Aleksandra Katafiasz, Instytut Matematyki WSP, Chodkiewicza 30, 85-064
Bydgoszcz, Poland. e-mail: wspb04@@cc.uni.torun.pl

IMPROVABLE DISCONTINUOUS FUNCTIONS

Abstract

In this paper the class of improvable functions is defined and the pasic properties of such functions is examined. Moreover, a necessary and sufficient condition under which a set A is the set of points of continuity of some α-improvable discontinuous function is gives. and it is shown that the classes \mathcal{A}_{α} and \mathcal{A}_{β} are different is $\alpha \neq \beta$.

1 Introduction

If at some point $x \lim _{t \rightarrow x} f(t)$ exists and $\lim _{t \rightarrow x} f(t) \neq f(x)$, then we can say that f has an improvable discontinuity at the point x. If at each such point we change the value $f(x)$ to $\lim _{t \rightarrow x} f(t)$, then we obtain a new function $f_{(1)}$ with the "improved" improvable points of discontinuity of the function f. Repeating this process for the function $f_{(1)}$ and so on, we can create a sequence (even the transfinite sequence) $\left(f_{(\alpha)}\right)$ in such a way that $f_{(\alpha+1)}$ is obtained from $f_{(\alpha)}$ by "improving" $f_{(\alpha)}$.

2 Preliminaries

The word "function" will mean a bounded real function of a real variable. Let $D \subset \mathbb{R}$.

Definition 1 For each function $f: D \rightarrow \mathbb{R}$, let

$$
\begin{aligned}
C(f) & =\left\{x \in D ; \lim _{t \rightarrow x} f(t)=f(x)\right\} \\
U(f) & =\left\{x \in D ; \lim _{t \rightarrow x} f(t) \neq f(x)\right\} \\
L(f) & =\left\{x \in D ; \lim _{t \rightarrow x} f(t) \text { exists }\right\} .
\end{aligned}
$$

[^0]Received by the editors February 24, 1993

Definition $2 A$ point $x_{0} \in U(f)$ is called an improvable point of discontinuity of the function f.

The following remark can be easily seen.
Remark 1 Let $f: D \rightarrow \mathbb{R}$. Then $U(f) \cap C(f)=\emptyset$ and $L(f)=U(f) \cup C(f)$.
The following proposition is well known. (Compare to [2].)
Proposition 1 The set $U(f)$ is countable.
We define the functions $f_{(\alpha)}$ on the class of ordinal numbers.
Definition 3 Let $f: D \rightarrow \mathbb{R}$ and let $f_{(0)}(x)=f(x)$ for each $x \in D$. For every ordinal number α, let
$f_{(\alpha)}(x)= \begin{cases}f(x) & \text { if }\left\{\gamma<\alpha ; x \in U\left(f_{(\gamma)}\right)\right\}=\emptyset, \\ \lim _{t \rightarrow x} f_{\left(\gamma_{0}\right)}(t) & \text { if } x \in U\left(f_{\left(\gamma_{0}\right)}\right), \\ & \text { where } \gamma_{0}=\min \left\{\gamma<\alpha ; x \in U\left(f_{(\gamma)}\right)\right\} .\end{cases}$
This theorem will be very useful in the paper.
Theorem 1 Let $f: D \rightarrow \mathbb{R}$ and let $\alpha>0$ be an ordinal number. Then
$(1, \alpha)$ for each $x \in D,\left\{\gamma<\alpha ; x \in U\left(f_{(\gamma)}\right)\right\}$ is the empty set or has only one element,
$\mathbf{(2 , \alpha)}$ for each ordinal number $\gamma(\gamma<\alpha)$,

$$
\left\{x \in D ; f_{(\gamma)}(x) \neq f_{(\alpha)}(x)\right\}=\bigcup_{\gamma \leq \beta<\alpha} U\left(f_{(\beta)}\right)
$$

$\mathbf{(3 , \alpha)}$ for each ordinal number $\gamma(\gamma<\alpha)$, if $x \in L\left(f_{(\gamma)}\right)$, then

$$
\lim _{t \rightarrow x} f_{(\gamma)}(t)=f_{(\alpha)}(x)
$$

$(4, \alpha) \bigcup_{0 \leq \beta<\alpha} L\left(f_{(\beta)}\right) \subset C\left(f_{(\alpha)}\right)$.
Proof. It can be easily shown that $(1,1),(2,1)$ and $(3,1)$ hold. Let $x_{0} \in$ $L\left(f_{(0)}\right)$. Then, by $(3,1), \lim _{t \rightarrow x_{0}} f_{(0)}(t)=f_{(1)}\left(x_{0}\right)$. Let $\epsilon>0$. Then there exists $\delta>0$ such that, for each $t \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap D$, if $t \neq x_{0}$ then $\left|f_{(0)}(t)-f_{(1)}\left(x_{0}\right)\right|<\frac{\epsilon}{2}$. We shall show that, for each $t \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap D$, $\left|f_{(1)}(t)-f_{(1)}\left(x_{0}\right)\right|<\epsilon$. Let $t \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap D$. It may be assumed that $t \neq x_{0}$ and $f_{(0)}(t) \neq f_{(1)}(t)$. Then, by $(2,1), t \in U\left(f_{(0)}\right) \subset L\left(f_{(0)}\right)$ and,
by $(3,1), \lim _{z \rightarrow t} f_{(0)}(z)=f_{(1)}(t)$. Since $t \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap D$, there exists $z \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap D$ such that $z \neq x_{0}$ and $\left|f_{(0)}(z)-f_{(1)}(t)\right|<\frac{\epsilon}{2}$. Thus

$$
\left|f_{(1)}(t)-f_{(1)}\left(x_{0}\right)\right| \leq\left|f_{(1)}(t)-f_{(0)}(z)\right|+\left|f_{(0)}(z)-f_{(1)}\left(x_{0}\right)\right|<\epsilon
$$

Therefore $x_{0} \in C\left(f_{(1)}\right)$ and $(4,1)$ is proved.
Let $\alpha_{0}>1$ be an ordinal number. Assume for each α with $1 \leq \alpha<\alpha_{0}$, we have $(1, \alpha),(2, \alpha),(3, \alpha),(4, \alpha)$. Let $x \in D$ and $\left\{\gamma<\alpha_{0} ; x \in U\left(f_{(\gamma)}\right)\right\} \neq \emptyset$. Put $\gamma_{0}=\min \left\{\gamma<\alpha_{0} ; x \in U\left(f_{(\gamma)}\right)\right\}$. If $\alpha_{0}=\gamma_{0}+1$, then

$$
\left\{\gamma<\alpha_{0} ; x \in U\left(f_{(\gamma)}\right)\right\}=\left\{\gamma_{0}\right\}
$$

If $\gamma_{0}+1<\alpha_{0}$ and $\gamma_{0}<\gamma_{1}<\alpha_{0}$, then

$$
x \in U\left(f_{\left(\gamma_{0}\right)}\right) \subset L\left(f_{\left(\gamma_{0}\right)}\right) \subset \bigcup_{0 \leq \beta<\gamma_{1}} L\left(f_{(\beta)}\right)
$$

Since $\gamma_{1}<\alpha_{0}$, by $\left(4, \gamma_{1}\right), x \in \bigcup_{0 \leq \beta<\gamma_{1}} L\left(f_{(\beta)}\right) \subset C\left(f_{\left(\gamma_{1}\right)}\right)$ and $x \notin U\left(f_{\left(\gamma_{1}\right)}\right)$. Thus $\gamma_{1} \notin\left\{\gamma<\alpha_{0} ; x \in U\left(f_{(\gamma)}\right)\right\}$. Hence $\left\{\gamma<\alpha_{0} ; x \in U\left(f_{(\gamma)}\right)\right\}=\left\{\gamma_{0}\right\}$ and we have $\left(1, \alpha_{0}\right)$.

Let $\gamma<\alpha_{0}$. First, assume that $x \notin \bigcup_{\gamma \leq \beta<\alpha_{0}} U\left(f_{(\beta)}\right)$. If $\left\{\beta<\alpha_{0}\right.$; $\left.x \in U\left(f_{(\beta)}\right)\right\} \neq \emptyset$, then, by $\left(1, \alpha_{0}\right)$, there exists $\beta_{0}<\gamma$ such that $\left\{\beta<\alpha_{0}\right.$; $\left.x \in U\left(f_{(\beta)}\right)\right\}=\left\{\beta_{0}\right\}$. Thus, by the definitions of the functions $f_{\left(\alpha_{0}\right)}$ and $f_{(\gamma)}$, we have $f_{\left(\alpha_{0}\right)}(x)=\lim _{t \rightarrow x} f_{\left(\beta_{0}\right)}(t)=f_{(\gamma)}(x)$. If $\left\{\beta<\alpha_{0} ; x \in U\left(f_{(\beta)}\right)\right\}=\emptyset$, then $f_{\left(\alpha_{0}\right)}(x)=f(x)=f_{(\gamma)}(x)$.

