(c, d) \subset (a, b)$, such that

$$(c,d) \cap D \neq \emptyset \text{ and } (c,d) \cap D \subset \left\{ x \in D; \ \omega(f,x) \ge \frac{1}{n_0} \right\}.$$

Therefore $(c, d) \cap D \cap L(f) = \emptyset$ and, by $C(f_{(\alpha)}) = D$ and Corollary 1, we have a contradiction.

Corollary 2 If $f : \mathbb{R} \to \mathbb{R}$ and $f \in \mathcal{A}_{\alpha}$, where α is an ordinal number, then C(f) is a dense subset of \mathbb{R} .

It is interesting whether, for each function $f: D \to \mathbb{R}$ such that C(f) is a dense subset of D, there exists an ordinal number $\alpha \geq 0$ such that $f \in \mathcal{A}_{\alpha}$. The answer suggests the following proposition.

Proposition 3 There exists a closed $D \subset \mathbb{R}$ and a function $f : D \to \mathbb{R}$ such that C(f) is a dense subset of D and there exist no ordinal number α such that $f \in \mathcal{A}_{\alpha}$.

PROOF. Put D = [0, 1]. Let K be the Cantor set and let $f : D \to \mathbb{R}$ be the characteristic function of K. Note that, for each $x \in K$,

$$1 = f(x) = \limsup_{t \to x} f(t) \neq \liminf_{t \to x} f(t) = 0$$

and, for each $x \in D \setminus K$, $\lim_{t\to x} f(t) = f(x) = 0$. Thus $U(f) = \emptyset$ and $f_{(1)}(x) = f(x)$ for each $x \in D$. By Theorem 1 (2, α) and by transfinite induction, we have that $f_{(\alpha)}(x) = f(x)$, for each $x \in D$ and for every ordinal number α .

Theorem 4 For each closed set D, for each function $f : D \to \mathbb{R}$ and for every ordinal number α , the set $C(f_{(\alpha)}) \setminus C(f)$ is of the first category in D.

PROOF. Put $V = C(f_{(\alpha)}) \setminus C(f)$. We suppose that the set V is of the second category in D. Since V has the Baire property in D, there exists $(a,b) \subset \mathbb{R}$ such that $(a,b) \cap D \neq \emptyset$ and the set V is a residual subset of $I = [a,b] \cap D$.

Therefore $I \cap C(f) \subset I \setminus V$ is a set of the first category in I. Since $C(f_{(\alpha)}) \supset V$ is a dense subset of I, we have, by Theorem 2, that $L(f) \cap I$ is also a dense subset of I. Therefore as in Theorem 3 we can prove that $C(f) \cap I$ is also a dense subset of I. Thus $C(f) \cap I$ is a residual subset of I and $I \setminus C(f)$ is a set of the first category in I. Hence $I = (I \setminus C(f)) \cup (I \cap C(f))$ is a set of the first category in I, a contradiction.

Definition 7 Let $K \subset D$. Put $K^{(0)} = K$. Let

 $K^{(1)} = K^d = \{x \in D; x \text{ is an accumulation point of } K \text{ in } D\}$

and $K^* = K \setminus K^d$. Let $\alpha \ge 1$ be an ordinal number. Then

- $K^{(\alpha+1)} = (K^{(\alpha)})^d;$
- if α is a limit ordinal number, then $K^{(\alpha)} = \bigcap_{0 \le \beta \le \alpha} K^{(\beta)}$.

Definition 8 Let $f : D \to \mathbb{R}$. Set

$$r(f) = \min\left\{\alpha; f_{(\alpha)}(x) = f_{(\alpha+1)}(x) \text{ for each } x \in D\right\}.$$

Now we show that, for each function f, r(f) is countable.

Theorem 5 If $f: D \to \mathbb{R}$, then $r(f) < \omega_1$.

PROOF. Let $\alpha = r(f)$. Then $f_{(\alpha)}(x) = f_{(\alpha+1)}(x)$ for each $x \in D$. Let $\beta > \alpha$ and we assume that, for each γ with $\alpha < \gamma < \beta$, $f_{(\gamma)}(x) = f_{(\alpha)}(x)$ for each $x \in D$. We suppose that there exists $x_0 \in D$ such that $f_{(\beta)}(x_0) \neq f_{(\alpha)}(x_0)$. Then, by Theorem 1 $(2,\alpha)$, $x_0 \in \bigcup_{\alpha \leq \gamma < \beta} U(f_{(\gamma)})$. Therefore there exists γ_0 with $\alpha \leq \gamma_0 < \beta$ such that $x_0 \in U(f_{(\gamma_0)})$ and $f_{(\alpha)}(x_0) = f_{(\gamma_0)}(x_0) \neq f_{(\gamma_0+1)}(x_0)$. If $\gamma_0 + 1 < \beta$, we have a contradiction to our assumption. Thus $\gamma_0 + 1 = \beta$. Since $f_{(\gamma_0)}(x) = f_{(\alpha)}(x)$ for each $x \in D$, we have $U(f_{(\gamma_0)}) = U(f_{(\alpha)}) = \emptyset$ and $\{x \in D; f_{(\beta)}(x) \neq f_{(\gamma_0)}(x)\} = U(f_{(\gamma_0)}) = \emptyset$, a contradiction. Hence $f_{(\beta)}(x) = f_{(\alpha)}(x)$ for each $x \in D$ and, for each $\beta > \alpha$, $C(f_{(\beta)}) = C(f_{(\alpha)})$.

