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INTEGRATION OF FOURIER-LEGENDRE
SERIES

Abstract

It is well known than an ordinary (trigonometric) Fourier series “can”
be integrated term by term; that is, whether the Fourier series of an in-
tegrable function f is convergent or not, the series obtained by term by
term integration of it is convergent to the corresponding integral of f .
There is also a more general theorem in which f and its Fourier series are
first multiplied by a function of bounded variation before integrating.
This paper aims to obtain similar theorems for the Fourier-Legendre
series discussed by Love and Hunter in Proc. London Math. Soc (3)
64 (1992) 579-601 and by Love in that journal (3) 69 (1994) 629-672.
Most of the paper is occupied by lemmas which lead to establishing
the dominated convergence of the partial sums of the Fourier-Legendre
series under certain conditions. For several reasons one of these condi-
tions is that the interval of integration must be a closed subinterval of
(−1, 1), the interval on which the Legendre functions Pµ

ν (x) are defined;
further, I have only had success with integration over subintervals of
[− 1

2

√
3, 1

2

√
3].

Introduction

There is a well-known theorem [3] (p. 419) that a (trigonometric) Fourier
series “can” be integrated term-by-term. This means that if a function f has
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the following Fourier series; that is, if

f(x) ∼ 1

2
αo +

∞∑
n=1

(αn cosnx+ βn sinnx) ,

whether the series is convergent or not, then∫ b

a

f(x)dx =
1

2
αo

∫ b

a

dx+

∞∑
n=1

(
αn

∫ b

a

cosnx dx+ βn

∫ b

a

sinnx dx

)
.

More generally [3] (p. 421), any factor g(x) of bounded variation on [a, b]
can be inserted into the integrands, giving again a correct equation∫ b

a

f(x)g(x)dx =

1

2
αo

∫ b

a

g(x)dx+

∞∑
n=1

(
αn

∫ b

a

g(x) cosnxdx+ βn

∫ b

a

g(x) sinnxdx

)
.

This paper aims to find similar theorems for the Fourier-Legendre series
studied by Hunter and me [2], in which

f(x) ∼
∞∑

n=−∞
anP

µ
ν+n(x)

where an = (−1)n
ν + n+ 1

2

2 cos νπ

∫ 1

−1
f(t)P−µν+n(−t)dt .

(1)

Such a theorem might be as follows.

Proposition 1. If 0 < c < 1, f ∈ L(−c, c), f vanishes outside (−c, c), g has
bounded variation on [−c, c] and f has the Fourier-Legendre series (1), is it
true that ∫ c

−c
f(x)g(x)dx =

∞∑
−∞

an

∫ c

−c
Pµν+n(x)g(x)dx ?

Partial Proof. By the definition of ar in (1),

n−1∑
r=−n

ar

∫ c

−c
Pµν+r(x)g(x) dx

n−1∑
r=−n

(−1)r
ν + r + 1

2

2 cos νπ

∫ c

−c
f(t)P−µν+r(−t) dt

∫ c

−c
Pµν+r(x)g(x) dx
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∫ c

−c
f(t)

(
n−1∑
r=−n

P−µν+r(−t)(−1)r
ν + r + 1

2

2 cos νπ

∫ c

−c
g(x)Pµν+r(x) dx

)
dt

∫ c

−c
f(t)

(
n−1∑
r=−n

brP
−µ
ν+r(−t)

)
dt

where br = (−1)r
ν + r + 1

2

2 cos νπ

∫ c

−c
g(x)Pµν+r(x) dx (2)

So

lim
n→∞

n−1∑
r=−n

ar

∫ c

−c
Pµν+r(x)g(x) dx = lim

n→∞

∫ c

−c
f(t)

n−1∑
r=−n

brP
−µ
ν+r(−t) dt

=

∫ c

−c
f(t) lim

n→∞

n−1∑
r=−n

brP
−µ
ν+r(−t) dt (3)

=

∫ c

−c
f(t)g(t) dt, (4)

the steps (3) and (4) requiring justification. For (3) it is sufficient that∑n−1
r=−n brP

−µ
ν+r(−t) be boundedly convergent as n → ∞ and for (4) that∑∞

r=−∞ br· P−µν+r(−t) = g(t) for almost all t ∈ (−c, c).

The theorems actually proved in this paper are similar to Proposition 1,
but differ in certain features. The main tasks are justifications like those of
(3) and (4) above.

The restriction of the integrals to (−c, c) instead of (−1, 1) is made because
integration right to the singular points ±1 of the Legendre functions is not
likely to be manageable. The Legendre functions involved are defined in terms
of Gauss’s hypergeometric function F as in [1] (3.4(6)):

Pµν (x) =
1

Γ(1− µ)

(
1 + x

1− x

) 1
2µ

F

(
−ν , 1 + ν ;

1− µ ;

1− x
2

)
for −1 < x < 1, except that P, instead of P , is used in [1] for this particular
function while P is used for a different function.