Now, let $x \in \bigcup_{\gamma \leq \beta<\alpha_{0}} U\left(f_{(\beta)}\right)$. Then, by $\left(1, \alpha_{0}\right)$, there exists $\beta_{0}\left(\gamma \leq \beta_{0}<\right.$ $\left.\alpha_{0}\right)$ such that $\left\{\beta<\alpha_{0} ; x \in U\left(f_{(\beta)}\right)\right\}=\left\{\beta_{0}\right\}$. Thus

$$
f_{\left(\alpha_{0}\right)}(x)=\lim _{t \rightarrow x} f_{\left(\beta_{0}\right)}(t) \neq f_{\left(\beta_{0}\right)}(x) .
$$

If $\beta_{0}=\gamma$, then $f_{\left(\alpha_{0}\right)}(x) \neq f_{(\gamma)}(x)$. If $\beta_{0}>\gamma$, then $x \notin \bigcup_{\gamma \leq \beta<\beta_{0}} U\left(f_{(\beta)}\right)$ and, by $\left(2, \beta_{0}\right), f_{(\gamma)}(x)=f_{\left(\beta_{0}\right)}(x)$. Therefore $f_{\left(\alpha_{0}\right)}(x) \neq f_{(\gamma)}(x)$ and we have $\left(2, \alpha_{0}\right)$. Let $\gamma<\alpha_{0}$ and $x \in L\left(f_{(\gamma)}\right)$. Then $x \in C\left(f_{(\gamma)}\right) \cup U\left(f_{(\gamma)}\right)$. First, we assume that $x \in U\left(f_{(\gamma)}\right)$. Then, by $\left(1, \alpha_{0}\right),\left\{\beta<\alpha_{0} ; x \in U\left(f_{(\beta)}\right)\right\}=\{\gamma\}$ and, by the definition of $f_{\left(\alpha_{0}\right)}$, we get $f_{\left(\alpha_{0}\right)}(x)=\lim _{t \rightarrow x} f_{(\gamma)}(t)$. Now, let $x \in C\left(f_{(\gamma)}\right)$. Then $\lim _{t \rightarrow x} f_{(\gamma)}(t)=f_{(\gamma)}(x)$ and $x \notin U\left(f_{(\gamma)}\right)$. If η is an ordinal number such that $\gamma<\eta<\alpha_{0}$, then $x \in C\left(f_{(\gamma)}\right) \subset L\left(f_{(\gamma)}\right) \subset \bigcup_{0 \leq \beta<\eta} L\left(f_{(\beta)}\right)$ and, by $(4, \eta), x \in C\left(f_{(\eta)}\right)$ and $x \notin U\left(f_{(\eta)}\right)$. Thus $x \notin \bigcup_{\gamma \leq \eta<\alpha_{0}} U\left(f_{(\eta)}\right)$. Then, by $\left(2, \alpha_{0}\right), f_{(\gamma)}(x)=f_{\left(\alpha_{0}\right)}(x)$. Therefore $\lim _{t \rightarrow x} f_{(\gamma)}(t)=f_{\left(\alpha_{0}\right)}(x)$ and we have $\left(3, \alpha_{0}\right)$.

Let $x_{0} \in \bigcup_{0 \leq \beta<\alpha_{0}} L\left(f_{(\beta)}\right)$. Then there exists $\beta_{0}<\alpha_{0}$ such that $x_{0} \in$ $L\left(f_{\left(\beta_{0}\right)}\right)$. Therefore, by $\left(3, \alpha_{0}\right), \lim _{t \rightarrow x_{0}} f_{\left(\beta_{0}\right)}(t)=f_{\left(\alpha_{0}\right)}\left(x_{0}\right)$. If $\beta_{0}=0$, then,
by $(4,1)$,

$$
x_{0} \in L\left(f_{(0)}\right) \subset \bigcup_{0 \leq \eta<1} L\left(f_{(\eta)}\right) \subset C\left(f_{(1)}\right) \subset L\left(f_{(1)}\right) .
$$

Thus it may be assumed that $\beta_{0} \geq 1$. Let $\epsilon>0$. Then there exists $\delta>0$ such that, for each $t \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap D$, if $t \neq x_{0}$, then $\left|f_{\left(\beta_{0}\right)}(t)-f_{\left(\alpha_{0}\right)}\left(x_{0}\right)\right|<\frac{\epsilon}{2}$. We shall show that, for each $t \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap D,\left|f_{\left(\alpha_{0}\right)}(t)-f_{\left(\alpha_{0}\right)}\left(x_{0}\right)\right|<\epsilon$.

Let $t \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap D$. We may assume that $t \neq x_{0}$ and $f_{\left(\alpha_{0}\right)}(t) \neq$ $f_{\left(\beta_{0}\right)}(t)$. Then, by $\left(2, \alpha_{0}\right), t \in \bigcup_{\beta_{0} \leq \beta<\alpha_{0}} U\left(f_{(\beta)}\right)$. Let β_{1} be an ordinal number such that $\beta_{0} \leq \beta_{1}<\alpha_{0}$ and $t \in \bar{U}\left(f_{\left(\beta_{1}\right)}\right)$. Then, by $\left(3, \alpha_{0}\right), \lim _{z \rightarrow t} f_{\left(\beta_{1}\right)}(z)=$ $f_{\left(\alpha_{0}\right)}(t)$. Therefore there exists $\eta>0$ such that $(t-\eta, t+\eta) \subset\left(x_{0}-\delta, x_{0}+\delta\right)$, $x_{0} \notin(t-\eta, t+\eta)$ and, for each $z \in(t-\eta, t+\eta) \cap D$, if $z \neq t$, then $\mid f_{\left(\beta_{1}\right)}(z)-$ $f_{\left(\alpha_{0}\right)}(t) \left\lvert\,<\frac{\epsilon}{2}\right.$. Since either $(t-\eta, t) \cap D \neq \emptyset$ or $(t, t+\eta) \cap D \neq \emptyset$, we may assume that $(t-\eta, t) \cap D \neq \emptyset$. If $\beta_{1}=\beta_{0}$, we choose an arbitrary $t_{0} \in(t-\eta, t) \cap D$. Now, we assume that $\beta_{0}<\beta_{1}<\alpha_{0}$ and let $J=(t-\eta, t) \cap D$. We suppose that $J \subset$ $\bigcup_{\beta_{0} \leq \beta<\beta_{1}} U\left(f_{(\beta)}\right)$ and let $\beta_{2}=\min \left\{\beta_{0} \leq \beta<\beta_{1} ; J \cap U\left(f_{(\beta)}\right) \neq \emptyset\right\}$. Then, by $\left(1, \beta_{1}\right)$, we have, for each $z \in J, \quad\left\{\beta<\beta_{2} ; z \in U\left(f_{(\beta)}\right)\right\}=\emptyset$; so $f(z)=$ $f_{\left(\beta_{2}\right)}(z)$. Let $z_{0} \in U\left(f_{\left(\beta_{2}\right)}\right) \cap J$. Then $\lim _{z \rightarrow z_{0}} f(z)=\lim _{z \rightarrow z_{0}} f_{\left(\beta_{2}\right)}(z) \neq$ $f_{\left(\beta_{2}\right)}\left(z_{0}\right)=f\left(z_{0}\right)$. Thus $z_{0} \in U(f)$ and, by $\left(1, \beta_{1}\right)$ and $\beta_{2}>0, z_{0} \notin U\left(f_{\left(\beta_{2}\right)}\right)$, a contradiction. Therefore $J \backslash \bigcup_{\beta_{0} \leq \beta<\beta_{1}} U\left(f_{(\beta)}\right) \neq \emptyset$ and we choose $t_{0} \in$ $J \backslash \bigcup_{\beta_{0} \leq \beta<\beta_{1}} U\left(f_{(\beta)}\right)$. Then, by $\left(2, \bar{\beta}_{1}\right), f_{\left(\beta_{1}\right)}\left(t_{0}\right)=f_{\left(\beta_{0}\right)}\left(t_{0}\right)$. Thus

$$
\left|f_{\left(\alpha_{0}\right)}(t)-f_{\left(\alpha_{0}\right)}\left(x_{0}\right)\right| \leq\left|f_{\left(\alpha_{0}\right)}(t)-f_{\left(\beta_{0}\right)}\left(t_{0}\right)\right|+\left|f_{\left(\beta_{0}\right)}\left(t_{0}\right)-f_{\left(\alpha_{0}\right)}\left(x_{0}\right)\right|<\epsilon .
$$

Hence $x_{0} \in C\left(f_{\left(\alpha_{0}\right)}\right)$.
Thus we have shown that, for each ordinal number $\alpha>0$, the conjunction of these conditions holds, so the proof of the theorem is complete.