Let $D_1 = C(f_{(\alpha)})$ and, let for each $\beta \ge 0$, $F_{\beta} = (D_1 \setminus C(f_{(\beta)}))^d$. Since, for each γ with $0 \le \gamma < \beta$, by Theorem 1 (4, β),

$$C(f_{(\gamma)}) \subset L(f_{(\gamma)}) \subset \bigcup_{0 < \xi < \beta} L(f_{(\xi)}) \subset C(f_{(\beta)}),$$

. Therefore we have $F_{\beta} \subset F_{\gamma}$. Thus, by Theorem 32 (Cantor-Bendixon) [1], there exists an ordinal number $\alpha_0 < \omega_1$ such that if $\gamma > \alpha_0$, then $F_{\gamma} = F_{\alpha_0}$.

We assume that $\alpha > \alpha_0$. Then $\emptyset = (D_1 \setminus C(f_{(\alpha)}))^d = (D_1 \setminus C(f_{(\alpha_0)}))^d$. We shall show that $\alpha = \alpha_0 + 1$. Let $x_0 \in D_1 \setminus C(f_{(\alpha_0)})$. Then there exists an open interval (a, b) such that $D \cap (a, b) \cap (D_1 \setminus C(f_{(\alpha_0)})) = \{x_0\}$. We suppose that there exists a point $x_1 \in ((D \cap (a, b)) \setminus \{x_0\}) \cap \bigcup_{\alpha_0 \leq \xi < \alpha} U(f_{(\xi)})$. Then there exists an ordinal number ξ_0 with $\alpha_0 \leq \xi_0 < \alpha$ such that $x_1 \in U(f_{(\xi_0)}) \subset C(f_{(\xi_0+1)}) \subset C(f_{(\alpha)}) = D_1$ and $x_1 \notin C(f_{(\alpha_0)}) \subset C(f_{(\xi_0)})$. Therefore $((D \cap (a, b)) \setminus \{x_0\}) \cap (D_1 \setminus C(f_{(\alpha_0)})) \neq \emptyset$, a contradiction. Hence, by Theorem 1 $(2, \alpha)$,

$$(D \cap (a,b)) \setminus \{x_0\} \subset \left\{ x \in D; \ f_{(\alpha_0)}(x) = f_{(\alpha)}(x) \right\}.$$

Since $\lim_{t\to x_0} f_{(\alpha)}(t) = f_{(\alpha)}(x_0)$, we have that $\lim_{t\to x_0} f_{(\alpha_0)}(t) = f_{(\alpha)}(x_0)$ and $x_0 \in U(f_{(\alpha_0)})$.

We have shown that $D_1 \setminus C(f_{(\alpha_0)}) \subset U(f_{(\alpha_0)}) \subset C(f_{(\alpha_0+1)})$. Hence

$$C\left(f_{(\alpha)}\right) = \left(D_1 \setminus C\left(f_{(\alpha_0)}\right)\right) \cup C\left(f_{(\alpha_0)}\right) \subset C\left(f_{(\alpha_0+1)}\right) \subset C\left(f_{(\alpha)}\right)$$

and $\alpha = \alpha_0 + 1$. Hence $\alpha = \alpha_0 + 1 < \omega_1$ and the proof is completed.

Definition 9 Put $\mathcal{A} = \bigcup_{0 \leq \alpha < \omega_1} \mathcal{A}_{\alpha}$. If a function $f \in \mathcal{A}$, then it will be called an improvable function.

Definition 10 For $A \subset D \subset \mathbb{R}$, let

$$\mathcal{M}(A) = \{ f : D \to \mathbb{R}; \ f(A) = \{ 0 \} \ and, \ for \ each \ x \in D, \ f(x) \ge 0 \}$$

The following theorem will be very useful in the paper.

Theorem 6 Let A be a dense subset of D and let $f \in \mathcal{A}_{\alpha}$ be a function such that C(f) = A. Then $g = |f - f_{(\alpha)}| \in \mathcal{M}(A)$ and for each $0 \leq \beta \leq \alpha$, $C(f_{(\beta)}) = C(g_{(\beta)}), U(f_{(\beta)}) = U(g_{(\beta)})$ and $g_{(\beta)} = |f_{(\beta)} - f_{(\alpha)}|$.

PROOF. Assume that $f \in \mathcal{A}_{\alpha}$. Let $g = |f - f_{(\alpha)}|$. Of course, for each $x \in D, g(x) \ge 0$. Let $x \in A$ and $g(x) = |f(x) - f_{(\alpha)}(x)|$. Since C(f) = A, by Theorem 1 (2, α), for each $x \in A$, $f_{(\alpha)}(x) = f(x)$; so g(x) = 0. Thus $g \in \mathcal{M}(A)$.

Now, we show by the transfinite induction that, for each β with $0 \leq \beta \leq \alpha$,

$$C(f_{(\beta)}) = C(g_{(\beta)}), U(f_{(\beta)}) = U(g_{(\beta)}) \text{ and } g_{(\beta)} = |f_{(\beta)} - f_{(\alpha)}|.$$

First, we show that L(f) = L(g). Since $D = C(f_{(\alpha)})$, $L(f) \subset L(g)$. Now, we assume that $x_0 \in L(g)$. Since A is a dense subset of D and $g(A) = \{0\}$, $\lim_{t\to x_0} g(t) = 0$. Therefore, by $x_0 \in C(f_{(\alpha)}) = D$, and

$$0 = \lim_{t \to x_0} g(t) = \lim_{t \to x_0} |f(t) - f_{(\alpha)}(t)|,$$

we have $\lim_{t\to x_0} (f(t) - f_{(\alpha)}(t)) = 0$ and

$$\lim_{t \to x_0} f(t) = \lim_{t \to x_0} \left(f(t) - f_{(\alpha)}(t) + f_{(\alpha)}(t) \right) = f_{(\alpha)}(x_0).$$