The theorems can be adapted to any subinterval (a, b) of (−c, c) simply by
defining g to be zero outside (a, b).
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Definition 1 (The Dini condition). g is Dini at x means that

g(t)− g(x)

t− x
∈ L(x− δ, x+ δ)

for some δ > 0. All differentiable and all Lipschitz functions are Dini at all
points concerned.

Lemma 1. If 0 < c < 1, g ∈ L(−c, c), g is Dini at almost all x in (−c, c),
−1/2 < µ < 1/2 and −1/2 < ν < 1/2, then (as required for (4) above)

g(x) =

∞∑
r=−∞

brP
−µ
ν+r(−x)

for almost all x ∈ (−c, c); br being defined as in (2).

Proof. This comes from [2] (Theorem 8) by replacing its µ by −µ, its f(x)
by g(−x), and defining g as zero outside (−c, c); these replacements turn its
ar into

(−1)r
ν + r + 1

2

2 cos νπ

∫ c

−c
g(−t)Pµν+r(−t)dt = br

as in (2). The conclusion of [2] (Theorem 8) then gives

g(−x) =

∞∑
r=−∞

br P
−µ
ν+r(x)

at almost all −x ∈ (−c, c); this is equivalent to the required result. �

Lemma 2. If 0 < c < 1, g ∈ L(−c, c), g vanishes outside (−c, c), γ = arccos c,
γ

′
= π − γ, γ ≤ θ ≤ γ′

, h(φ) = g(cosφ)
√

sinφ, br is as in (2),

sn(x) =

n−1∑
r=−n

brP
−µ
ν+r(−x) (5)

and
D(ν; t, x) ≡ D(µ, ν; t, x) ≡

1
2{(ν − µ)Pµν (t)P−µν−1(−x) + (ν + µ)Pµν−1(t)P−µν (−x)} (6)

then
sn(cos θ) =

(−1)n

2 cos νπ

∫ γ
′

γ

D(ν + n; cosφ, cos θ)−D(ν − n; cosφ, cos θ)

cos θ − cosφ
h(φ)

√
sinφdφ .
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This lemma is essentially (3.6) of [2] with changed notation and g vanishing
outside (−c, c). It is the counterpart of Dirichlet’s Integral in trigonometric
Fourier series theory. Formula (6) is (2.1) of [2] with x and t interchanged.

Lemma 3. If γ = π/6, γ
′

= 5π/6, γ ≤ θ ≤ γ
′
, −1/2 < µ < 1/2 and ν ≥ 1

then√
1
2π sin θ Pµν (cos θ) =

Γ(ν + µ+ 1)

Γ(ν + 3
2 )

[
sin{(ν + 1

2 )θ + (µ+ 1
2 ) 1

2π}+ ω1

]
where ω1 ≡ ω1(µ, ν; θ) is O(1/ν) on S1 = {(ν, θ) : ν ≥ 1 and γ ≤ θ ≤ γ

′};
also ω1 has continuous derivative ∂ω1/∂θ which is bounded on S1.

Proof. Comparing the stated equation with 3.5(5) of [1], it is seen that

ω1(µ, ν; θ) =

∞∑
r=1

( 1
2 + µ)r(

1
2 − µ)r

(ν + 3
2 )r

(− 1
2 csc θ)r

r!
sin{(ν + r + 1

2 )θ + (µ+ r + 1
2 ) 1

2π} . (7)

The rth term of this series has modulus dominated on S1 by

( 1
2 + µ)r(

1
2 − µ)r

(ν + 3
2 )rr!

=
( 1
2 + µ)r(

1
2 − µ)r

(ν + 3
2 )(ν + 5

2 )r−1

1

r!
≤ 1

ν + 3
2

( 1
2 + µ)r(

1
2 − µ)r

( 7
2 )r−1r!

=
1

ν + 3
2

Γ( 7
2 )

Γ( 1
2 + µ)Γ( 1

2 − µ)

Γ( 1
2 + µ+ r)Γ( 1

2 − µ+ r)

Γ( 5
2 + r)Γ(1 + r)

= O

(
1

ν

1

r5/2

)
where O is independent of (ν, θ) in S1. In particular by Weierstrass’s test the
series (7) is uniformly convergent on γ ≤ θ ≤ γ′

; and its sum is O(1/ν) on S1,
which is one of the required conclusions.

Formal differentiation of (7) with respect to θ gives the series

cos θ

2 sin2 θ

∞∑
r=1

( 1
2 + µ)r(

1
2 − µ)r

(ν + 3
2 )r

(− 1
2 csc θ)r−1

(r − 1)!
sin{(ν+ r+ 1

2 )θ+ (µ+ r+ 1
2 ) 1

2π}

− 1

2 sin θ

∞∑
r=1

( 1
2 + µ)r(

1
2 − µ)r

(ν + 3
2 )r

(− 1
2 csc θ)r−1

(r − 1)!

ν + r + 1
2

r
Cr (8)

where Cr = cos{(ν + r + 1
2 )θ + (µ+ r + 1

2 ) 1
2π}.