The following remarks can be easily established.
Remark 2 Let $f: D \rightarrow \mathbb{R}$ and let α be an ordinal number. Then

$$
f_{(\alpha+1)}(x)= \begin{cases}f_{(\alpha)}(x), & \text { if } x \notin U\left(f_{(\alpha)}\right), . \\ \lim _{t \rightarrow x} f_{(\alpha)}(t), & \text { if } x \in U\left(f_{(\alpha)}\right) .\end{cases}
$$

Remark 3 Let $f: D \rightarrow \mathbb{R}$ and let α, β be ordinal numbers such that $0 \leq \alpha<$ β. Then $C\left(f_{(\alpha)}\right) \subset C\left(f_{(\beta)}\right)$.

Definition 4 For each ordinal number α, we denote

$$
\mathcal{A}_{\alpha}=\left\{f: D \rightarrow \mathbb{R} ; C\left(f_{(\alpha)}\right)=D\right\} .
$$

We make the following remark.
Remark 4 The family $\left(\mathcal{A}_{\alpha}\right)_{\alpha \geq 0}$ has the following properties.

1. \mathcal{A}_{0} is the family of all continuous functions on D.
2. For each ordinal number $\alpha>0, \bigcup_{0 \leq \beta<\alpha} \mathcal{A}_{\beta} \subset \mathcal{A}_{\alpha}$.

Definition 5 If a function $f: D \rightarrow \mathbb{R}$ belongs to $\mathcal{A}_{\alpha} \backslash\left(\bigcup_{0 \leq \beta<\alpha} \mathcal{A}_{\beta}\right)$, then it will be called an α-improvable discontinuous function.

Theorem 2 Let $f: D \rightarrow \mathbb{R}$. Then, for every ordinal number $\alpha, C\left(f_{(\alpha)}\right) \subset$ $\operatorname{cl}(L(f))$.

Proof. Let $H=D \backslash \operatorname{cl}(L(f))$. Then H is open in D. We suppose that $\left\{\beta<\alpha ; H \cap U\left(f_{(\beta)}\right) \neq \emptyset\right\} \neq \emptyset$. Let $\beta_{0}=\min \left\{\beta<\alpha ; H \cap U\left(f_{(\beta)}\right) \neq \emptyset\right\}$. Since $U(f) \subset L(f)$, we have $\beta_{0}>0$. Then $H \cap \bigcup_{0 \leq \gamma<\beta_{0}} U\left(f_{(\gamma)}\right)=\emptyset$ and, by Theorem $1\left(2, \beta_{0}\right), H \subset\left\{x \in D ; f(x)=f_{\left(\beta_{0}\right)}(x)\right\}$. Thus $H \cap U\left(f_{\left(\beta_{0}\right)}\right)=$ $H \cap U(f)=\emptyset$, a contradiction. Therefore $\left\{\beta<\alpha ; H \cap U\left(f_{(\beta)}\right) \neq \emptyset\right\}=\emptyset$ and $H \cap \bigcup_{0 \leq \beta<\alpha} U\left(f_{(\beta)}\right)=\emptyset$. By Theorem $1(2, \alpha), H \subset\left\{x \in D ; f(x)=f_{(\alpha)}(x)\right\}$. Then

$$
C\left(f_{(\alpha)}\right) \cap H=C(f) \cap H \subset L(f) \cap H=\emptyset \text { and } C\left(f_{(\alpha)}\right) \subset \operatorname{cl}(L(f)) .
$$

Corollary 1 Let $f: D \rightarrow \mathbb{R}$ and let α be an ordinal number such that $C\left(f_{(\alpha)}\right)$ is a dense subset of D. Then $L(f)$ is also a dense subset of D.

Definition 6 Let $f: D \rightarrow \mathbb{R}$. For each interval $I=(a, b) \cap D \neq \emptyset$, the quantity $\omega(f, I)=\sup _{x \in I} f(x)-\inf _{x \in I} f(x)$ is called the oscillation of f on I. For each fixed x, the function $\omega(f,(x-\delta, x+\delta) \cap D)$ decreases with $\delta>0$ and approaches a limit $\omega(f, x)=\lim _{\delta \rightarrow 0} \omega(f,(x-\delta, x+\delta) \cap D)$ called the oscillation of f at x.

We have shown that if $C\left(f_{(\alpha)}\right)$ is a dense subset of D, then $L(f)$ is also a dense subset of D. We can ask whether $C(f)$ is a dense subset of D. The answer in general is negative.

Proposition 2 There exists a subset D of \mathbb{R} and a function $f: D \rightarrow \mathbb{R}$, such that $C(f)=\emptyset$ and $C\left(f_{(1)}\right)=D$.

Proof. Let $D=\mathbb{Q}$ where \mathbb{Q} is the set of all rational numbers. Let $\mathbb{Q}=$ $\left(x_{n}\right)_{n=1}^{\infty}$ and $f\left(x_{n}\right)=\frac{1}{n}$, for each $n \in \mathbb{N}$. We observe that, for each $n \in \mathbb{N}$, $f\left(x_{n}\right)>\lim _{t \rightarrow x_{n}} f(t)=0$; so $x_{n} \in U(f)$. Hence $C(f)=\emptyset$ and $f_{(1)}(x)=0$ for each $x \in D$.

Theorem 3 Let $f: D \rightarrow \mathbb{R}$ and let α be an ordinal number. If $C\left(f_{(\alpha)}\right)=D$ and D is closed, then the set $C(f)$ is a dense subset of D.

Proof. We suppose that the set $C(f)$ is not dense in D. Then there exists (a, b) such that $(a, b) \cap D \neq \emptyset$ and $(a, b) \cap D \cap C(f)=\emptyset$. Thus

$$
(a, b) \cap D \subset \bigcup_{n=1}^{\infty}\left\{x \in D ; \omega(f, x) \geq \frac{1}{n}\right\}
$$

Since $(a, b) \cap D$ is a set of the second category in $D \cap[a, b]$, there exist $n_{0} \in \mathbb{N}$ and an open interval $(c, d) \subset(a, b)$, such that

$$
(c, d) \cap D \neq \emptyset \text { and }(c, d) \cap D \subset\left\{x \in D ; \omega(f, x) \geq \frac{1}{n_{0}}\right\}
$$

Therefore $(c, d) \cap D \cap L(f)=\emptyset$ and, by $C\left(f_{(\alpha)}\right)=D$ and Corollary 1, we have a contradiction.

Corollary 2 If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f \in \mathcal{A}_{\alpha}$, where α is an ordinal number, then $C(f)$ is a dense subset of \mathbb{R}.

It is interesting whether, for each function $f: D \rightarrow \mathbb{R}$ such that $C(f)$ is a dense subset of D, there exists an ordinal number $\alpha \geq 0$ such that $f \in \mathcal{A}_{\alpha}$. The answer suggests the following proposition.

Proposition 3 There exists a closed $D \subset \mathbb{R}$ and a function $f: D \rightarrow \mathbb{R}$ such that $C(f)$ is a dense subset of D and there exist no ordinal number α such that $f \in \mathcal{A}_{\alpha}$.

Proof. Put $D=[0,1]$. Let K be the Cantor set and let $f: D \rightarrow \mathbb{R}$ be the characteristic function of K. Note that, for each $x \in K$,

$$
1=f(x)=\limsup _{t \rightarrow x} f(t) \neq \liminf _{t \rightarrow x} f(t)=0
$$

and, for each $x \in D \backslash K, \lim _{t \rightarrow x} f(t)=f(x)=0$. Thus $U(f)=\emptyset$ and $f_{(1)}(x)=$ $f(x)$ for each $x \in D$. By Theorem $1(2, \alpha)$ and by transfinite induction, we have that $f_{(\alpha)}(x)=f(x)$, for each $x \in D$ and for every ordinal number α.

Theorem 4 For each closed set D, for each function $f: D \rightarrow \mathbb{R}$ and for every ordinal number α, the set $C\left(f_{(\alpha)}\right) \backslash C(f)$ is of the first category in D.

Proof. Put $V=C\left(f_{(\alpha)}\right) \backslash C(f)$. We suppose that the set V is of the second category in D. Since V has the Baire property in D, there exists $(a, b) \subset \mathbb{R}$ such that $(a, b) \cap D \neq \emptyset$ and the set V is a residual subset of $I=[a, b] \cap D$.

Therefore $I \cap C(f) \subset I \backslash V$ is a set of the first category in I. Since $C\left(f_{(\alpha)}\right) \supset V$ is a dense subset of I, we have, by Theorem 2, that $L(f) \cap I$ is also a dense subset of I. Therefore as in Theorem 3 we can prove that $C(f) \cap I$ is also a dense subset of I. Thus $C(f) \cap I$ is a residual subset of I and $I \backslash C(f)$ is a set of the first category in I. Hence $I=(I \backslash C(f)) \cup(I \cap C(f))$ is a set of the first category in I, a contradiction.