Thus there exists $\lim_{t\to x_0} f(t)$ and $x_0 \in L(f)$. Hence L(f) = L(g). It is easy to show that C(f) = C(g). Hence, of course, U(f) = U(g). Now, we assume that, for each ordinal number ξ with $0 \leq \xi < \beta$, we have shown that $C(f_{(\xi)}) = C(g_{(\xi)})$, $U(f_{(\xi)}) = U(g_{(\xi)})$ and $g_{(\xi)} = |f_{(\xi)} - f_{(\alpha)}|$ for each $x \in D$. First, we show that $g_{(\beta)} = |f_{(\beta)} - f_{(\alpha)}|$. Let $x \in D$ be a point such that $\{\xi < \beta; x \in U(g_{(\xi)})\} = \emptyset$. Then $\{\xi < \beta; x \in U(f_{(\xi)})\} = \emptyset$; so $f(x) = f_{(\beta)}(x)$. Thus $g(x) = |f(x) - f_{(\alpha)}(x)| = |f_{(\beta)}(x) - f_{(\alpha)}(x)|$. If $\xi_0 =$ $\min \{\xi < \beta; x \in U(g_{(\xi)})\}$, then $x \in U(g_{(\xi_0)})$ and, of course, $x \in U(f_{(\xi_0)})$. Therefore $\xi_0 = \min \{\xi < \beta; x \in U(f_{(\xi)})\}$. Thus

$$\lim_{t \to x} g_{(\xi_0)}(t) = \lim_{t \to x} |f_{(\xi_0)}(t) - f_{(\alpha)}(t)| = |f_{(\beta)}(x) - f_{(\alpha)}(x)|$$

Since

$$g_{(\beta)}(x) = \begin{cases} g(x), & \text{if } \left\{ \xi < \beta; \ x \in U\left(g_{(\xi)}\right) \right\} = \emptyset, \\ \lim_{t \to x} g_{(\xi_0)}(t), & \text{if } x \in U\left(g_{(\xi_0)}\right), \\ & \text{where } \xi_0 = \min\left\{ \xi < \beta; \ x \in U\left(g_{(\xi)}\right) \right\}, \end{cases}$$

we have $g_{(\beta)}(x) = |f_{(\beta)}(x) - f_{(\alpha)}(x)|$. Since $C(f_{(\alpha)}) = D$ and C(g) = C(f) = A, we can show that $L(f_{(\alpha)}) = L(g_{(\alpha)})$ and $C(f_{(\alpha)}) = C(g_{(\alpha)})$. Then $U(f_{(\alpha)}) = U(g_{(\alpha)})$. Thus the proof is complete.

Corollary 3 Let A be a dense subset of D and let $f \in \mathcal{A}_{\alpha} \setminus \bigcup_{0 \leq \beta < \alpha} \mathcal{A}_{\beta}$ be a function such that C(f) = A. Then, for each β with $0 \leq \beta \leq \alpha$,

$$g_{(\beta)} \in \mathcal{M}\left(C\left(f_{(\beta)}\right)\right).$$

3 α -improvable Discontinuous Functions

First we give a necessary and sufficient condition under which a set A is the set of all points of continuity of some α -improvable discontinuous function.

Theorem 7 Let A be a subset of D, where $D \subset \mathbb{R}$ is closed. Then the following are equivalent.

(1) There exists a function $f: D \to \mathbb{R}$ such that $f \in \mathcal{M}(A) \cap \mathcal{A}_{\alpha} \setminus \bigcup_{0 \le \beta < \alpha} \mathcal{A}_{\beta}$ and C(f) = A. (2) cl A = D and there exist two ascending sequences of sets $(C_{\beta})_{0 \le \beta \le \alpha}$ and $(F_n)_{n=1}^{\infty}$ such that $C_0 = A$, $C_{\alpha} = D$ and, for each ordinal number β with $0 \le \beta < \alpha$, $C_{\beta} \ne C_{\beta+1}$ and

$$D \setminus \left(\bigcup_{n=1}^{\infty} (F_n \cap C_{\beta+1}) \cup C_{\beta}\right) = \bigcup_{n=1}^{\infty} \left(F_n \cap \bigcup_{\beta \le \xi < \alpha} (C_{\xi+1} \setminus C_{\xi})\right)^d.$$

PROOF. We assume that condition (1) is satisfied. By Theorem 3, cl A = D. For each ordinal number β with $0 \leq \beta \leq \alpha$, put $C_{(\beta)} = C(f_{(\beta)})$ and, for each $n \in \mathbb{N}$, $F_n = \{x \in D; f(x) \geq \frac{1}{n}\}$. Then $C_0 = A$, $C_\alpha = D$ and, for each β $(0 \leq \beta < \alpha), C_\beta \neq C_{\beta+1}$. It is obvious that $(F_n)_{n=1}^{\infty}$ is an ascending sequence. By Remark 3, we know that the sequence $(C_\beta)_{0\leq\beta<\alpha}$ is ascending, also. Let $\beta(0 \leq \beta < \alpha)$ be an ordinal number. Since, for each $x \in D$, $f_{(\alpha)}(x) = 0$, by Theorem 1 $(2,\alpha)$, we know that

$$\left\{ x \in D; \ f_{(\beta)}(x) > 0 \right\} = \left\{ x \in D; \ f_{(\beta)}(x) \neq f_{(\alpha)}(x) \right\} = \bigcup_{\beta \le \xi < \alpha} U\left(f_{(\xi)} \right).$$

By Theorem 1 $(2,\beta)$ and $(4,\beta)$, we have that

$$\left\{x \in D; \ f(x) \neq f_{(\beta)}(x)\right\} = \bigcup_{0 \le \xi < \beta} U\left(f_{(\xi)}\right) \subset \bigcup_{0 \le \xi < \beta} L\left(f_{(\xi)}\right) \subset C\left(f_{(\beta)}\right).$$

Therefore, for each $x \in D \setminus C_{\beta}$, $f(x) = f_{(\beta)}(x)$.