Since
ν + r + 1

2

r
= 1 +

ν + 1
2

r
≤ ν + 3

2 ,
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the rth terms of both series in (8) have modulus dominated on S1 by

√
3

( 1
2 + µ)r(

1
2 − µ)r

(ν + 5
2 )r−1(r − 1)!

≤
√

3
( 1
2 + µ)r(

1
2 − µ)r

( 7
2 )r−1Γ(r)

=

√
3

Γ( 7
2 )

Γ( 1
2 + µ)Γ( 1

2 − µ)

Γ( 1
2 + µ+ r)Γ( 1

2 − µ+ r)

Γ( 5
2 + r)Γ(r)

= O

(
1

r3/2

)
, (9)

where O is independent of (ν, θ) in S1. So by Weierstrass’s test again the
series (8) are uniformly convergent on γ ≤ θ ≤ γ

′
; and since their terms are

also continuous there, their combined sum is continuous and is the derivative
of the sum of (7). Thus ω1 has continuous derivative ∂ω1/∂θ in γ ≤ θ ≤ γ

′
.

Further, that combined sum is bounded on S1 because of the dominance (9);
this gives the last conclusion, that ∂ω1/∂θ is bounded on S1. �

Lemma 4. If γ = π/6, γ
′

= 5π/6, γ ≤ θ ≤ γ
′
, γ ≤ φ ≤ γ

′
, θ

′
= π − θ,

−1/2 < µ < 1/2 and ν ≥ 2, then D, defined at (6) in Lemma 2, satisfies

π
√

sin θ sinφD(ν; cosφ, cos θ) =

sin ν(φ+ θ
′
) cos 1

2 (φ− θ
′
) + cos{ν(φ− θ

′
) + µπ} cos 1

2 (φ+ θ
′
) + ω2 ,

where ω2 ≡ ω2(µ, ν; θ, φ) is O(1/ν) on S2 = {(ν, θ, φ) : ν ≥ 2, γ ≤ θ ≤ γ′
and

γ ≤ φ ≤ γ
′}; also ω2 has continuous derivatives ∂ω2/∂θ and ∂ω2/∂φ, which

are bounded on S2.

Proof. By (6) and Lemma 3, the expression in question is equal to

1
2π
√

sin θ sinφ×

{(ν − µ)Pµν (cosφ)P−µν−1(cos θ
′
) + (ν + µ)Pµν−1(cosφ)P−µν (cos θ

′
)} (10)

= (ν−µ)
Γ(ν+µ+ 1)

Γ(ν+ 3
2 )

Γ(ν−µ)

Γ(ν+ 1
2 )

[
sin{(ν+ 1

2 )φ+(µ+ 1
2 ) 1

2π}+ω1(µ, ν;φ)
]

×
[
sin{(ν − 1

2 )θ
′
− (µ− 1

2 ) 1
2π}+ ω1(−µ, ν − 1; θ

′
)
]

+(ν+µ)
Γ(ν+µ)

Γ(ν+ 1
2 )

Γ(ν−µ+ 1)

Γ(ν+ 3
2 )

[
sin{(ν− 1

2 )φ+(µ+ 1
2 ) 1

2π}+ω1(µ, ν − 1;φ)
]

×
[
sin{(ν + 1

2 )θ
′
− (µ− 1

2 ) 1
2π}+ ω1(−µ, ν; θ

′
)
]

=
Γ(ν + µ+ 1)

Γ(ν + 3
2 )

Γ(ν − µ+ 1)

Γ(ν + 1
2 )

1

2
×
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[
cos{ν(φ−θ

′
)+ 1

2 (φ+θ
′
)+µπ}−cos{ν(φ+θ

′
)+ 1

2 (φ−θ
′
)+ 1

2π}+

cos{ν(φ−θ
′
)− 1

2 (φ+θ
′
)+µπ}−cos{ν(φ+θ

′
)− 1

2 (φ−θ
′
)+ 1

2π}+2ω
]
, (11)

where ω = ω(µ, ν; θ, φ) is equal to

ω1(µ, ν;φ) sin{(ν− 1
2 )θ

′
−(µ− 1

2 ) 1
2π}+

ω1(−µ, ν−1; θ
′
) sin{(ν+ 1

2 )φ+(µ+ 1
2 ) 1

2π}+ω1(µ, ν;φ)ω1(−µ, ν−1; θ
′
)

+ω1(µ, ν−1;φ) sin{(ν+ 1
2 )θ

′
−(µ− 1

2 ) 1
2π}+

ω1(−µ, ν; θ
′
) sin{(ν− 1

2 )φ+(µ+ 1
2 ) 1

2π}+ω1(µ, ν−1;φ)ω1(−µ, ν, θ
′
) (12)

By Lemma 3 this ω is O(1/ν) on S2, and it has continuous derivatives ∂ω/∂θ
and ∂ω/∂φ thereon. Further the term in ∂ω/∂θ corresponding to the first line
of (12) is

−ω1(µ, ν;φ)(ν − 1

2
) cos{(ν − 1

2
)θ

′
− (µ− 1

2
)
1

2
π};

that is, bounded on S2 by Lemma 3. Similarly the other terms in (12); so that
∂ω/∂θ is bounded on S2. Equally ∂ω/∂φ is bounded on S2.

