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SUPERPOROSITY IN A CLASS OF
NON-NORMABLE SPACES

Abstract

Let M stand for the space of all S-measurable real functions on the
infitite σ-finite measure space (X,S, µ) endowed with the (metrizable
but non-normable) topology of convergence in measure on sets of finite
measure. Some natural subsets (including the Lp-spaces) are proved to
be sigma-superporous in M. The possibility of finding non-sigma-porous
meager sets in this non-normable setting is discussed.

1 Introduction

The concept of a porous set was introduced by Dolženko in [2]. Since then
it has been thoroughly investigated and diversely generalized (see [14] or [11]
for a survey). It is possible to define several notions concerning porosity also
in metric spaces (see [14],[11]). It is known that in Banach spaces the ideal of
meager sets is strictly wider than that of the σ-porous sets ([14]). It is true
also in closed non-locally compact convex subsets of a separable Banach space
([1]). Recently it has been established in dense in itself completely metrizable
spaces as well (cf. [16]).

The primary goal of the research presented in this paper is in the line of
the above results, i.e. to compare σ-porous and meager sets, respectively in
some non-normable spaces. Such an attempt was made in [12] where the space
s of all real sequences endowed with the Fréchet metric

ρF ({an}n, {bn}n) =
∑
n

2−n
|an − bn|

1 + |an − bn|
where {an}n, {bn}n ∈ s

was scrutinized in this respect. This space is non-normable ([8, Exercise 276])
and it was shown in [12] e.g. that the set {{an}n ∈ s;

∑
n Φ(an) converges } is
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σ-superporous in s for a residual family of functions Φ in the space of all real
functions furnished with the uniform topology.

It is the purpose of this paper to carry on these investigations generaliz-
ing results of [12] for the space M of all measurable functions on an infinite
σ-finite measure space (X,S, µ) endowed with the (metrizable) topology of
convergence in measure on sets of finite measure (see [4]). We will show that
results quite analogous to those of exposed in [12] for s hold in this general-
ity as well. For instance, the set A(Φ) = {f ∈ M;

∫ ∗
X
|Φ ◦ f | dµ∗ < +∞} is

σ-superporous inM for a broad class of functions Φ : R→ R, where µ∗ is the
outer measure induced by µ and

∫ ∗
X
h dµ∗ stands for the µ∗-upper integral of

the function h : X → R (see [3, Section 2.4]).

Further we show that A(χR\M ) is σ-superporous in M for every σ-very
porous set M ⊂ R (χR\M is the characteristic function of R \M) and that
A(χR\M ) is meager in M if M is meager at some point of R. In particular,
A(χR\M ) is meager in (s, ρF ) if and only if M is meager at some point of R.
This could provide a method for relating meager non-σ-porous subsets of R
to meager non-σ-porous subsets of M (resp. s) if the porosity of A(χR\M ) in
M (resp. s) could be characterized in terms of M ⊂ R.

It is worth noticing here that a more familiar metrization of M by the
metric

m(f, g) = inf{ε > 0;µ({x ∈ X; |f(x)− g(x)| ≥ ε}) < ε} (f, g ∈M)

which coincides with the topology of convergence in measure on X
(cf. [3, Section 2.3.8]), yields a setting where our considerations are not feasible
even for continuous Φ’s. This question was studied in [17].

2 Preliminaries

In the sequel (X,S, µ) will be an infinite σ-finite measure space and µ∗ the
outer measure induced by µ. Without loss of generality we may suppose that
X =

⋃∞
n=1Xn, where {Xn}∞n=1 is a sequence of pairwise disjoint, S-measurable

sets such that 2 < µ(Xn) < +∞ for each n ∈ N.

Denote by M (resp. Mn) the set of all S-measurable functions that are
finite almost everywhere (abbr. a.e.) on X (on Xn). We will identify members
ofM provided they equal a.e. on X. If the sequence fk ∈M (k ∈ N) converges

in measure to f ∈M, write fk
µ→ f .

Denote by Fm the space of all functions Φ : R → R such that Φ ◦ f ∈ M
for all f ∈ M. It is known that Fm contains the class of Borel-measurable
functions. Observe that Fm is a closed subspace of the complete metric space
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(F , d), where F = RR and

d(Φ,Ψ) = min{1, sup
t∈R
|Φ(t)−Ψ(t)|} (Φ,Ψ ∈ F).