Definition 7 Let $K \subset D$. Put $K^{(0)}=K$. Let

$$
K^{(1)}=K^{d}=\{x \in D ; x \text { is an accumulation point of } K \text { in } D\}
$$

and $K^{*}=K \backslash K^{d}$. Let $\alpha \geq 1$ be an ordinal number. Then

- $K^{(\alpha+1)}=\left(K^{(\alpha)}\right)^{d}$;
- if α is a limit ordinal number, then $K^{(\alpha)}=\bigcap_{0 \leq \beta<\alpha} K^{(\beta)}$.

Definition 8 Let $f: D \rightarrow \mathbb{R}$. Set

$$
r(f)=\min \left\{\alpha ; f_{(\alpha)}(x)=f_{(\alpha+1)}(x) \text { for each } x \in D\right\}
$$

Now we show that, for each function $f, r(f)$ is countable.
Theorem 5 If $f: D \rightarrow \mathbb{R}$, then $r(f)<\omega_{1}$.
Proof. Let $\alpha=r(f)$. Then $f_{(\alpha)}(x)=f_{(\alpha+1)}(x)$ for each $x \in D$. Let $\beta>\alpha$ and we assume that, for each γ with $\alpha<\gamma<\beta, f_{(\gamma)}(x)=f_{(\alpha)}(x)$ for each $x \in$ D. We suppose that there exists $x_{0} \in D$ such that $f_{(\beta)}\left(x_{0}\right) \neq f_{(\alpha)}\left(x_{0}\right)$. Then, by Theorem $1(2, \alpha), x_{0} \in \bigcup_{\alpha \leq \gamma<\beta} U\left(f_{(\gamma)}\right)$. Therefore there exists γ_{0} with $\alpha \leq \gamma_{0}<\beta$ such that $x_{0} \in U\left(f_{\left(\gamma_{0}\right)}\right)$ and $f_{(\alpha)}\left(x_{0}\right)=f_{\left(\gamma_{0}\right)}\left(x_{0}\right) \neq f_{\left(\gamma_{0}+1\right)}\left(x_{0}\right)$. If $\gamma_{0}+1<\beta$, we have a contradiction to our assumption. Thus $\gamma_{0}+1=\beta$. Since $f_{\left(\gamma_{0}\right)}(x)=f_{(\alpha)}(x)$ for each $x \in D$, we have $U\left(f_{\left(\gamma_{0}\right)}\right)=U\left(f_{(\alpha)}\right)=\emptyset$ and $\left\{x \in D ; f_{(\beta)}(x) \neq f_{\left(\gamma_{0}\right)}(x)\right\}=U\left(f_{\left(\gamma_{0}\right)}\right)=\emptyset$, a contradiction. Hence $f_{(\beta)}(x)=f_{(\alpha)}(x)$ for each $x \in D$ and, for each $\beta>\alpha, C\left(f_{(\beta)}\right)=C\left(f_{(\alpha)}\right)$.

Let $D_{1}=C\left(f_{(\alpha)}\right)$ and, let for each $\beta \geq 0, F_{\beta}=\left(D_{1} \backslash C\left(f_{(\beta)}\right)\right)^{d}$. Since, for each γ with $0 \leq \gamma<\beta$, by Theorem $1(4, \beta)$,

$$
C\left(f_{(\gamma)}\right) \subset L\left(f_{(\gamma)}\right) \subset \bigcup_{0<\xi<\beta} L\left(f_{(\xi)}\right) \subset C\left(f_{(\beta)}\right)
$$

. Therefore we have $F_{\beta} \subset F_{\gamma}$. Thus, by Theorem 32 (Cantor-Bendixon) [1], there exists an ordinal number $\alpha_{0}<\omega_{1}$ such that if $\gamma>\alpha_{0}$, then $F_{\gamma}=F_{\alpha_{0}}$.

We assume that $\alpha>\alpha_{0}$. Then $\emptyset=\left(D_{1} \backslash C\left(f_{(\alpha)}\right)\right)^{d}=\left(D_{1} \backslash C\left(f_{\left(\alpha_{0}\right)}\right)\right)^{d}$. We shall show that $\alpha=\alpha_{0}+1$. Let $x_{0} \in D_{1} \backslash C\left(f_{\left(\alpha_{0}\right)}\right)$. Then there exists
an open interval (a, b) such that $D \cap(a, b) \cap\left(D_{1} \backslash C\left(f_{\left(\alpha_{0}\right)}\right)\right)=\left\{x_{0}\right\}$. We suppose that there exists a point $x_{1} \in\left((D \cap(a, b)) \backslash\left\{x_{0}\right\}\right) \cap \bigcup_{\alpha_{0} \leq \xi<\alpha} U\left(f_{(\xi)}\right)$. Then there exists an ordinal number ξ_{0} with $\alpha_{0} \leq \xi_{0}<\alpha$ such that $x_{1} \in$ $U\left(f_{\left(\xi_{0}\right)}\right) \subset C\left(f_{\left(\xi_{0}+1\right)}\right) \subset C\left(f_{(\alpha)}\right)=D_{1}$ and $x_{1} \notin C\left(f_{\left(\alpha_{0}\right)}\right) \subset C\left(f_{\left(\xi_{0}\right)}\right)$. Therefore $\left((D \cap(a, b)) \backslash\left\{x_{0}\right\}\right) \cap\left(D_{1} \backslash C\left(f_{\left(\alpha_{0}\right)}\right)\right) \neq \emptyset$, a contradiction. Hence, by Theorem $1(2, \alpha)$,

$$
(D \cap(a, b)) \backslash\left\{x_{0}\right\} \subset\left\{x \in D ; f_{\left(\alpha_{0}\right)}(x)=f_{(\alpha)}(x)\right\}
$$

Since $\lim _{t \rightarrow x_{0}} f_{(\alpha)}(t)=f_{(\alpha)}\left(x_{0}\right)$, we have that $\lim _{t \rightarrow x_{0}} f_{\left(\alpha_{0}\right)}(t)=f_{(\alpha)}\left(x_{0}\right)$ and $x_{0} \in U\left(f_{\left(\alpha_{0}\right)}\right)$.

We have shown that $D_{1} \backslash C\left(f_{\left(\alpha_{0}\right)}\right) \subset U\left(f_{\left(\alpha_{0}\right)}\right) \subset C\left(f_{\left(\alpha_{0}+1\right)}\right)$. Hence

$$
C\left(f_{(\alpha)}\right)=\left(D_{1} \backslash C\left(f_{\left(\alpha_{0}\right)}\right)\right) \cup C\left(f_{\left(\alpha_{0}\right)}\right) \subset C\left(f_{\left(\alpha_{0}+1\right)}\right) \subset C\left(f_{(\alpha)}\right)
$$

and $\alpha=\alpha_{0}+1$. Hence $\alpha=\alpha_{0}+1<\omega_{1}$ and the proof is completed.
Definition 9 Put $\mathcal{A}=\bigcup_{0 \leq \alpha<\omega_{1}} \mathcal{A}_{\alpha}$. If a function $f \in \mathcal{A}$, then it will be called an improvable function.

Definition 10 For $A \subset D \subset \mathbb{R}$, let

$$
\mathcal{M}(A)=\{f: D \rightarrow \mathbb{R} ; f(A)=\{0\} \text { and, for each } x \in D, f(x) \geq 0\}
$$

The following theorem will be very useful in the paper.
Theorem 6 Let A be a dense subset of D and let $f \in \mathcal{A}_{\alpha}$ be a function such that $C(f)=A$. Then $g=\left|f-f_{(\alpha)}\right| \in \mathcal{M}(A)$ and for each $0 \leq \beta \leq \alpha$, $C\left(f_{(\beta)}\right)=C\left(g_{(\beta)}\right), U\left(f_{(\beta)}\right)=U\left(g_{(\beta)}\right)$ and $g_{(\beta)}=\left|f_{(\beta)}-f_{(\alpha)}\right|$.
Proof. Assume that $f \in \mathcal{A}_{\alpha}$. Let $g=\left|f-f_{(\alpha)}\right|$. Of course, for each $x \in \mathrm{D}, g(x) \geq 0$. Let $x \in A$ and $g(x)=\left|f(x)-f_{(\alpha)}(x)\right|$. Since $C(f)=A$, by Theorem $1(2, \alpha)$, for each $x \in A, f_{(\alpha)}(x)=f(x)$; so $g(x)=0$. Thus $g \in \mathcal{M}(A)$.