By 1.18(4) of [1] and addition theorems, (11) is equal to

(1+ρ)
[
cos{ν(φ−θ

′
)+µπ} cos 1

2 (φ+θ
′
)−cos{ν(φ+θ

′
)+ 1

2π} cos 1
2 (φ−θ

′
)+ω

]
where ρ = O(1/ν) and ρ is independent of θ and φ. This expression is equal
to

cos{ν(φ− θ
′
) + µπ} cos 1

2 (φ+ θ
′
) + sin ν(φ+ θ

′
) cos 1

2 (φ− θ
′
) + ω2 ,

the required formula, with

ω2 ≡ ω2(µ, ν; θ, φ) =

ρ
[
cos ν(φ− θ

′
) + µπ} cos 1

2 (φ+ θ
′
) + sin ν(φ+ θ

′
) cos 1

2 (φ− θ
′
)
]

+ (1 + ρ)ω .

It is clear from the above properties of ρ and ω that ω2 = O(1/ν) on S2, and
that ω2 has continuous derivatives ∂ω2/∂θ and ∂ω2/∂φ; and also that these
derivatives are bounded on S2 since ρν = O(1). This completes the proof of
Lemma 4. �
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Lemma 5. If the hypothesis of Lemma 4 hold, except that ν is now fixed
with −1/2 < ν < 1/2 and n is an integer greater than two (ν + n replacing
the previous ν) then sn(x), defined at (5) in Lemma 2, is given by

sn(cos θ) =
sec νπ

2π
√

(sin θ)

[∫ γ
′

γ

sinn(φ−θ)
sin 1

2 (φ−θ)
cos ν(φ+θ

′
)h(φ)dφ−

∫ γ
′

γ

cos{n(φ+θ)+µπ}
sin 1

2 (φ+θ)
cos ν(φ−θ

′
)h(φ)dφ+

∫ γ
′

γ

Ω(n; θ, φ)

cos θ−cosφ
h(φ)dφ

]
, (13)

where Ω(n; θ, φ) ≡ Ω(µ, ν, n; θ, φ) is O(1/n) on S3 = {(n, θ, φ) : n ≥ 3,
γ ≤ θ ≤ γ

′
and γ ≤ φ ≤ γ

′}; also Ω has continuous derivatives ∂Ω/∂θ and
∂Ω/∂φ, which are bounded on S3.

Proof. By (6) and 3.4(7) of [1],

D(−λ; t, x) = 1
2{(−λ− µ)Pµ−λ(t)P−µ−λ−1(−x) + (−λ+ µ)Pµ−λ−1(t)P−µ−λ (−x)}

= 1
2{−(λ+ µ)Pµλ−1(t)P−µλ (−x)− (λ− µ)Pµλ (t)P−µλ−1(−x)} = −D(λ; t, x) ;

whence
−D(ν − n; cosφ, cos θ) = D(n− ν; cosφ, cos θ) . (14)

Replacing ν in Lemma 4 by n+ ν and n− ν, and using (14),

1
2π
√

sin θ sinφ{D(ν + n; cosφ, cos θ)−D(ν − n; cosφ, cos θ)} =

1
2

[
sin{(n+ ν)(φ+ θ

′
)} sin 1

2 (φ+ θ)− cos{(n+ ν)(φ− θ
′
) + µπ} sin 1

2 (φ− θ)

+ω2(µ, n+ ν; θ, φ) + sin{(n− ν)(φ+ θ
′
} sin 1

2 (φ+ θ)−

cos{(n− ν)(φ− θ
′
) + µπ} sin 1

2 (φ− θ) + ω2(µ, n− ν; θ, φ)
]

=

sinn(φ+θ
′
) cos ν(φ+θ

′
) sin 1

2 (φ+θ)−cos{n(φ−θ
′
)+µπ} cos ν(φ−θ

′
) sin 1

2 (φ−θ)
+ 1

2 (−1)nΩ(n; θ, φ) , (15)

where Ω(n; θ, φ) = (−1)n{ω2(µ, n+ ν; θ, φ) + ω2(µ, n− ν; θ, φ)} .
By Lemma 4, Ω(n; θ, φ) is O(1/n) on S3, it has continuous derivatives

∂Ω/∂θ and ∂Ω/∂φ, and these are bounded on S3. By Lemma 2, and (14) and
(15), provided the integrals exist,

sn(cos θ) =
(−1)n sec νπ

2π
√

(sin θ)