Indeed, if a sequence Φn ∈ Fm (n ∈ N) d-converges to Φ ∈ F , then Φn◦f ∈M
converges pointwise to Φ◦f (for all f ∈M), thus Φ◦f ∈M and consequently
Φ ∈ Fm. It follows that (Fm, d) is a complete metric space.

For Φ ∈ F and p ∈ N define

A(Φ) =

{
f ∈M;

∫ ∗
X

|Φ ◦ f | dµ∗ < +∞
}

and

Ap(Φ) =

{
f ∈M;

∫ ∗
X

|Φ ◦ f | dµ∗ ≤ p
}
,

where
∫ ∗
X
f dµ∗ is the upper integral of f with respect to µ∗ (see [3, Sec-

tion 2.4]).
For f, g ∈M and n ∈ N define

ρn(f, g) =

∫
Xn

|f − g|
1 + |f − g|

dµ

ρ(f, g) =

∞∑
n=1

1

2nµ(Xn)
ρn(f, g).

For i, j ∈ N and M ⊂ R denote

Ãi,j(M) =

{
f ∈M;µ∗(f−1(M) ∩Xi) ≥

µ(Xi)

j

}
,

Ai,j(M) =
{
f |Xi ; f ∈ Ãi,j(M)

}
and

Ai,0(M) =
{
f ∈Mi;µ

∗(f−1(M)) = µ(Xi)
}
.

It is not hard to see that ρ (resp. ρn) is a metric on M (resp. Mn). It
can be shown similarly as for (s, ρF ) that (M, ρ) is non-normable (see [18]).

Convergence in measure implies ρ-convergence and the converse holds if
and only if the underlying measure space is finite. More precisely we have:

Lemma 1. Let fk, f ∈M (k ∈ N). The following are equivalent:

(i) fk
ρ→ f ;

(ii) fk
µ→ f on every S-measurable set of finite measure;
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(iii) fk|Xn

ρ→ f |Xn
for all n ∈ N.

Proof. For (i)⇔(ii) see [4, Theorem 3]. The equivalence (i)⇔(iii) follows
easily from [7, Theorem 14, p. 122].

Remark 1. Observe that (Mn, ρn) is a complete metric space for each n ∈ N
and the ρn-convergence of sequences fromMn coincides with their convergence
in measure on Xn ([5, Problem 42(4)]). Further the equivalence (i)⇔(iii)
in the previous lemma actually yields that (M, ρ) and the Tychonoff product
Πn(Mn, ρn) are homeomorphic.

Lemma 2. (cf. [4]) (M, ρ) is a complete metric space.

Denote by Bd(y, r) the open ball about y ∈ Y with radius r > 0 in the
metric space (Y, d). By B(x, r) we will denote the interval (x−r, x+r), where
x ∈ R. For E ⊂ Y, y ∈ Y and r > 0 define

γ(y, r, E) = sup{r′ > 0;∃y′ ∈ Y Bd(y
′, r′) ⊂ Bd(y, r) \ E}.

We say that E is porous (very porous) at y if

lim sup
r→0+

γ(y, r, E)

r
> 0 (lim inf

r→0+

γ(y, r, E)

r
> 0).

Further E is said to be superporous at y ∈ Y (see [14], [15]), if E∪F is porous
at y whenever F ⊂ Y is porous at y.

A set E ⊂ Y is said to be globally very porous if there exist constants
0 < aE < 1 and r0 > 0 such that γ(y, r, E) > aEr for every y ∈ E and
0 < r < r0 ([14]).

We say that E is superporous (very porous) if it is superporous (very
porous) at each of its points, further E is σ-superporous (σ-very porous) if
it is a countable union of superporous (very porous) sets. Superporosity was
defined in [15] in connection with the I-density topology of Wilczynski and
others (cf. [13]).

Note that superporosity implies very porosity as observed in [15] (see [11,
Corollary 8.15] as well) and σ-superporosity is equivalent to σ-very porosity
which is further equivalent to σ-globally very porosity ([11, Corollary 8.17]).

