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A NOTE ON CONVERGENCE IN
MEASURE

Convergence in measure of a sequence of functions was defined by F.Riesz
in 1909. (Cf.[5] and [2] p.177 ff.) It was used to provide a proof of the
completeness of Lp (Riesz-Fischer Theorem). It is also used in the proof of
the weak law of large numbers and thus is sometimes called convergence in
probability.

A sequence of real valued functions {fn} defined on a measure space is
said to converge in measure to a function f , written fn → f [meas.], if for
every ε > 0 one has limn→∞m(|fn − f | > ε) = 0. Here mE is the measure of
E, (f > a) is {x : f(x) > a}, and all functions are presumed measurable and
defined on a measure space X. Standard results involving limits in measure
can be found in [4]. In particular, convergence in measure does not imply
convergence at a single point. However, the limit is unique (up to sets of
measure 0); the limit of the sum of two sequences which converge in measure
is the sum of the limits in measure; the limit in measure of a constant times the
functions in a sequence is the constant times the limit function; and the limit
in measure of a sequence of measurable functions is measurable. In Munroe [4]
it is proved that if mX <∞ then the limit in measure of the product of two
sequences is the product of the limits providing the limits in measure exist.
To show that this does not hold on spaces of infinite measure, he gives the
example: fn(x) = x and gn(x) = 1/n for each x ∈ (0,∞) where m is Lebesgue
measure on the line. However, it is not difficult to show that the limit in
measure of the product is the product of the limits under certain conditions.
In particular, if the functions f and g are either bounded or Lebesgue integrable
and if fn → f [meas.] and gn → g[meas.], then fngn → fg[meas].

Actually, there is a more general condition which guarantees that the limit
in measure of the product is the product of the limits in measure. It is given
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by the following natural definition: a function f is said to be almost bounded
if for every ε > 0 there is a number N so that m(|f | > N) < ε.

Note that the condition of being almost bounded is equivalent to the condi-
tion that there is a number M so that m(f > M) <∞. It is also equivalent to
the condition that max(−N,min(f,N)) approaches f in measure as N →∞.
And furthermore, a function f is almost bounded iff f/n→ 0[meas.].

In examining the convergence in measure of a product, the equation gh =
(g+h)2/4− (g−h)2/4 along with the fact that the sums, differences and con-
stant multiples behave as expected with respect to such convergence reduces
the problem to that of showing:

Proposition 1. If f is almost bounded and fn → f [meas.] , then f2n →
f2[meas.].

Proof. Given 1 > ε > 0 , since f is almost bounded, there is an M > 1
so that m(|f | > M − 1) < ε/4. Since fn → f [meas.] there is N so that
n > N implies m(|fn − f | > ε/2M2) < ε/4. Since (|fn| > M) ⊂ (|f | >
M − 1) ∪ (|fn − f | > 1), it follows that m(|fn| > M) < ε/2. Then since
(|f2n − f2| > ε) ⊂ (|fn − f | > ε/2M2) ∪ (|fn| > M) ∪ (|f | > M), for n > N , it
follows that m(|f2n − f2| > ε) < ε and f2n → f2[meas.].

If fn approaches f in measure and f is almost bounded, it is not necessary
that all of the fn be almost bounded functions, but the fn must be almost
bounded when n is sufficiently large. Also, the following converse holds:

Proposition 2. If {fn} is a sequence of almost bounded functions which ap-
proaches a function f in measure, then f is almost bounded.

Proof. Given ε > 0, there is N so that for n > N , m(|fn − f | > 1) < ε. Fix
n > N . Then there is M so that m(|fn| > M) < ε. Since (|f | > M + 1) ⊂
(|fn − f | > 1) ∪ (|fn| > M), it follows that m(|f | > M + 1) < 2ε and thus f
is almost bounded.

That almost bounded is the best possible condition for the function f and
a sequence {fn} is shown by:

Proposition 3. If f is not almost bounded, there is a sequence {fn} which
approaches f uniformly (and hence in measure) so that f2n does not approach
f2 in measure.