[∫ γ
′

γ

sinn(φ+ θ
′
) cos ν(φ+ θ

′
)

sin 1
2 (φ− θ)

h(φ)dφ−



192 E. Russell Love

∫ γ
′

γ

cos{n(φ−θ′
)+µπ} cos ν(φ−θ′

)

sin 1
2 (φ+θ)

h(φ)dφ+(−1)n
∫ γ

′

γ

Ω(n; θ, φ)

cos θ−cosφ
h(φ)dφ

]
this is equivalent to the stated result by θ

′
= π− θ, subject to existence of the

integrals.
Of the three integrals in (13), the first exists because h ∈ L(γ, γ

′
) and h

is multiplied by a continuous function; the second exists for the same reason,
since 0 < γ ≤ 1

2 (φ+θ) ≤ γ′
< π so that the denominator sin 1

2 (φ+θ) does not
vanish. The third integral in (13) exists by linearity, despite the denominator;
because its integrand is a linear combination of the integrand of sn(cos θ) in
Lemma 2 and the first two integrands in (13), and these three integrands are
all integrable. �

Lemma 6. If 0 < γ < π/2 and γ ≤ θ ≤ γ′
, then∫ γ

′

γ

| log | cosφ− cos θ||dφ < 2 cos γ log(4e) + πe−1

sin γ
,

a bound independent of θ.

Proof. The integral is equal to∫ γ
′

γ

∣∣∣∣log

∣∣∣∣cosφ− cos θ

2

∣∣∣∣+ log 2

∣∣∣∣ dφ
≤
∫ γ

′

γ

(
log

∣∣∣∣ 2

cosφ− cos θ

∣∣∣∣+ log 2

)
dφ

≤
∫ γ

′

γ

{2 log 2− log |cosφ− cos θ|} sinφ

sin γ
dφ

= csc γ[−2(log 2) cosφ+ (cosφ− cos θ) log | cosφ− cos θ| − cosφ]γ
′

φ=γ

≤ csc γ{2(2 log 2 + 1) cos γ + (γ
′
− γ)e−1}

< csc γ{2 log(4e) cos γ + πe−1} �

Lemma 7. If 0 < γ < π/2 and h has bounded variation on [γ, γ
′
], then∫ γ

′

γ

cos ν(φ+ θ
′
)
sinn(φ− θ)
sin 1

2 (φ− θ)
h(φ)dφ

is bounded on the set S4 = {(n, θ) : n ≥ 1 and γ ≤ θ ≤ γ′}.
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Proof. (i) Omitting the factor h(φ) for the moment, the integrand is equal
to

{cos νπ cos ν(φ− θ)− sin νπ sin ν(φ− θ)} sinn(φ− θ)
sin 1

2 (φ− θ)
=

cos νπ
sin(n+ ν)(φ− θ) + sin(n− ν)(φ− θ)

2 sin 1
2 (φ− θ)

− sin νπ
sin ν(φ− θ)
sin 1

2 (φ− θ)
sinn(φ− θ) .

The latter term is bounded independently of n, θ and φ since, for γ ≤ θ ≤ γ
′

and γ ≤ φ ≤ γ
′
, |φ − θ| ≤ γ

′ − γ = π − 2γ < π. Also h is bounded. So the
part of the integral in question corresponding to the latter term is bounded
on S4. It is therefore sufficient to prove boundedness of∫ γ

′

γ

sin(n± ν)(φ− θ)
sin 1

2 (φ− θ)
h(φ)dφ . (16)

Since ν is unrestricted we need only consider the plus case.
(ii) For −π < χ < π let

Fn(χ) =

∫ χ

0

sin(n+ ν)ψ

sin 1
2ψ

dψ =

∫ χ

0

(
1

sin 1
2ψ
− 1

1
2ψ

)
sin(n+ ν)ψdψ +

∫ χ

0

sin(n+ ν)ψ
1
2ψ

dψ . (17)

For 0 < χ < π the first factor in the integrand of the former integral in (17)
is positive and less than

1

sin 1
2ψ
− 1

tan 1
2ψ

=
1− cos 1

2ψ

sin 1
2ψ

=
sin 1

2ψ

1 + cos 1
2ψ

<
sin 1

2χ

1 + cos 1
2χ

< sin
1

2
χ < 1 ;

so the former integral in (17) has modulus less than π. Similarly for −π <
χ < 0. It is standard that the latter integral in (17) is a bounded function of
n and χ. Thus Fn(χ) is also a bounded function of n and χ on −π < χ < π.

(iii) The integral (16) (with plus) is equal to∫ γ
′
−θ

γ−θ

sin(n+ ν)ψ

sin 1
2ψ

h(θ + ψ)dψ = Fn(γ
′
− θ)h(γ

′
)− Fn(γ − θ)h(γ)−

∫ γ
′
−θ

γ−θ
Fn(ψ)dψh(θ+ψ) = Fn(γ

′
−θ)h(γ

′
)−Fn(γ−θ)h(γ)−

∫ γ
′

γ

Fn(φ−θ)dh(φ) .

All three of these terms are bounded functions of (n, θ) on S4 by (ii), re-
membering that h has bounded variation on [γ, γ

′
]. This completes the proof.