We will denote by cardY and P(Y ) the cardinality and the power set,
respectively of the set Y , further c will stand for the power of the continuum.
Denote by |I| the length of the interval I ⊂ R.
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3 Main Results

Lemma 3. Let {Iq; q ∈ N} be an enumeration of the open intervals with
rational endpoints. Let Φpq = pχIq for p, q ∈ N. Then Ap(Φpq) is superporous
in (M, ρ) for every p, q ∈ N.

Proof. Choose p, q ∈ N and denote by tq the midpoint of Iq. Let f ∈ Ap(Φpq).
Suppose that F ⊂ M is an arbitrary set porous at f . Then there exist
sequences rn, r

′
n > 0 (n ∈ N) and α > 0 such that αrn < r′n < rn < 2−n,

further we get an fn ∈M such that

Bρ(fn, r
′
n) ⊂ Bρ(f, rn) \ F. (1)

Define pn = min{k ∈ N; 2−k < r′n} + 1 and εn = 2−pn+1 for all n ∈ N.
Then we have

r′n > εn ≥
r′n
2
. (2)

Denote En1 = Xpn ∩ f−1
0 ((tq − 1

8 |Iq|, tq + 1
8 |Iq|)) and En2 = Xpn \En1 and

define gn = fnχX\Xpn
+ tqχEn2

+ (tq + 1
4 |Iq|)χEn1

∈M. It is clear that

|fn(x)− gn(x)| ≥ 1

8
|Iq| for all x ∈ Xpn . (3)

Since ρ(fn, gn) = 1
2pnµ(Xpn )

∫
Xpn

|fn−gn|
1+|fn−gn| dµ, by the definition of εn, Xpn

and (3), respectively we get

ρ(fn, gn) <
εn
2
, (4)

ρ(fn, gn) >
|Iq|

8 + |Iq|
· εn

2
. (4’)

Put δn =
|Iq|

16+2|Iq|ρ(fn, gn) and pick an arbitrary hn ∈ Bρ(gn, δn). Define

Dn =

{
x ∈ Xpn ; |hn(x)− gn(x)| < 4δn

εn − 4δn

}
and Dn0 = Xpn \Dn.

Observe that Dn is well-defined, since by (4) δn =
|Iq|

8+|Iq| ·
ρ(fn,gn)

2 < εn
4 .

Then we have

δn > ρ(hn, gn) ≥ 1

2pnµ(Xpn)

∫
Dn0

|hn − gn|
1 + |hn − gn|

dµ

≥ εn
2µ(Xpn)

∫
Dn0

4δn
εn

dµ =
2δnµ(Dn0)

µ(Xpn)
,
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thus µ(Dn0) < 1
2µ(Xpn) hence µ(Dn) ≥ 1

2µ(Xpn) > 1.

In view of (4) we get |hn(x) − gn(x)| < 4δn
εn−4δn

< 1
8 |Iq| for every x ∈

Dn, so hn(Dn) ⊂ (tq − 3
8 |Iq|, tq + 3

8 |Iq|) (see the definition of gn). Then∫ ∗
X
|Φpq ◦ hn| dµ∗ ≥

∫ ∗
Dn
|Φpq ◦ hn| dµ∗ ≥ pµ(Dn) > p, so

hn ∈M \Ap(Φpq). (5)

Using (4) we get εn−ρ(fn, gn) > εn
2 > εn

2 ·
|Iq|

8+|Iq| > δn, therefore Bρ(gn, δn)

⊂ Bρ(fn, εn) ⊂ Bρ(fn, r′n). Then in virtue of (5) and (1) there holds

Bρ(gn, δn) ⊂ Bρ(fn, r′n) \Ap(Φpq) ⊂ Bρ(f, rn) \ (F ∪Ap(Φpq)).

From (4’) and (2) we get

γ(f, rn, F ∪Ap(Φpq)) ≥ δn ≥
(
|Iq|

8 + |Iq|

)2
εn
2
≥
(
|Iq|

8 + |Iq|

)2
r′n
4

>

(
|Iq|

8 + |Iq|

)2
α

4
rn,

thus lim sup
r→0+

γ(f,r,F∪Ap(Φpq))
r ≥ (

|Iq|
8+|Iq| )

2 α
4 > 0, which proves the porosity of

F ∪Ap(Φpq) at f .