Now, we show by the transfinite induction that, for each β with $0 \leq \beta \leq \alpha$,

$$
C\left(f_{(\beta)}\right)=C\left(g_{(\beta)}\right), U\left(f_{(\beta)}\right)=U\left(g_{(\beta)}\right) \text { and } g_{(\beta)}=\left|f_{(\beta)}-f_{(\alpha)}\right|
$$

First, we show that $L(f)=L(g)$. Since $D=C\left(f_{(\alpha)}\right), L(f) \subset L(g)$. Now, we assume that $x_{0} \in L(g)$. Since A is a dense subset of D and $g(A)=\{0\}$, $\lim _{t \rightarrow x_{0}} g(t)=0$. Therefore, by $x_{0} \in C\left(f_{(\alpha)}\right)=D$, and

$$
0=\lim _{t \rightarrow x_{0}} g(t)=\lim _{t \rightarrow x_{0}}\left|f(t)-f_{(\alpha)}(t)\right|
$$

we have $\lim _{t \rightarrow x_{0}}\left(f(t)-f_{(\alpha)}(t)\right)=0$ and

$$
\lim _{t \rightarrow x_{0}} f(t)=\lim _{t \rightarrow x_{0}}\left(f(t)-f_{(\alpha)}(t)+f_{(\alpha)}(t)\right)=f_{(\alpha)}\left(x_{0}\right)
$$

Thus there exists $\lim _{t \rightarrow x_{0}} f(t)$ and $x_{0} \in L(f)$. Hence $L(f)=L(g)$. It is easy to show that $C(f)=C(g)$. Hence, of course, $U(f)=U(g)$. Now, we assume that, for each ordinal number ξ with $0 \leq \xi<\beta$, we have shown that $C\left(f_{(\xi)}\right)=C\left(g_{(\xi)}\right), U\left(f_{(\xi)}\right)=U\left(g_{(\xi)}\right)$ and $g_{(\xi)}=\left|f_{(\xi)}-f_{(\alpha)}\right|$ for each $x \in D$. First, we show that $g_{(\beta)}=\left|f_{(\beta)}-f_{(\alpha)}\right|$. Let $x \in D$ be a point such that $\left\{\xi<\beta ; x \in U\left(g_{(\xi)}\right)\right\}=\emptyset$. Then $\left\{\xi<\beta ; x \in U\left(f_{(\xi)}\right)\right\}=\emptyset$; so $f(x)=f_{(\beta)}(x)$. Thus $g(x)=\left|f(x)-f_{(\alpha)}(x)\right|=\left|f_{(\beta)}(x)-f_{(\alpha)}(x)\right|$. If $\xi_{0}=$ $\min \left\{\xi<\beta ; x \in U\left(g_{(\xi)}\right)\right\}$, then $x \in U\left(g_{\left(\xi_{0}\right)}\right)$ and, of course, $x \in U\left(f_{\left(\xi_{0}\right)}\right)$. Therefore $\xi_{0}=\min \left\{\xi<\beta ; x \in U\left(f_{(\xi)}\right)\right\}$. Thus

$$
\lim _{t \rightarrow x} g_{\left(\xi_{0}\right)}(t)=\lim _{t \rightarrow x}\left|f_{\left(\xi_{0}\right)}(t)-f_{(\alpha)}(t)\right|=\left|f_{(\beta)}(x)-f_{(\alpha)}(x)\right| .
$$

Since

$$
g_{(\beta)}(x)= \begin{cases}g(x), & \text { if }\left\{\xi<\beta ; x \in U\left(g_{(\xi)}\right)\right\}=\emptyset \\ \lim _{t \rightarrow x} g_{\left(\xi_{0}\right)}(t), & \text { if } x \in U\left(g_{\left(\xi_{0}\right)}\right) \\ & \text { where } \xi_{0}=\min \left\{\xi<\beta ; x \in U\left(g_{(\xi)}\right)\right\}\end{cases}
$$

we have $g_{(\beta)}(x)=\left|f_{(\beta)}(x)-f_{(\alpha)}(x)\right|$. Since $C\left(f_{(\alpha)}\right)=D$ and $C(g)=C(f)=$ A, we can show that $L\left(f_{(\alpha)}\right)=L\left(g_{(\alpha)}\right)$ and $C\left(f_{(\alpha)}\right)=C\left(g_{(\alpha)}\right)$. Then $U\left(f_{(\alpha)}\right)=U\left(g_{(\alpha)}\right)$. Thus the proof is complete.

Corollary 3 Let A be a dense subset of D and let $f \in \mathcal{A}_{\alpha} \backslash \bigcup_{0 \leq \beta<\alpha} \mathcal{A}_{\beta}$ be a function such that $C(f)=A$. Then, for each β with $0 \leq \beta \leq \alpha$,

$$
g_{(\beta)} \in \mathcal{M}\left(C\left(f_{(\beta)}\right)\right)
$$

3α-improvable Discontinuous Functions

First we give a necessary and sufficient condition under which a set A is the set of all points of continuity of some α-improvable discontinuous function.

Theorem 7 Let A be a subset of D, where $D \subset \mathbb{R}$ is closed. Then the following are equivalent.
(1) There exists a function $f: D \rightarrow \mathbb{R}$ such that $f \in \mathcal{M}(A) \cap \mathcal{A}_{\alpha} \backslash \bigcup_{0 \leq \beta<\alpha} \mathcal{A}_{\beta}$ and $C(f)=A$.
(2) $\operatorname{cl} A=D$ and there exist two ascending sequences of sets $\left(C_{\beta}\right)_{0 \leq \beta \leq \alpha}$ and $\left(F_{n}\right)_{n=1}^{\infty}$ such that $C_{0}=A, C_{\alpha}=D$ and, for each ordinal number β with $0 \leq \beta<\alpha, C_{\beta} \neq C_{\beta+1}$ and

$$
D \backslash\left(\bigcup_{n=1}^{\infty}\left(F_{n} \cap C_{\beta+1}\right) \cup C_{\beta}\right)=\bigcup_{n=1}^{\infty}\left(F_{n} \cap \bigcup_{\beta \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)\right)^{d}
$$

Proof. We assume that condition (1) is satisfied. By Theorem 3, $\operatorname{cl} A=D$. For each ordinal number β with $0 \leq \beta \leq \alpha$, put $C_{(\beta)}=C\left(f_{(\beta)}\right)$ and, for each $n \in \mathbb{N}, F_{n}=\left\{x \in D ; f(x) \geq \frac{1}{n}\right\}$. Then $C_{0}=A, C_{\alpha}=D$ and, for each β $(0 \leq \beta<\alpha), C_{\beta} \neq C_{\beta+1}$. It is obvious that $\left(F_{n}\right)_{n=1}^{\infty}$ is an ascending sequence. By Remark 3, we know that the sequence $\left(C_{\beta}\right)_{0 \leq \beta<\alpha}$ is ascending, also. Let $\beta(0 \leq \beta<\alpha)$ be an ordinal number. Since, for each $x \in D, f_{(\alpha)}(x)=0$, by Theorem $1(2, \alpha)$, we know that

$$
\left\{x \in D ; f_{(\beta)}(x)>0\right\}=\left\{x \in D ; f_{(\beta)}(x) \neq f_{(\alpha)}(x)\right\}=\bigcup_{\beta \leq \xi<\alpha} U\left(f_{(\xi)}\right)
$$

By Theorem $1(2, \beta)$ and $(4, \beta)$, we have that

$$
\left\{x \in D ; f(x) \neq f_{(\beta)}(x)\right\}=\bigcup_{0 \leq \xi<\beta} U\left(f_{(\xi)}\right) \subset \bigcup_{0 \leq \xi<\beta} L\left(f_{(\xi)}\right) \subset C\left(f_{(\beta)}\right)
$$

Therefore, for each $x \in D \backslash C_{\beta}, f(x)=f_{(\beta)}(x)$.
We shall show that $L\left(f_{(\beta)}\right)=C_{\beta} \cup \bigcup_{n=1}^{\infty}\left(F_{n} \cap C_{\beta+1}\right)$. Since $C_{\beta} \subset$ $L\left(f_{(\beta)}\right)$, we suppose that there exists $x_{0} \in D \backslash L\left(f_{(\beta)}\right)$ such that $x_{0} \in$ $\bigcup_{n=1}^{\infty}\left(F_{n} \cap\left(C_{\beta+1} \backslash C_{\beta}\right)\right)$. Then $f_{(\beta+1)}\left(x_{0}\right)=f_{(\beta)}\left(x_{0}\right)=f\left(x_{0}\right)>0$ and $x_{0} \notin C\left(f_{(\beta+1)}\right)=C_{\beta+1}$, a contradiction.