�
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Lemma 8. If the hypotheses of Lemma 5 hold, x = cos θ and c = cos γ =√
3 /2, g has bounded variation on [−c, c] and for almost all x∫ c

−c

∣∣∣∣g(t)− g(x)

t− x

∣∣∣∣ dt <∞ ,

then h(φ) and Ω(n; θ, φ), occurring in Lemma 2 and 5, satisfy, for almost all
x,∫ γ

′

γ

Ω(n; θ, φ)

cosφ−cos θ
h(φ)dφ = O

(∫ c

−c

∣∣∣∣g(t)−g(x)

t−x

∣∣∣∣ dt)+O

(
log

1

c2−x2

)
(18)

on the set S5 = {(n, x) : n ≥ 3 and −c < x < c}.

Proof. (i) For θ and φ in [γ, γ
′
], remembering that h(φ) = g(cosφ)

√
sinφ,

h(φ)− h(θ)

cosφ− cos θ
= g(cosφ)

√
sinφ−

√
sin θ

cosφ− cos θ
+
√

sin θ
g(cosφ)− g(cos θ)

cosφ− cos θ

= − g(cosφ)
√

sinφ+
√

sin θ
cot

1

2
(φ+ θ) +

√
sin θ

sinφ

g(cosφ)− g(cos θ)

cosφ− cos θ
sinφ .

Since sinφ ≥ sin γ, sin θ ≥ sin γ, sin 1
2 (φ+ θ) ≥ sin γ = 1

2 and g ∈ L(−c, c),

∫ γ
′

γ

∣∣∣∣ h(φ)− h(θ)

cosφ− cos θ

∣∣∣∣ dφ ≤
1

2(sin γ)5/2

∫ γ
′

γ

|g(cosφ)| sinφdφ+
1

sin γ

∫ γ
′

γ

∣∣∣∣g(cosφ)− g(cos θ)

cosφ− cos θ

∣∣∣∣ sinφdφ
= 2
√

2

∫ c

−c
|g(t)|dt+ 2

∫ c

−c

∣∣∣∣g(t)− g(x)

t− x

∣∣∣∣ dt . (19)

By hypothesis (19) is finite for almost all x ∈ (−c, c).
(ii) Provided that two of the following three integrals exist,

∫ γ
′

γ

Ω(n; θ, φ)

cosφ− cos θ
h(φ)dφ =

∫ γ
′

γ

Ω(n; θ, φ)
h(φ)− h(θ)

cosφ− cos θ
dφ+ h(θ)

∫ γ
′

γ

Ω(n; θ, φ)

cosφ− cos θ
dφ . (20)
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The last paragraph of the proof of Lemma 5 shows that the integral on the
left of (20) exists. The first integral on the right exists for almost all θ, by
(19) and the boundedness of Ω as a function of φ, which follows from Lemma
5. Thus (20), including the existence of the integrals in it, is established for
almost all θ.

(iii) The last integral in (20), being Lebesgue as shown in (ii), is equal to
the limit as η → 0+ of(∫ θ−η

γ

+

∫ γ
′

θ+η

)
Ω(n; θ, φ)

sinφ

sinφ

cosφ− cos θ
dφ =

−
[

Ω(n; θ, φ)

sinφ
log | cosφ−cos θ|

]θ−η
φ=γ

−
[

Ω(n; θ, φ)

sinφ
log | cosφ−cos θ|

]γ′

φ=θ+η

(21)

+

(∫ θ−η

γ

+

∫ γ
′

θ+η

)(
1

sinφ

∂Ω

∂φ
− cosφ

sin2 φ
Ω

)
log | cosφ− cos θ| dφ , (22)

integration by parts being valid since ∂Ω/∂φ is continuous by Lemma 5.
The function ω(φ) = Ω(n; θ, φ)/ sinφ has continuous derivative in γ ≤ φ ≤

γ
′
. The part of line (21) involving η is therefore equal to

−ω(θ − η) log | cos(θ − η)− cos θ|+ ω(θ + η) log | cos(θ + η)− cos θ| =

−{ω(θ) +O(η)} log{cos(θ− η)− cos θ}+ {ω(θ) +O(η)} log{cos θ− cos(θ+ η)}

= ω(θ) log
cos θ − cos(θ + η)

cos(θ − η)− cos θ
+O(η log η) → 0 as η → 0 + .

So by (21) and (22) the last integral in (20) is equal, for almost all θ, to

Ω(n; θ, γ)

sin γ
log | cos γ − cos θ| − Ω(n; θ, γ

′
)

sin γ′ log | cos γ
′
− cos θ| (23)

+

∫ γ
′

γ

(
1

sinφ

∂Ω

∂φ
(n; θ, φ)− cosφ

sin2 φ
Ω(n; θ, φ)

)
log | cosφ− cos θ| dφ . (24)

Line (24) is bounded on S5, by Lemmas 5 and 6. Lemma 5 also shows that
line (23) is, on S5,

O

(
1

n
log(cos γ − cos θ)

)
+O

(
1

n
log(cos θ − cos γ

′
)

)
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= O

(
log

2

cos γ − cos θ
+ log 2

)
+O

(
log

2

cos θ + cos γ
+ log 2

)

= O

(
log

4

cos2 γ − cos2 θ

)
+O(1)

= O

(
log

1

c2 − x2

)
+O(1) = O

(
log

1

c2 − x2

)
.