Proof. If f is not almost bounded, for each natural number N , it follows
that m(|f | > N) = ∞. Then there is a subsequence of the natural numbers,
{Nk} so that if Ek = (Nk < |f | ≤ Nk+1) then m(Ek) > 1. Let fn(x) = f(x) if
x /∈ ∪∞k=nEk ; for each k ≥ n and x ∈ Ek, let fn(x) = f(x) + 1/k if f(x) > 0
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and fn(x) = f(x)− 1/k if f(x) < 0. Then fn approaches f uniformly. But if
k ≥ n and x ∈ Ek then |f2n(x)− f2(x)| > |fn(x)− f(x)| · 2Nk > 2Nk · 1/k > 1.
Since ∪k≥nEk has infinite measure, it follows that f2n does not approach f2 in
measure.

Clearly, the almost bounded functions defined on a metric space form a
linear space of functions. There is a natural metric for the space of almost
bounded functions; namely, let

d(f, g) = inf{s : m(|f − g| > s) ≤ s}.

Here, it is clear that d(f, g) = 0 iff f = g almost everywhere and that
d(f, g) = d(g, f) and that f is almost bounded iff d(f, 0) is defined (that is, is
finite). That the triangle inequality holds follows from the fact that if d1 =
d(f, h) and d2 = d(g, h), then (|f−g| > d1+d2) ⊂ (|f−h| > ḋ1)∪(|g−h| > d2)
and thus m(|f −g| > d1 +d2) ≤ d1 +d2. Thus d(f, g) ≤ d(f, h)+d(g, h). This
metric does not come from a norm. To see this consider Lebesgue measure
on (0,∞). Let p ≥ 1 and f(x) = 1/xp.Then an easy calculation shows that
for any real number c , d(cf, 0) = c1/(p+1). Thus d(cf, 0) 6= |c|d(f, 0). Finally,
note that fn → f [meas.] iff d(fn, f) → 0. This metric is a specialization of
the metric (cf.[1] p.102 ff.) which is defined on the space of all measurable
functions defined on a measure space X and which satisfies fn → f [meas.] iff
d(fn, f)→ 0; namely, d(f, g) = |f − g| where for h = f − g

|h| = inf
α>0

arctan(α+m(h > α)

An additional metric for convergence in measure on spaces of finite measure
can be found in [3]. It is d(f, g) =

∫
|f − g|/(1 + |f − g|.

There is really nothing special about the relationship between the opera-
tion of multiplication and convergence in measure. Indeed, if h(x, y) is any
continuous real valued function defined on the plane, then the following result
holds:

Proposition 4. If fn → f [meas.] and gn → g[meas.] and both f and g are
almost bounded and h(x, y) is a continuous real valued function defined on the
plane, then h(f, g) is almost bounded and h(fn, gn)→ h(f, g)[meas.]

Proof. Given ε > 0 there is a number M so that m(f > M) < ε and
m(g > M) < ε. There is a number N so that h(x, y) < N when |x| ≤M and
|y| ≤ M . Since (h(f, g) > N) ⊂ (f > M) ∪ (g > M), m(h(f, g) > N) < 2ε
and it follows that h(f, g) is almost bounded. Now there is δ > 0 so that if the
distance from (x, y) to (x′, y′) is less than δ , then |h(x, y)−h(x′, y′)| < ε. But
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(|h(fn, gn)−h(f, g)| > ε) ⊂ (|fn− f | > δ)∪ (|gn− g| > δ) so that the measure
of this set approaches 0 as n→∞ and thus h(fn, gn)→ h(f, g)[meas.].

Clearly, the same holds true for a continuous operation h(x1, x2, ..., xn)
and n sequences of functions converging in measure to functions f1, f2, ..., fn.

Finally, if h(x, y) satisfies a Lipschitz condition, the condition that f and g
are almost bounded can be dropped and one can reach a conclusion analogous
to that for the sum, as follows:

Proposition 5. If fn → f [meas.] and gn → g[meas.] and h(x, y) satisfies
there is a number M so that |h(x, y) − h(x′, y′)| ≤ M · dist((x, y), (x′, y′)),
then h(fn, gn)→ h(f, g)[meas.]

Proof. Since (|h(fn, gn) − h(f, g)| > ε) ⊂ (|fn − f | > ε/2M) ∪ (|gn − g| >
ε/2M), it follows that m(|h(fn, gn) − h(f, g)| > ε) → 0 as n → ∞ so that
h(fn, gn)→ h(f, g)[meas.].
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