Therefore $C_{\beta} \cup \bigcup_{n=1}^{\infty}\left(F_{n} \cap C_{\beta+1}\right) \subset L\left(f_{(\beta)}\right)$. If $x_{0} \in L\left(f_{(\beta)}\right)$, then $x_{0} \in$ C_{β} or $x_{0} \in C_{\beta+1} \backslash C_{\beta}$ and there exists $n \in \mathbb{N}$ such that $f_{(\beta)}\left(x_{0}\right) \geq \frac{1}{n}$. Therefore $x_{0} \in C_{\beta}$ or $x_{0} \in C_{\beta+1} \backslash C_{\beta}$ and $f\left(x_{0}\right) \geq \frac{1}{n}$. Hence $x_{0} \in C_{\beta} \cup \bigcup_{n=1}^{\infty}\left(F_{n} \cap C_{\beta+1}\right)$. Thus

$$
L\left(f_{(\beta)}\right)=C_{\beta} \cup \bigcup_{n=1}^{\infty}\left(F_{n} \cap C_{\beta+1}\right)
$$

We fix $n \in \mathbb{N}$. Let $H=\bigcup_{\beta \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)$. Then

$$
\begin{aligned}
\left\{x \in D ; f(x) \geq \frac{1}{n}\right\} \cap H & \subset\left\{x \in D ; f_{(\beta)}(x) \geq \frac{1}{n}\right\} \\
& \subset\left\{x \in D ; f_{(\beta)}(x) \geq \frac{1}{n}\right\} \cap \bigcup_{\beta \leq \xi<\alpha} U\left(f_{(\xi)}\right) \\
& \subset\left\{x \in D ; f_{(\beta)}(x) \geq \frac{1}{n}\right\} \cap H \\
& \subset\left\{x \in D ; f(x) \geq \frac{1}{n}\right\} \cap H
\end{aligned}
$$

Therefore $\left(\left\{x \in D ; f_{(\beta)}(x) \geq \frac{1}{n}\right\}\right)^{d}=\left(F_{n} \cap \bigcup_{\beta \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)\right)^{d}$ and

$$
\begin{aligned}
D \backslash\left(C_{\beta} \cup \bigcup_{n=1}^{\infty}\left(F_{n} \cap C_{\beta+1}\right)\right) & =D \backslash L\left(f_{(\beta)}\right) \\
& =\left\{x \in D ; \limsup _{t \rightarrow x} f_{(\beta)}(t)>0\right\} \\
& =\bigcup_{n=1}^{\infty}\left(\left\{x \in D ; f_{(\beta)}(x) \geq \frac{1}{n}\right\}\right)^{d} \\
& =\bigcup_{n=1}^{\infty}\left(F_{n} \cap \bigcup_{\beta \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)\right)^{d}
\end{aligned}
$$

Hence we have proved condition (2).
Now, we assume that condition (2) holds. Let

$$
f(x)= \begin{cases}0, & \text { if }\left\{m \in \mathbb{N} ; x \in F_{m} \cap \bigcup_{0 \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)\right\}=\emptyset \\ & \text { otherwise, } \\ \frac{1}{n}, & \text { where } n=\min \left\{m \in \mathbb{N} ; x \in F_{m} \cap \bigcup_{0 \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)\right\}\end{cases}
$$

We observe that, for each β with $0 \leq \beta<\alpha$,

$$
\left\{x \in D ; \limsup _{t \rightarrow x} f_{\mid D \backslash C_{\beta}}(t)>0\right\}=\bigcup_{n=1}^{\infty}\left(F_{n} \cap \bigcup_{\beta \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)\right)^{d}
$$

Since $f(A)=f\left(C_{0}\right)=\{0\}$ and since $\operatorname{cl} A=D$, we have that

$$
\left\{x \in D ; \liminf _{t \rightarrow x} f(t)=0\right\}=D
$$

We know that

$$
\begin{aligned}
\left\{x \in D ; \limsup _{t \rightarrow x} f(t)>0\right\} & =\left\{x \in D ; \limsup _{t \rightarrow x} f_{\mid D \backslash C_{0}}(t)>0\right\} \\
& =\bigcup_{n=1}^{\infty}\left(F_{n} \cap \bigcup_{0 \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)\right)^{d}
\end{aligned}
$$

Therefore, by our assumption,

$$
\begin{aligned}
L(f) & =\left\{x \in D ; \lim _{t \rightarrow x} f(t)=0\right\}=C_{0} \cup \bigcup_{n=1}^{\infty}\left(F_{n} \cap C_{1}\right) \\
& =C_{0} \cup \bigcup_{n=1}^{\infty}\left(F_{n} \cap\left(C_{1} \backslash C_{0}\right)\right)
\end{aligned}
$$

and $C(f)=C_{0}, U(f)=\bigcup_{n=1}^{\infty}\left(F_{n} \cap\left(C_{1} \backslash C_{0}\right)\right)$. Let $0 \leq \beta \leq \alpha$. We assume that, for each γ with $0 \leq \gamma<\beta$,

$$
C\left(f_{(\gamma)}\right)=C_{\gamma}, U\left(f_{(\gamma)}\right)=\bigcup_{n=1}^{\infty}\left(F_{n} \cap\left(C_{\gamma+1} \backslash C_{\gamma}\right)\right)
$$

and $L\left(f_{(\gamma)}\right)=\left\{x \in D ; \lim _{t \rightarrow t} f_{(\gamma)}(t)=0\right\}$. Let $x \in C_{\beta}$.

- If $\left\{\gamma<\beta ; x \in U\left(f_{(\gamma)}\right)\right\} \neq \emptyset$, then $f_{(\beta)}(x)=\lim _{t \rightarrow x} f_{\left(\gamma_{0}\right)}(t)=0$ where $\gamma_{0}=\min \left\{\gamma<\beta ; x \in U\left(f_{(\gamma)}\right)\right\}$.
- If $\left\{\gamma<\beta ; x \in U\left(f_{(\gamma)}\right)\right\}=\emptyset$, then, for each γ with $0 \leq \gamma<\beta, x \notin$ $U\left(f_{(\gamma)}\right)=\bigcup_{n=1}^{\infty}\left(F_{n} \cap\left(C_{\gamma+1} \backslash C_{\gamma}\right)\right)$ and, by $x \in C_{\beta}$, we have that $x \notin$ $\bigcup_{n=1}^{\infty}\left(F_{n} \cap \bigcup_{\beta \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)\right)$.

Therefore $x \notin \bigcup_{n=1}^{\infty}\left(F_{n} \cap \bigcup_{0 \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)\right)$ and $x \notin \bigcup_{0 \leq \xi<\beta} U\left(f_{(\xi)}\right)$. So $f_{(\beta)}(x)=f(x)=0$. Hence $f_{(\beta)}\left(C_{\beta}\right)=\{0\}$. Since $A=C_{0} \subset C_{\beta}$ and $\mathrm{cl} A=D$, therefore $\left\{x \in D ; \liminf _{t \rightarrow x} f_{(\beta)}(t)=0\right\}=D$. We observe that

$$
\left\{x \in D ; \limsup _{t \rightarrow x} f_{(\beta)}(t)>0\right\}=\left\{x \in D ; \limsup _{t \rightarrow x} f_{\mid\left(D \backslash C_{\beta}\right)(\beta)}(t)>0\right\}
$$

By Theorem $1(2, \beta)$;

$$
\left\{x \in D ; f_{(\beta)}(x) \neq f(x)\right\}=\bigcup_{0 \leq \xi<\beta} U\left(f_{(\xi)}\right) \subset \bigcup_{0 \leq \xi<\beta} C_{\xi+1} \subset C_{\beta}
$$

Therefore

$$
\begin{aligned}
\left\{x \in D ; \limsup _{t \rightarrow x} f_{\mid\left(D \backslash C_{\beta}\right)(\beta)}(t)>0\right\} & =\left\{x \in D ; \limsup _{t \rightarrow x} f_{\mid D \backslash C_{\beta}}(t)>0\right\} \\
& =\bigcup_{n=1}^{\infty}\left(F_{n} \cap \bigcup_{\beta \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)\right)^{d}
\end{aligned}
$$

Then, by our assumption, we know that

$$
\begin{aligned}
L\left(f_{(\beta)}\right) & =\left\{x \in D ; \lim _{t \rightarrow x} f_{(\beta)}(t)=0\right\}=C_{\beta} \cup \bigcup_{n=1}^{\infty}\left(F_{n} \cap C_{\beta+1}\right) \\
& =C_{\beta} \cup \bigcup_{n=1}^{\infty}\left(F_{n} \cap\left(C_{\beta+1} \backslash C_{\beta}\right)\right)
\end{aligned}
$$