We shall show that $L(f_{(\beta)}) = C_{\beta} \cup \bigcup_{n=1}^{\infty} (F_n \cap C_{\beta+1})$. Since $C_{\beta} \subset L(f_{(\beta)})$, we suppose that there exists $x_0 \in D \setminus L(f_{(\beta)})$ such that $x_0 \in \bigcup_{n=1}^{\infty} (F_n \cap (C_{\beta+1} \setminus C_{\beta}))$. Then $f_{(\beta+1)}(x_0) = f_{(\beta)}(x_0) = f(x_0) > 0$ and $x_0 \notin C(f_{(\beta+1)}) = C_{\beta+1}$, a contradiction.

Therefore $C_{\beta} \cup \bigcup_{n=1}^{\infty} (F_n \cap C_{\beta+1}) \subset L(f_{(\beta)})$. If $x_0 \in L(f_{(\beta)})$, then $x_0 \in C_{\beta}$ or $x_0 \in C_{\beta+1} \setminus C_{\beta}$ and there exists $n \in \mathbb{N}$ such that $f_{(\beta)}(x_0) \geq \frac{1}{n}$. Therefore $x_0 \in C_{\beta}$ or $x_0 \in C_{\beta+1} \setminus C_{\beta}$ and $f(x_0) \geq \frac{1}{n}$. Hence $x_0 \in C_{\beta} \cup \bigcup_{n=1}^{\infty} (F_n \cap C_{\beta+1})$. Thus

$$L(f_{(\beta)}) = C_{\beta} \cup \bigcup_{n=1}^{\infty} (F_n \cap C_{\beta+1}).$$

416

We fix $n \in \mathbb{N}$. Let $H = \bigcup_{\beta \le \xi < \alpha} (C_{\xi+1} \setminus C_{\xi})$. Then

$$\begin{cases} x \in D; \ f(x) \ge \frac{1}{n} \end{cases} \cap H \subset \left\{ x \in D; \ f_{(\beta)}(x) \ge \frac{1}{n} \right\} \\ \subset \left\{ x \in D; \ f_{(\beta)}(x) \ge \frac{1}{n} \right\} \cap \bigcup_{\beta \le \xi < \alpha} U\left(f_{(\xi)} \right) \\ \subset \left\{ x \in D; \ f_{(\beta)}(x) \ge \frac{1}{n} \right\} \cap H \\ \subset \left\{ x \in D; \ f(x) \ge \frac{1}{n} \right\} \cap H. \end{cases}$$

Therefore $\left(\left\{x \in D; f_{(\beta)}(x) \geq \frac{1}{n}\right\}\right)^d = \left(F_n \cap \bigcup_{\beta \leq \xi < \alpha} \left(C_{\xi+1} \setminus C_{\xi}\right)\right)^d$ and

$$D \setminus \left(C_{\beta} \cup \bigcup_{n=1}^{\infty} (F_n \cap C_{\beta+1}) \right) = D \setminus L\left(f_{(\beta)}\right)$$
$$= \left\{ x \in D; \ \limsup_{t \to x} f_{(\beta)}(t) > 0 \right\}$$
$$= \bigcup_{n=1}^{\infty} \left(\left\{ x \in D; \ f_{(\beta)}(x) \ge \frac{1}{n} \right\} \right)^d$$
$$= \bigcup_{n=1}^{\infty} \left(F_n \cap \bigcup_{\beta \le \xi < \alpha} (C_{\xi+1} \setminus C_{\xi}) \right)^d.$$

Hence we have proved condition (2).

Now, we assume that condition (2) holds. Let

$$f(x) = \begin{cases} 0, & \text{if } \left\{ m \in \mathbb{N}; \ x \in F_m \cap \bigcup_{0 \le \xi < \alpha} \left(C_{\xi+1} \setminus C_{\xi} \right) \right\} = \emptyset, \\ & \text{otherwise,} \\ \frac{1}{n}, & \text{where } n = \min \left\{ m \in \mathbb{N}; \ x \in F_m \cap \bigcup_{0 \le \xi < \alpha} \left(C_{\xi+1} \setminus C_{\xi} \right) \right\}. \end{cases}$$

We observe that, for each β with $0\leq\beta<\alpha,$

$$\left\{x \in D; \, \limsup_{t \to x} f_{|D \setminus C_{\beta}}(t) > 0\right\} = \bigcup_{n=1}^{\infty} \left(F_n \cap \bigcup_{\beta \le \xi < \alpha} \left(C_{\xi+1} \setminus C_{\xi}\right)\right)^d.$$

Since $f(A) = f(C_0) = \{0\}$ and since cl A = D, we have that

$$\left\{x \in D; \, \liminf_{t \to x} f(t) = 0\right\} = D.$$

We know that

$$\left\{ x \in D; \limsup_{t \to x} f(t) > 0 \right\} = \left\{ x \in D; \limsup_{t \to x} f_{|D \setminus C_0}(t) > 0 \right\}$$
$$= \bigcup_{n=1}^{\infty} \left(F_n \cap \bigcup_{0 \le \xi < \alpha} \left(C_{\xi+1} \setminus C_{\xi} \right) \right)^d.$$