This, together with (20) and (19), establishes the stated result (18), thus
completing the proof of Lemma 8. �

Theorem 1. Let −1/2 < µ < 1/2, −1/2 < ν < 1/2, c =
√

3 /2 ' 0.866, g
have bounded variation on [−c, c] and∫ c

−c
dx

∫ c

−c

∣∣∣∣g(t)− g(x)

t− x

∣∣∣∣ dt <∞ . (25)

If

br = (−1)r
ν+r+ 1

2

2 cos νπ

∫ c

−c
g(t)Pµν+r(t) dt and sn(x) =

n−1∑
r=−n

brP
−µ
ν+r(−x) (26)

then sn(x) converges to g(x) dominatedly on −c ≤ x ≤ c as n→∞.

Proof. The inner integral in (25) is finite almost everywhere in −c ≤ x ≤ c;
consequently g is Dini at those points. Lemma 1 now gives that sn(x)→ g(x)
almost everywhere as n→∞. It only remains to prove that this convergence
is dominated.

By Lemma 5, and with its notation, sn(x) is equal to the sum of three
terms multiplied by a bounded factor; and in those terms we have h(φ) =
g(cosφ)

√
(sinφ) and γ ≤ φ ≤ γ′

, so that h has bounded variation on [γ, γ
′
].

Of those three terms (integrals) in Lemma 5, the first is bounded on S4,
by Lemma 7. The second is obviously bounded since sin 1

2 (φ + θ) ≥ sin γ for
all θ and φ involved, and h(φ) is bounded. Lemma 8 gives that the third term
is

O

(∫ c

−c

∣∣∣∣g(t)− g(x)

t− x

∣∣∣∣ dt) + O

(
log

1

c2 − x2

)
;

and since the other two terms are bounded, sn(x) is dominated by just such an
expression, which is a positive integrable function independent of n, by (25).
�
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Theorem 2. Let −1/2 < µ < 1/2, −1/2 < ν < 1/2 and c =
√

3 /2. Let f be
essentially bounded on [−c, c] and zero outside that interval; and let

ar = (−1)r
ν + r + 1

2

2 cos νπ

∫ c

−c
f(t)P−µν+r(−t) dt .

Let g have bounded variation on [−c, c],

br = (−1)r
ν + r + 1

2

2 cos νπ

∫ c

−c
g(t)Pµν+r(t) dt .

and ∫ c

−c
dx

∫ c

−c

∣∣∣∣g(t)− g(x)

t− x

∣∣∣∣ dt <∞ . (25)

Then, even if there are values of x such that

f(x) 6=
∞∑
−∞

arP
µ
ν+r(x) (27)

or such that the series in (27) is divergent, it is nevertheless true that∫ c

−c
f(x)g(x) dx =

∞∑
−∞

ar

∫ c

−c
Pµν+r(x)g(x) dx . (28)

Proof. The integrals on the right of (28) exist since Pµν+r(x) is continuous in
−c ≤ x ≤ c and g(x) is bounded thereon. As in the equations preceding (2),
and with the notation (26)

n−1∑
r=−n

ar

∫ c

−c
Pµν+r(x)g(x) dx =

∫ c

−c
f(t)sn(t) dt →

∫ c

−c
f(t)g(t) dt

as n→∞; this limit process is valid because sn(t) converges dominatedly to
g(t) by Theorem 1 and f(t) is essentially bounded, so that the whole integrand
f(t)sn(t) also converges dominatedly. This proves Theorem 2. �

Corollary 1. If −c ≤ a < b ≤ c then (compare (27) and (28))∫ b

a

f(x) dx =

∞∑
r=−∞

ar

∫ b

a

Pµν+r(x) dx .
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Proof. In Theorem 2 take g(x) = 1 in a < x < b, g(x) = 0 elsewhere. Then g
is certainly of bounded variation, but we must verify (25). The double integral
is equal to∫ c

−c
dx

∫ a

−c

∣∣∣∣ g(x)

t− x)

∣∣∣∣ dt+

∫ c

−c
dx

∫ b

a

∣∣∣∣1− g(x)

t− x

∣∣∣∣ dt+

∫ c

−c
dx

∫ c

b

∣∣∣∣ g(x)

t− x

∣∣∣∣ dt
=

∫ b

a

dx

∫ a

−c

dt

x− t
+

∫ a

−c
dx

∫ b

a

dt

t− x
+

∫ c

b

dx

∫ b

a

dt

x− t
+

∫ b

a

dx

∫ c

b

dt

t− x

=

∫ b

a

log
x+ c

x− a
dx+

∫ a

−c
log

b− x
a− x

dx+

∫ c

b

log
x− a
x− b

dx+

∫ b

a

log
c− x
b− x

dx

and these four integrals are all convergent. �

Remark 1. The integrals in (28) can similarly be taken over (a, b), any subin-
terval of (−c, c), by replacing g(x) by 0 outside (a, b).