Thus $C\left(f_{(\beta)}\right)=C_{\beta}$ and $U\left(f_{(\beta)}\right)=\bigcup_{n=1}^{\infty}\left(F_{n} \cap\left(C_{\beta+1} \backslash C_{\beta}\right)\right)$.
We shall show that, for each $x \in D, f_{(\alpha)}(x)=0$. If there exists β_{0} with $0 \leq \beta_{0}<\alpha$ such that $x \in U\left(f_{\left(\beta_{0}\right)}\right)$, then $f_{(\alpha)}(x)=\lim _{t \rightarrow x} f_{\left(\beta_{0}\right)}(t)=0$ where $\beta_{0}=\min \left\{\beta<\alpha ; x \in U\left(f_{(\beta)}\right)\right\}$. If $\left\{\beta<\alpha ; x \in U\left(f_{(\beta)}\right)\right\}=\emptyset$, then, for each β with $0 \leq \beta<\alpha, x \notin \bigcup_{n=1}^{\infty}\left(F_{n} \cap\left(C_{\beta+1} \backslash C_{\beta}\right)\right)$. Therefore $x \notin$ $\bigcup_{n=1}^{\infty}\left(F_{n} \cap \bigcup_{0 \leq \beta<\alpha}\left(C_{\beta+1} \backslash C_{\beta}\right)\right)$ and $f_{(\alpha)}(x)=f(x)=0$. Hence $f \in \mathcal{A}_{\alpha} \backslash$ $\bigcup_{0 \leq \beta<\alpha} \mathcal{A}_{\beta}$ and the proof of the theorem is complete.
Corollary 4 Let $\left(C_{\beta}\right)_{0<\beta<\alpha}$ be an ascending sequence of sets such that $\operatorname{cl} C_{0}=\mathbb{R}, C_{\alpha}=\mathbb{R}$. Let \bar{H} be an arbitrary set such that, for each ordinal number β with $0 \leq \beta<\alpha$,

$$
D \backslash\left(\left(H \cap C_{\beta+1}\right) \cup C_{\beta}\right)=\left(H \cap \bigcup_{\beta \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)\right)^{d}
$$

and $C_{\beta} \neq C_{\beta+1}$. Then the characteristic function of the set H belongs to the class $\mathcal{A}_{\alpha} \backslash \bigcup_{0 \leq \beta<\alpha} \mathcal{A}_{\beta}$.
Proof. For each $n \in \mathbb{N}$, let $F_{n}=H$. Then, as in the proof of Theorem 10, we can prove that the characteristic function of the set H belongs to the class \mathcal{A}_{α} and, for each ordinal number β with $0 \leq \beta<\alpha, C_{\beta}=C\left(f_{(\beta)}\right)$ and $U\left(f_{(\beta)}\right)=$ $H \cap\left(C_{\beta+1} \backslash C_{\beta}\right)$. Since, by our assumption, for each ordinal number β with $0 \leq \beta<\alpha, C\left(f_{(\beta)}\right) \neq C\left(f_{(\beta+1)}\right)$, we have that $f \notin \bigcup_{0 \leq \beta<\alpha} \mathcal{A}_{\beta}$. Thus the proof is complete.

The following theorem shows that we can construct an α-improvable discontinuous function for each $\alpha<\omega_{1}$. To prove this theorem we need the following lemma.

Lemma 1 Let $A=\bigcup_{n=1}^{\infty} A_{n} \cup\{0\}$ where, for each $n \in \mathbb{N}$, A_{n} is a closed set, $A_{n} \subset\left[\frac{1}{n+1}, \frac{1}{n}\right], \frac{1}{n+1} \in A_{n}$ and $\frac{1}{n}$ is a left-side isolated point in the set A. Then, for each ordinal number $\alpha, A^{(\alpha)} \backslash\{0\}=\bigcup_{n=1}^{\infty} A_{n}^{(\alpha)}$.

Proof. If $\alpha=0$, then the lemma is true.
Let $\alpha>0$ be an ordinal number and we assume that, for each ordinal number β with $0 \leq \beta<\alpha, A^{(\beta)} \backslash\{0\}=\bigcup_{n=1}^{\infty} A_{n}^{(\beta)}$. Consider two possibilities.

1. Let $\alpha=\gamma+1$, where γ is an ordinal number and let $x_{0} \in A^{(\alpha)} \backslash\{0\}$. Then there exists $n \in \mathbb{N}$ such that $x_{0} \geq \frac{1}{n+1}$ and there exists a sequence $\left(x_{k}\right)_{k=1}^{\infty} \subset A^{(\gamma)}$ such that $\lim _{k \rightarrow \infty} x_{k}=x_{0}$. Since $\frac{1}{n+1}$ is a left-side isolated point of A and $A^{(\gamma)} \subset A$, there exists $k_{0} \in \mathbb{N}$ such that, for each $k>k_{0}, x_{k} \geq \frac{1}{n+1}$. Hence $\left(x_{k}\right)_{k=1}^{\infty} \subset \bigcup_{i=1}^{n} A_{i}^{(\gamma)} ;$ so $x_{0} \in\left(\bigcup_{i=1}^{n} A_{i}^{(\gamma)}\right)^{d}=$ $\bigcup_{i=1}^{n} A_{i}^{d} \subset \bigcup_{n=1}^{\infty} A_{n}^{d}$. Thus $A^{(\alpha)} \backslash\{0\} \subset \bigcup_{n=1}^{\infty} A_{n}^{(\alpha)}$.
Since, for each $n \in \mathbb{N}, A_{n} \subset A$; so $A_{n}^{(\alpha)} \subset A^{(\alpha)}$. Hence $\bigcup_{n=1}^{\infty} A_{n}^{(\alpha)} \subset A^{(\alpha)}$ and since, for each $n \in \mathbb{N}, 0 \notin A_{n}$, for each $n \in \mathbb{N}, 0 \notin A_{n}^{(\alpha)}$; so $0 \notin \bigcup_{n=1}^{\infty} A_{n}^{(\alpha)}$. Thus $\bigcup_{n=1}^{\infty} A_{n}^{(\alpha)} \subset A^{(\alpha)} \backslash\{0\}$.
2. Let α be a limit ordinal number and let $x_{0} \in A^{(\alpha)} \backslash\{0\}$. Then there exists $n \in \mathbb{N}$ such that $x_{0} \geq \frac{1}{n+1}$. Let $\gamma<\alpha$ be an ordinal number. Then $x_{0} \in A^{(\gamma+1)}$. Thus there exists a sequence $\left(x_{k}\right)_{k=1}^{\infty} \subset A^{(\gamma)}$ such that $\lim _{k \rightarrow \infty} x_{k}=x_{0}$. As above we can show that $x_{0} \in A_{n}^{(\gamma+1)}$. Hence $x_{0} \in$ $\bigcap_{\gamma<\alpha} A_{n}^{(\gamma+1)} \subset \bigcap_{\gamma<\alpha} A_{n}^{(\gamma)}=A_{n}^{(\alpha)}$. Thus $x_{0} \in \bigcup_{n=1}^{\infty} A_{n}^{(\alpha)}$. Similarly to the first part, we can show that $\bigcup_{n=1}^{\infty} A_{n}^{(\alpha)} \subset A^{(\alpha)} \backslash\{0\}$.
Thus the proof is complete.
Theorem 8 For each ordinal number $\alpha<\omega_{1}$, there exists a function $f \in$ $\mathcal{A}_{\alpha} \backslash \bigcup_{0 \leq \beta<\alpha} \mathcal{A}_{\beta}$.

Proof. For each set $A \subset \mathbb{R}$ and $a, b \in \mathbb{R}$, let $a A+b=\{a x+b ; x \in A\}$. By transfinite induction, we define a sequence of sets $\left(W_{\alpha}\right)_{0 \leq \alpha<\omega_{1}}$ in the following way: $W_{0}=\emptyset, W_{1}=\{0\}, W_{2}=\left\{\frac{1}{n} ; n \in \mathbb{N}\right\} \cup\{0\}$ and, for each ordinal number α with $3 \leq \alpha<\omega_{1}$,

1. if $\alpha=\gamma+2$, where γ is an ordinal number, then put

$$
\left[W_{\alpha}=\bigcup_{n=1}^{\infty}\left(\frac{1}{n(n+1)} W_{\gamma+1}+\frac{1}{n+1}\right) \cup\{0\}\right.
$$

2. if α is a limit ordinal number, then

$$
W_{\alpha}=\bigcup_{n=1}^{\infty}\left(\frac{1}{n(n+1)} W_{\alpha_{n}}+\frac{1}{n+1}\right) \cup\{0\}
$$

where $\left(\alpha_{n}\right)_{n=1}^{\infty}$ is a sequence of ordinal numbers such that $\lim _{n \rightarrow \infty} \alpha_{n}=$ α and, for each $n \in \mathbb{N}, \alpha_{n}<\alpha$ and α_{n} is not a limit ordinal number,
3. if $\alpha=\gamma+1$, where β is a limit ordinal number, then put $W_{\alpha}=W_{\gamma}$.

We shall show that, for each ordinal number α with $0 \leq \alpha<\omega_{1}$,
(i) W_{α} is a closed nowhere dense set and $W_{\alpha} \subset[0,1]$,
(ii) if $\alpha>1$, then, for each $n \in \mathbb{N}, \frac{1}{n} \in W_{\alpha}$ and there exists $\delta_{n}^{(\alpha)}>0$ such that $\left(\frac{1}{n}-\delta_{n}^{(\alpha)}, \frac{1}{n}\right) \cap W_{\alpha}=\emptyset$,
(iii) if $\alpha>0$, then, for each β with $0 \leq \beta<\alpha, 0 \in W_{\alpha}^{(\beta)}$,
(iv) if α is not a limit ordinal number, then $W_{\alpha}^{(\alpha)}=\emptyset$ and if α is a limit ordinal number, then $W_{\alpha}^{(\alpha)}=\{0\}$.
The above conditions are obvious for $\alpha=0,1,2$. Let α with $2<\alpha<\omega_{1}$ be an ordinal number. We assume that conditions (i), (ii), (iii), (iv) are satisfied for each ordinal number $\beta<\alpha$.