Therefore, by our assumption,

$$L(f) = \left\{ x \in D; \lim_{t \to x} f(t) = 0 \right\} = C_0 \cup \bigcup_{n=1}^{\infty} (F_n \cap C_1)$$
$$= C_0 \cup \bigcup_{n=1}^{\infty} (F_n \cap (C_1 \setminus C_0))$$

and $C(f) = C_0$, $U(f) = \bigcup_{n=1}^{\infty} (F_n \cap (C_1 \setminus C_0))$. Let $0 \le \beta \le \alpha$. We assume that, for each γ with $0 \le \gamma < \beta$,

$$C(f_{(\gamma)}) = C_{\gamma}, \ U(f_{(\gamma)}) = \bigcup_{n=1}^{\infty} (F_n \cap (C_{\gamma+1} \setminus C_{\gamma}))$$

and $L(f_{(\gamma)}) = \{x \in D; \lim_{t \to t} f_{(\gamma)}(t) = 0\}$. Let $x \in C_{\beta}$.

- If $\{\gamma < \beta; x \in U \ (f_{(\gamma)})\} \neq \emptyset$, then $f_{(\beta)}(x) = \lim_{t \to x} f_{(\gamma_0)}(t) = 0$ where $\gamma_0 = \min\{\gamma < \beta; x \in U \ (f_{(\gamma)})\}.$
- If $\{\gamma < \beta; x \in U(f_{(\gamma)})\} = \emptyset$, then, for each γ with $0 \leq \gamma < \beta, x \notin U(f_{(\gamma)}) = \bigcup_{n=1}^{\infty} (F_n \cap (C_{\gamma+1} \setminus C_{\gamma}))$ and, by $x \in C_{\beta}$, we have that $x \notin \bigcup_{n=1}^{\infty} (F_n \cap \bigcup_{\beta \leq \xi < \alpha} (C_{\xi+1} \setminus C_{\xi}))$.

Therefore $x \notin \bigcup_{n=1}^{\infty} \left(F_n \cap \bigcup_{0 \le \xi < \alpha} (C_{\xi+1} \setminus C_{\xi}) \right)$ and $x \notin \bigcup_{0 \le \xi < \beta} U(f_{(\xi)})$. So $f_{(\beta)}(x) = f(x) = 0$. Hence $f_{(\beta)}(C_{\beta}) = \{0\}$. Since $A = C_0 \subset C_{\beta}$ and cl A = D, therefore $\{x \in D; \lim \inf_{t \to x} f_{(\beta)}(t) = 0\} = D$. We observe that

$$\left\{x \in D; \limsup_{t \to x} f_{(\beta)}(t) > 0\right\} = \left\{x \in D; \limsup_{t \to x} f_{\mid (D \setminus C_{\beta}) \ (\beta)}(t) > 0\right\}.$$

By Theorem 1 $(2,\beta)$;

$$\left\{x \in D; \ f_{(\beta)}(x) \neq f(x)\right\} = \bigcup_{0 \le \xi < \beta} U\left(f_{(\xi)}\right) \subset \bigcup_{0 \le \xi < \beta} C_{\xi+1} \subset C_{\beta}$$

418

Therefore

$$\left\{x \in D; \limsup_{t \to x} f_{\mid (D \setminus C_{\beta}) (\beta)}(t) > 0\right\} = \left\{x \in D; \limsup_{t \to x} f_{\mid D \setminus C_{\beta}}(t) > 0\right\}$$
$$= \bigcup_{n=1}^{\infty} \left(F_n \cap \bigcup_{\beta \le \xi < \alpha} (C_{\xi+1} \setminus C_{\xi})\right)^d$$

Then, by our assumption, we know that

$$L(f_{(\beta)}) = \left\{ x \in D; \lim_{t \to x} f_{(\beta)}(t) = 0 \right\} = C_{\beta} \cup \bigcup_{n=1}^{\infty} (F_n \cap C_{\beta+1})$$
$$= C_{\beta} \cup \bigcup_{n=1}^{\infty} (F_n \cap (C_{\beta+1} \setminus C_{\beta})).$$

Thus $C(f_{(\beta)}) = C_{\beta}$ and $U(f_{(\beta)}) = \bigcup_{n=1}^{\infty} (F_n \cap (C_{\beta+1} \setminus C_{\beta}))$. We shall show that, for each $x \in D$, $f_{(\alpha)}(x) = 0$. If there exists β_0 with $0 \leq \beta_0 < \alpha \text{ such that } x \in U(f_{(\beta_0)}), \text{ then } f_{(\alpha)}(x) = \lim_{t \to x} f_{(\beta_0)}(t) = 0$ where $\beta_0 = \min \{\beta < \alpha; x \in U(f_{(\beta)})\}.$ If $\{\beta < \alpha; x \in U(f_{(\beta)})\} = \emptyset$, then, for each β with $0 \leq \beta < \alpha, x \notin \bigcup_{n=1}^{\infty} (F_n \cap (C_{\beta+1} \setminus C_{\beta})).$ Therefore $x \notin f_{(\beta_0)}(x) = 0$ $\bigcup_{n=1}^{\infty} \left(F_n \cap \bigcup_{0 \leq \beta < \alpha} \left(C_{\beta+1} \setminus C_{\beta} \right) \right) \text{ and } f_{(\alpha)}(x) = f(x) = 0. \text{ Hence } f \in \mathcal{A}_{\alpha} \setminus \mathcal{A}_{\beta}$ $\bigcup_{0<\beta<\alpha} \mathcal{A}_{\beta}$ and the proof of the theorem is complete.