Lemma 9. Let −1/2 < µ < 1/2, −1/2 < ν < 1/2 and c =
√

3 /2. Let g have
bounded variation on [−c, c], and∫ c

−c

∣∣∣∣g(t)− g(x)

t− x

∣∣∣∣ dt = O

(
log

1

c2 − x2

)
(29)

almost everywhere in −c < x < c. If br and sn(x) are as in (26), then
sn(x)/ log(c2 − x2) converges boundedly on −c < x < c to g(x)/ log(c2 − x2)
as n→∞.

Proof. It is assured by (29) that g is Dini at almost all x. So, as in the
first paragraph of the proof of Theorem 1, sn(x) → g(x) almost everywhere
as n→∞; thus

σn(x) ≡ sn(x)

log(c2 − x2)
→ g(x)

log(c2 − x2)
(30)

almost everywhere. Continuing as in the proof of Theorem 1, σn(cos θ) is, by
Lemma 5, equal to the sum of three terms, two of which are bounded on the
set S6 which we now define as S4 omitting a certain null set of values of θ
(see Lemma 7 for S4). By (29) and Lemma 8, the remaining term in sn(x) is
O(log(c2−x2)) almost everywhere, and so the corresponding term in σn(x) is
essentially bounded on S7 which we now define as S5 omitting a certain null
set of values of x. This proves Lemma 9. �
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Theorem 3. The conclusion of Theorem 2 holds if the hypothesis that f
is essentially bounded is weakened to f(x) log(c2 − x2) ∈ L(−c, c) and the
condition (25) is strengthened to (29)

Proof. This is a modified version of the proof of Theorem 1. As in that
proof, sn(t)→ g(t) almost everywhere. As in (30), this can be written

σn(t) log(c2 − t2)→ g(t)

almost everywhere. This gives that∫ c

−c
f(t)sn(t) dt =

∫ c

−c
f(t) log(c2 − t2)σn(t) dt→

∫ c

−c
f(t)g(t) dt

as n→∞, because σn(t) converges boundedly by Lemma 9 and f(t) log(c2−t2)
is integrable by hypothesis, so that their product converges dominatedly, a
dominant function being a constant multiple of f(t) log(c2 − t2). �

Remark 2. The requirement on f in Theorem 3 comes near to allowing f to
be any integrable function, which is the situation in the theorems for trigono-
metric Fourier series which were the inspiration for this paper.

Theorem 4. If g is absolutely continuous on [−c, c], Theorems 1 and 2 hold
without the double integral requirement (25).

Proof. This consists in showing that (25) holds for all absolutely continuous
g. If t 6= x,∣∣∣∣g(t)−g(x)

t−x

∣∣∣∣ =

∣∣∣∣ 1

t−x

∫ t

x

g
′
(s)ds

∣∣∣∣ ≤ sgn(t−x)

|t−x|

∫ t

x

|g
′
(s)|ds =

1

t−x

∫ t

x

|g
′
(s)|ds

so the double integral is at most∫ c

−c
dx

∫ c

−c

dt

t− x

∫ t

x

|g
′
(s)| ds

=

∫ c

−c
dx

∫ x

−c

dt

x− t

∫ x

t

|g
′
(s)|ds+

∫ c

−c
dx

∫ c

x

dt

t− x

∫ t

x

|g
′
(s)|ds

=

∫ c

−c
dx

∫ x

−c
|g

′
(s)|ds

∫ s

−c

dt

x− t
+

∫ c

−c
dx

∫ c

x

|g
′
(s)|ds

∫ c

s

dt

t− x

=

∫ c

−c
dx

∫ x

−c
|g

′
(s)| log

x+ c

x− s
ds+

∫ c

−c
dx

∫ c

x

|g
′
(s)| log

c− x
s− x

ds
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=

∫ c

−c
|g

′
(s)|ds

∫ c

s

log
x+ c

x− s
dx+

∫ c

−c
|g

′
(s)|ds

∫ s

−c
log

c− x
s− x

dx .

To show that the last two inner integrals are bounded functions of s, we have∫ c

s

log
x+c

x−s
dx = −2c

(
c+s

2c
log

c+s

2c
+
c−s
2c

log
c−s
2c

)
=

∫ s

−c
log

c−x
s−x

dx .

Now for −c ≤ s ≤ c, 0 ≤ (c ± s)/(2c) ≤ 1; consequently, with upper signs
corresponding,

0 ≥ c± s
2c

log
c± s

2c
≥ −e−1

since 0 ≥ u log u ≥ −e−1 for 0 ≤ u ≤ 1. Thus the two inner integrals each lie
between 0 and 4c/e.

Finally this gives that the double integral in (25) is at most

8c

e

∫ c

−c
|g

′
(s)| ds ,

which is finite since g
′ ∈ L(−c, c).
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