1. We assume that $\alpha=\gamma+2$, where γ is an ordinal number. Since $W_{\gamma+1}$ is a closed nowhere dense set and $W_{\gamma+1} \subset[0,1]$, for each $n \in \mathbb{N}$, $\frac{1}{n(n+1)} W_{\gamma+1}+\frac{1}{n+1}$ is a closed nowhere dense set and $\frac{1}{n(n+1)} W_{\gamma+1}+\frac{1}{n+1} \subset$ $\left[\frac{1}{n+1}, \frac{1}{n}\right]$. Therefore W_{α} is a closed nowhere dense set and $W_{\alpha} \subset[0,1]$.
Let $n \in \mathbb{N}$. Since $1 \in W_{\gamma+1}$, we obtain

$$
\frac{1}{n}=\frac{1}{n(n+1)}+\frac{1}{n+1} \in \frac{1}{n(n+1)} W_{\gamma+1}+\frac{1}{n+1} \subset W_{\alpha}
$$

By our assumption, there exists $\delta_{1}^{(\gamma+1)}>0$ such that $\left(1-\delta_{1}^{(\gamma+1)}, 1\right) \cap$ $W_{\gamma+1}=\emptyset$. We put $\delta_{n}^{(\alpha)}=\frac{1}{n(n+1)} \delta_{1}^{(\gamma+1)}$. Then $\left(\frac{1}{n}-\delta_{n}^{(\alpha)}, \frac{1}{n}\right) \cap W_{\alpha}=\emptyset$. Let β be an ordinal number such that $0 \leq \beta<\alpha$. By the above, we have that the assumptions of Lemma 1 are satisfied. Therefore

$$
\begin{aligned}
W_{\alpha}^{(\beta)} \backslash\{0\} & =\bigcup_{n=1}^{\infty}\left(\frac{1}{n(n+1)} W_{\gamma+1}+\frac{1}{n+1}\right)^{(\beta)} \\
& =\bigcup_{n=1}^{\infty}\left(\frac{1}{n(n+1)} W_{\gamma+1}^{(\beta)}+\frac{1}{n+1}\right)
\end{aligned}
$$

By our assumption, $0 \in W_{\gamma+1}^{(\gamma)}$. Therefore, for each $n \in \mathbb{N}, \frac{1}{n+1} \in$ $\frac{1}{n(n+1)} W_{\gamma+1}^{(\gamma)}+\frac{1}{n+1} \subset W_{\alpha}^{(\gamma)}$. Thus $0 \in W_{\alpha}^{(\gamma+1)} \subset W_{\alpha}^{(\beta)}$. We know that $W_{\gamma+1}^{(\gamma+1)}=\emptyset$. Hence

$$
W_{\alpha}^{(\gamma+1)} \backslash\{0\}=\bigcup_{n=1}^{\infty}\left(\frac{1}{n(n+1)} W_{\gamma+1}^{(\gamma+1)}+\frac{1}{n+1}\right)=\emptyset
$$

and $W_{\alpha}^{(\alpha)}=\emptyset$.
2. Now we assume that α is a limit ordinal number. As to above we may show that conditions (i) and (ii) are satisfied. Additionally, by Lemma 1 , we have that, for each ordinal number β with $0 \leq \beta \leq \alpha$,

$$
W_{\alpha}^{(\beta)} \backslash\{0\}=\bigcup_{n=1}^{\infty}\left(\frac{1}{n(n+1)} W_{\alpha_{n}}^{(\beta)}+\frac{1}{n+1}\right) .
$$

Let $0 \leq \beta<\alpha$. Then there exists $n_{0} \in \mathbb{N}$ such that, for each $n \in \mathbb{N}$, $n \geq n_{0}, \alpha_{n}>\beta$. By our assumption, for each $n \geq n_{0}, 0 \in W_{\alpha_{n}}^{(\beta)}$ and $\frac{1}{n+1} \in \frac{1}{n(n+1)} W_{\alpha_{n}}^{(\beta)}+\frac{1}{n+1} \subset W_{\alpha}^{(\beta)}$. Thus $0 \in W_{\alpha}^{(\beta+1)} \subset W_{\alpha}^{(\beta)}$ and $0 \in \bigcap_{0 \leq \beta<\alpha} W_{\alpha}^{(\beta)}=W_{\alpha}^{(\alpha)}$. We know that, for each $n \in \mathbb{N}, W_{\alpha_{n}}^{(\alpha)} \subset$ $W_{\alpha_{n}}^{\left(\alpha_{n}\right)}=\emptyset$. Therefore $W_{\alpha}^{(\alpha)} \backslash\{0\}=\emptyset$. Hence $W_{\alpha}^{(\alpha)}=\{0\}$.
3. Now we assume that $\alpha=\gamma+1$, where γ is a limit ordinal number. It is obvious that conditions (i), (ii), (iii) are satisfied. Additionally

$$
W_{\alpha}^{(\alpha)}=W_{\gamma}^{(\alpha)}=\left(W_{\gamma}^{(\gamma)}\right)^{d}=(\{0\})^{d}=\emptyset .
$$

Now, we consider the following possibilities.

1. Let $\alpha=\gamma+2$, where γ is an ordinal number. In Corollary 4, we put $H=W_{\alpha}$ and, for each ordinal number β with $0 \leq \beta \leq \alpha, C_{\beta}=\mathbb{R} \backslash W_{\alpha}^{(\beta)}$. Then

$$
\left(H \cap \bigcup_{\beta \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)\right)^{d}=\left(W_{\alpha}^{(\beta)}\right)^{d}
$$

and $\mathbb{R} \backslash\left(\left(H \cap C_{\beta+1}\right) \cup C_{\beta}\right)=W_{\alpha}^{(\beta+1)}$. Therefore the characteristic function of the set H belongs to the class $\mathcal{A}_{\alpha} \backslash \bigcup_{0 \leq \beta<\alpha} \mathcal{A}_{\beta}$.
2. Let α be a limit ordinal number. Put $H=W_{\alpha} \backslash\{0\}$ and, $C_{0}=\mathbb{R} \backslash W_{\alpha}$, for each ordinal number β with $0 \leq \beta<\alpha, C_{\beta}=\mathbb{R} \backslash W_{\alpha}^{(\beta)}, C_{\alpha}=\mathbb{R}$. We
show that all assumptions of Corollary 4 are satisfied. We observe that

$$
\bigcup_{\beta \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)=\bigcup_{\beta \leq \xi<\alpha}\left(W_{\alpha}^{(\xi)} \backslash W_{\alpha}^{(\xi+1)}\right)
$$

Since $W_{\alpha}^{(\alpha)}=\{0\}$, we have $\bigcup_{\beta \leq \xi<\alpha}\left(W_{\alpha}^{(\xi)} \backslash W_{\alpha}^{(\xi+1)}\right)=W_{\alpha}^{(\beta)} \backslash\{0\}$. Thus

$$
\begin{aligned}
\left(H \cap \bigcup_{\beta \leq \xi<\alpha}\left(C_{\xi+1} \backslash C_{\xi}\right)\right)^{d} & =\left(\left(W_{\alpha} \cap W_{\alpha}^{(\beta)}\right) \backslash\{0\}\right)^{d} \\
& =\left(W_{\alpha}^{(\beta)}\right)^{d}=W_{\alpha}^{(\beta+1)}
\end{aligned}
$$

Since $\mathbb{R} \backslash\left(\left(H \cap C_{\beta+1}\right) \cup C_{\beta}\right)=\{0\} \cup W_{\alpha}^{(\beta+1)}=W_{\alpha}^{(\beta+1)}$, by Corollary 4, we have that, the characteristic function of the set H belongs to the class $\mathcal{A}_{\alpha} \backslash \bigcup_{0 \leq \beta<\alpha} \mathcal{A}_{\beta}$.
3. Let $\alpha=\gamma+1$, where γ is a limit ordinal number. Put $H=W_{\alpha}$ and, for each ordinal number β with $0 \leq \beta \leq \alpha, C_{\beta}=\mathbb{R} \backslash W_{\alpha}^{(\beta)}$. As in the first part, we can show that the characteristic function of the set H belongs to $\mathcal{A}_{\alpha} \backslash \bigcup_{0 \leq \beta<\alpha} \mathcal{A}_{\beta}$.

Thus the proof is complete.

References

[1] P. S. Alexandroff, Введение в теорию множсеств и общую топологию, Издателство Наука, Москва, р. 162-163, 1977.
[2] W. H. Young, La sym etrie de structure des fonctions des variables reelles, Bulletin des Sciences Math ematiques, 52 (2) (1928), 265-280.

[^0]: Mathematical Reviews subject classification: Primary: 26A15