Corollary 4 Let $(C_{\beta})_{0 < \beta < \alpha}$ be an ascending sequence of sets such that $clC_0 = \mathbb{R}, C_{\alpha} = \mathbb{R}.$ Let H be an arbitrary set such that, for each ordinal number β with $0 \leq \beta < \alpha$,

$$D \setminus ((H \cap C_{\beta+1}) \cup C_{\beta}) = \left(H \cap \bigcup_{\beta \le \xi < \alpha} (C_{\xi+1} \setminus C_{\xi})\right)^d$$

and $C_{\beta} \neq C_{\beta+1}$. Then the characteristic function of the set H belongs to the class $\mathcal{A}_{\alpha} \setminus \bigcup_{0 < \beta < \alpha} \mathcal{A}_{\beta}$.

PROOF. For each $n \in \mathbb{N}$, let $F_n = H$. Then, as in the proof of Theorem 10, we can prove that the characteristic function of the set H belongs to the class \mathcal{A}_{α} and, for each ordinal number β with $0 \leq \beta < \alpha$, $C_{\beta} = C(f_{(\beta)})$ and $U(f_{(\beta)}) =$ $H \cap (C_{\beta+1} \setminus C_{\beta})$. Since, by our assumption, for each ordinal number β with $0 \leq \beta < \alpha, C(f_{(\beta)}) \neq C(f_{(\beta+1)})$, we have that $f \notin \bigcup_{0 < \beta < \alpha} \mathcal{A}_{\beta}$. Thus the proof is complete. \square

The following theorem shows that we can construct an α -improvable discontinuous function for each $\alpha < \omega_1$. To prove this theorem we need the following lemma.

Lemma 1 Let $A = \bigcup_{n=1}^{\infty} A_n \cup \{0\}$ where, for each $n \in \mathbb{N}$, A_n is a closed set, $A_n \subset \left[\frac{1}{n+1}, \frac{1}{n}\right], \frac{1}{n+1} \in A_n$ and $\frac{1}{n}$ is a left-side isolated point in the set A. Then, for each ordinal number α , $A^{(\alpha)} \setminus \{0\} = \bigcup_{n=1}^{\infty} A_n^{(\alpha)}$.

PROOF. If $\alpha = 0$, then the lemma is true.

Let $\alpha > 0$ be an ordinal number and we assume that, for each ordinal number β with $0 \leq \beta < \alpha$, $A^{(\beta)} \setminus \{0\} = \bigcup_{n=1}^{\infty} A_n^{(\beta)}$. Consider two possibilities.

1. Let $\alpha = \gamma + 1$, where γ is an ordinal number and let $x_0 \in A^{(\alpha)} \setminus \{0\}$. Then there exists $n \in \mathbb{N}$ such that $x_0 \geq \frac{1}{n+1}$ and there exists a sequence $(x_k)_{k=1}^{\infty} \subset A^{(\gamma)}$ such that $\lim_{k \to \infty} x_k = x_0$. Since $\frac{1}{n+1}$ is a left-side isolated point of A and $A^{(\gamma)} \subset A$, there exists $k_0 \in \mathbb{N}$ such that, for each $k > k_0, x_k \geq \frac{1}{n+1}$. Hence $(x_k)_{k=1}^{\infty} \subset \bigcup_{i=1}^n A_i^{(\gamma)}$; so $x_0 \in \left(\bigcup_{i=1}^n A_i^{(\gamma)}\right)^d = \bigcup_{i=1}^n A_i^d \subset \bigcup_{n=1}^\infty A_n^d$. Thus $A^{(\alpha)} \setminus \{0\} \subset \bigcup_{n=1}^\infty A_n^{(\alpha)}$.

Since, for each $n \in \mathbb{N}$, $A_n \subset A$; so $A_n^{(\alpha)} \subset A^{(\alpha)}$. Hence $\bigcup_{n=1}^{\infty} A_n^{(\alpha)} \subset A^{(\alpha)}$ and since, for each $n \in \mathbb{N}$, $0 \notin A_n$, for each $n \in \mathbb{N}$, $0 \notin A_n^{(\alpha)}$; so $0 \notin \bigcup_{n=1}^{\infty} A_n^{(\alpha)}$. Thus $\bigcup_{n=1}^{\infty} A_n^{(\alpha)} \subset A^{(\alpha)} \setminus \{0\}$.

2. Let α be a limit ordinal number and let $x_0 \in A^{(\alpha)} \setminus \{0\}$. Then there exists $n \in \mathbb{N}$ such that $x_0 \geq \frac{1}{n+1}$. Let $\gamma < \alpha$ be an ordinal number. Then $x_0 \in A^{(\gamma+1)}$. Thus there exists a sequence $(x_k)_{k=1}^{\infty} \subset A^{(\gamma)}$ such that $\lim_{k\to\infty} x_k = x_0$. As above we can show that $x_0 \in A_n^{(\gamma+1)}$. Hence $x_0 \in \bigcap_{\gamma < \alpha} A_n^{(\gamma+1)} \subset \bigcap_{\gamma < \alpha} A_n^{(\gamma)} = A_n^{(\alpha)}$. Thus $x_0 \in \bigcup_{n=1}^{\infty} A_n^{(\alpha)}$. Similarly to the first part, we can show that $\bigcup_{n=1}^{\infty} A_n^{(\alpha)} \subset A^{(\alpha)} \setminus \{0\}$.

Thus the proof is complete.

Theorem 8 For each ordinal number $\alpha < \omega_1$, there exists a function $f \in \mathcal{A}_{\alpha} \setminus \bigcup_{0 \leq \beta < \alpha} \mathcal{A}_{\beta}$.

PROOF. For each set $A \subset \mathbb{R}$ and $a, b \in \mathbb{R}$, let $aA + b = \{ax + b; x \in A\}$. By transfinite induction, we define a sequence of sets $(W_{\alpha})_{0 \leq \alpha < \omega_1}$ in the following way: $W_0 = \emptyset, W_1 = \{0\}, W_2 = \{\frac{1}{n}; n \in \mathbb{N}\} \cup \{0\}$ and, for each ordinal number α with $3 \leq \alpha < \omega_1$,

1. if $\alpha = \gamma + 2$, where γ is an ordinal number, then put

$$[W_{\alpha} = \bigcup_{n=1}^{\infty} \left(\frac{1}{n(n+1)} W_{\gamma+1} + \frac{1}{n+1} \right) \cup \{0\},\$$

2. if α is a limit ordinal number, then

$$W_{\alpha} = \bigcup_{n=1}^{\infty} \left(\frac{1}{n(n+1)} W_{\alpha_n} + \frac{1}{n+1} \right) \cup \{0\}$$

where $(\alpha_n)_{n=1}^{\infty}$ is a sequence of ordinal numbers such that $\lim_{n\to\infty} \alpha_n = \alpha$ and, for each $n \in \mathbb{N}$, $\alpha_n < \alpha$ and α_n is not a limit ordinal number,

- 3. if $\alpha = \gamma + 1$, where β is a limit ordinal number, then put $W_{\alpha} = W_{\gamma}$.
- We shall show that, for each ordinal number α with $0 \leq \alpha < \omega_1$,
- (i) W_{α} is a closed nowhere dense set and $W_{\alpha} \subset [0, 1]$,
- (ii) if $\alpha > 1$, then, for each $n \in \mathbb{N}$, $\frac{1}{n} \in W_{\alpha}$ and there exists $\delta_n^{(\alpha)} > 0$ such that $\left(\frac{1}{n} \delta_n^{(\alpha)}, \frac{1}{n}\right) \cap W_{\alpha} = \emptyset$,
- (iii) if $\alpha > 0$, then, for each β with $0 \le \beta < \alpha, 0 \in W_{\alpha}^{(\beta)}$,
- (iv) if α is not a limit ordinal number, then $W_{\alpha}^{(\alpha)} = \emptyset$ and if α is a limit ordinal number, then $W_{\alpha}^{(\alpha)} = \{0\}$.

The above conditions are obvious for $\alpha = 0, 1, 2$. Let α with $2 < \alpha < \omega_1$ be an ordinal number. We assume that conditions (i), (ii), (iii), (iv) are satisfied for each ordinal number $\beta < \alpha$.

1. We assume that $\alpha = \gamma + 2$, where γ is an ordinal number. Since $W_{\gamma+1}$ is a closed nowhere dense set and $W_{\gamma+1} \subset [0,1]$, for each $n \in \mathbb{N}$, $\frac{1}{n(n+1)}W_{\gamma+1} + \frac{1}{n+1}$ is a closed nowhere dense set and $\frac{1}{n(n+1)}W_{\gamma+1} + \frac{1}{n+1} \subset \left[\frac{1}{n+1}, \frac{1}{n}\right]$. Therefore W_{α} is a closed nowhere dense set and $W_{\alpha} \subset [0,1]$. Let $n \in \mathbb{N}$. Since $1 \in W_{\gamma+1}$, we obtain

$$\frac{1}{n} = \frac{1}{n(n+1)} + \frac{1}{n+1} \in \frac{1}{n(n+1)}W_{\gamma+1} + \frac{1}{n+1} \subset W_{\alpha}.$$

By our assumption, there exists $\delta_1^{(\gamma+1)} > 0$ such that $\left(1 - \delta_1^{(\gamma+1)}, 1\right) \cap W_{\gamma+1} = \emptyset$. We put $\delta_n^{(\alpha)} = \frac{1}{n(n+1)} \delta_1^{(\gamma+1)}$. Then $\left(\frac{1}{n} - \delta_n^{(\alpha)}, \frac{1}{n}\right) \cap W_{\alpha} = \emptyset$. Let β be an ordinal number such that $0 \leq \beta < \alpha$. By the above, we have that the assumptions of Lemma 1 are satisfied. Therefore

$$W_{\alpha}^{(\beta)} \setminus \{0\} = \bigcup_{n=1}^{\infty} \left(\frac{1}{n(n+1)}W_{\gamma+1} + \frac{1}{n+1}\right)^{(\beta)}$$
$$= \bigcup_{n=1}^{\infty} \left(\frac{1}{n(n+1)}W_{\gamma+1}^{(\beta)} + \frac{1}{n+1}\right).$$

By our assumption, $0 \in W_{\gamma+1}^{(\gamma)}$. Therefore, for each $n \in \mathbb{N}$, $\frac{1}{n+1} \in \frac{1}{n(n+1)}W_{\gamma+1}^{(\gamma)} + \frac{1}{n+1} \subset W_{\alpha}^{(\gamma)}$. Thus $0 \in W_{\alpha}^{(\gamma+1)} \subset W_{\alpha}^{(\beta)}$. We know that $W_{\gamma+1}^{(\gamma+1)} = \emptyset$. Hence

$$W_{\alpha}^{(\gamma+1)} \setminus \{0\} = \bigcup_{n=1}^{\infty} \left(\frac{1}{n(n+1)}W_{\gamma+1}^{(\gamma+1)} + \frac{1}{n+1}\right) = \emptyset$$

and $W_{\alpha}^{(\alpha)} = \emptyset$.

2. Now we assume that α is a limit ordinal number. As to above we may show that conditions (i) and (ii) are satisfied. Additionally, by Lemma 1, we have that, for each ordinal number β with $0 \le \beta \le \alpha$,

$$W_{\alpha}^{(\beta)} \setminus \{0\} = \bigcup_{n=1}^{\infty} \left(\frac{1}{n(n+1)}W_{\alpha_n}^{(\beta)} + \frac{1}{n+1}\right)$$

Let $0 \leq \beta < \alpha$. Then there exists $n_0 \in \mathbb{N}$ such that, for each $n \in \mathbb{N}$, $n \geq n_0, \alpha_n > \beta$. By our assumption, for each $n \geq n_0, 0 \in W_{\alpha_n}^{(\beta)}$ and $\frac{1}{n+1} \in \frac{1}{n(n+1)} W_{\alpha_n}^{(\beta)} + \frac{1}{n+1} \subset W_{\alpha}^{(\beta)}$. Thus $0 \in W_{\alpha}^{(\beta+1)} \subset W_{\alpha}^{(\beta)}$ and $0 \in \bigcap_{0 \leq \beta < \alpha} W_{\alpha}^{(\beta)} = W_{\alpha}^{(\alpha)}$. We know that, for each $n \in \mathbb{N}, W_{\alpha_n}^{(\alpha)} \subset W_{\alpha_n}^{(\alpha_n)} = \emptyset$. Therefore $W_{\alpha}^{(\alpha)} \setminus \{0\} = \emptyset$. Hence $W_{\alpha}^{(\alpha)} = \{0\}$.

3. Now we assume that $\alpha = \gamma + 1$, where γ is a limit ordinal number. It is obvious that conditions (i), (ii), (iii) are satisfied. Additionally

$$W_{\alpha}^{(\alpha)} = W_{\gamma}^{(\alpha)} = \left(W_{\gamma}^{(\gamma)}\right)^d = \left(\{0\}\right)^d = \emptyset.$$

Now, we consider the following possibilities.

1. Let $\alpha = \gamma + 2$, where γ is an ordinal number. In Corollary 4, we put $H = W_{\alpha}$ and, for each ordinal number β with $0 \leq \beta \leq \alpha$, $C_{\beta} = \mathbb{R} \setminus W_{\alpha}^{(\beta)}$. Then

$$\left(H \cap \bigcup_{\beta \le \xi < \alpha} \left(C_{\xi+1} \setminus C_{\xi}\right)\right)^{a} = \left(W_{\alpha}^{(\beta)}\right)^{d}$$

and $\mathbb{R} \setminus ((H \cap C_{\beta+1}) \cup C_{\beta}) = W_{\alpha}^{(\beta+1)}$. Therefore the characteristic function of the set H belongs to the class $\mathcal{A}_{\alpha} \setminus \bigcup_{0 < \beta < \alpha} \mathcal{A}_{\beta}$.

2. Let α be a limit ordinal number. Put $H = W_{\alpha} \setminus \{0\}$ and, $C_0 = \mathbb{R} \setminus W_{\alpha}$, for each ordinal number β with $0 \leq \beta < \alpha$, $C_{\beta} = \mathbb{R} \setminus W_{\alpha}^{(\beta)}$, $C_{\alpha} = \mathbb{R}$. We

show that all assumptions of Corollary 4 are satisfied. We observe that

$$\bigcup_{\beta \leq \xi < \alpha} \left(C_{\xi+1} \setminus C_{\xi} \right) = \bigcup_{\beta \leq \xi < \alpha} \left(W_{\alpha}^{(\xi)} \setminus W_{\alpha}^{(\xi+1)} \right)$$

Since $W_{\alpha}^{(\alpha)} = \{0\}$, we have $\bigcup_{\beta \leq \xi < \alpha} \left(W_{\alpha}^{(\xi)} \setminus W_{\alpha}^{(\xi+1)} \right) = W_{\alpha}^{(\beta)} \setminus \{0\}$. Thus

$$\left(H \cap \bigcup_{\beta \le \xi < \alpha} \left(C_{\xi+1} \setminus C_{\xi}\right)\right)^{d} = \left(\left(W_{\alpha} \cap W_{\alpha}^{(\beta)}\right) \setminus \{0\}\right)^{d}$$
$$= \left(W_{\alpha}^{(\beta)}\right)^{d} = W_{\alpha}^{(\beta+1)}.$$

Since $\mathbb{R} \setminus ((H \cap C_{\beta+1}) \cup C_{\beta}) = \{0\} \cup W_{\alpha}^{(\beta+1)} = W_{\alpha}^{(\beta+1)}$, by Corollary 4, we have that, the characteristic function of the set H belongs to the class $\mathcal{A}_{\alpha} \setminus \bigcup_{0 < \beta < \alpha} \mathcal{A}_{\beta}$.

3. Let $\alpha = \gamma + 1$, where γ is a limit ordinal number. Put $H = W_{\alpha}$ and, for each ordinal number β with $0 \leq \beta \leq \alpha$, $C_{\beta} = \mathbb{R} \setminus W_{\alpha}^{(\beta)}$. As in the first part, we can show that the characteristic function of the set H belongs to $\mathcal{A}_{\alpha} \setminus \bigcup_{0 \leq \beta \leq \alpha} \mathcal{A}_{\beta}$.

Thus the proof is complete.

References

- P. S. Alexandroff, Введение в теорию множеств и общую топологию, Издателство Наука, Москва, р. 162–163, 1977.
- W. H. Young, La symetrie de structure des fonctions des variables r eelles, Bulletin des Sciences Mathematiques, 52 (2) (1928), 265–280.