Theorem 1. Let Φ ∈ F be a function for which there exists t0 ∈ R ∪ {±∞}
such that

lim inf
t→t0

|Φ(t)| > 0. (6)

Then A(Φ) is σ-superporous in (M, ρ).

Proof. In view of (6) there exists β > 0 and a bounded open interval I such
that

|Φ(t)| ≥ β for all t ∈ I. (7)

Let {Jk; k ∈ N} be a partition of I consisting of open intervals. Choose an
f ∈ A(Φ). Then by (7) we have

β
∑
k∈N

µ(f−1(Jk)) = βµ(f−1(I)) ≤
∫ ∗
X

|Φ ◦ f | dµ∗ < p

for some p ∈ N. Thus µ(f−1(Jk)) ≤ 1 for some k ∈ N and hence µ(f−1(Iq)) ≤
1 for some open interval Iq ⊂ Jk with rational endpoints. Consequently,∫ ∗

X

|Φpq ◦ f | dµ∗ = pµ(f−1(Iq)) ≤ p,
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so f ∈ Ap(Φpq), whence A(Φ) ⊂
⋃
p,q∈NAp(Φpq), which concludes the proof

by Lemma 3.

As the following results show, there are also functions Φ, not necessarily
satisfying (6), for which A(Φ) is still σ-superporous (cf. Theorem 2):

Lemma 4. Let M ⊂ R be a globally very porous set. Then Ãi,j(M) is super-
porous in (M, ρ) for each i, j ∈ N.

Proof. According to the assumption on M there exist 0 < aM < 1 and
r0 > 0 such that

γ(x, r,M) > aMr for all x ∈M ∪ (R \M) and all 0 < r < r0. (8)

Choose f ∈ Ãij(M) and a set F ⊂ M which is porous at f . Then there
exist α > 0, sequences rn, r

′
n > 0 and fn ∈ M such that rn ↘ 0, αrn < r′n <

rn < 2−i+1 · 3r0
1+r0

and

B(fn, r
′
n) ⊂ B(f, rn) \ F. (9)

It is not hard to find bnk ∈ R (1 ≤ k ≤ mn, where mn ∈ N) and a partition
{Dnk; 1 ≤ k ≤ mn} of Xi such that for gn0 = fnχX\Xi

+
∑mn

k=1 bnkχDnk
∈M

there holds

ρ(fn, gn0) <
r′n
4
. (10)

We can actually choose bnk ∈M ∪ (R \M) for every 1 ≤ k ≤ mn.

Put ηn =
2ir′n

6−2ir′n
. Then ηn < r0, so it follows from (8) that for each

1 ≤ k ≤ mn there exists b′nk ∈ R and rnk > 0 such that

aMηn ≤ rnk < ηn and B(b′nk, rnk) ⊂ B(bnk, ηn) \M. (11)

Define gn = gn0χX\Xi
+
∑mn

k=1 b
′
nkχDnk

∈M. Then by (11) we have

ρ(gn0, gn) ≤ 1

2iµ(Xi)

mn∑
k=1

(

∫
Dnk

|bnk − b′nk| dµ)

=
1

2iµ(Xi)

mn∑
k=1

|bnk − b′nk|µ(Dnk) ≤ 1

2iµ(Xi)
ηn

mn∑
k=1

µ(Dnk)

=
r′n

6− 2ir′n
≤ r′n

4
,

thus in view of (10)

ρ(fn, gn) ≤ ρ(fn, gn0) + ρ(gn0, gn) ≤ r′n
2
. (12)
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We have 0 < aM < 1 < 3j, thus
r′n
2 >

aMr′n
6j . Then putting δn =

aMr′n
6j we

get by (12) that r′n − ρ(fn, gn) ≥ r′n
2 > δn, so

Bρ(gn, δn) ⊂ Bρ(fn, r′n). (13)

Choose h ∈ Ãi,j(M) arbitrarily. According to (11) we have

ρ(h, gn) ≥ 1

2iµ(Xi)

∫ ∗
h−1(M)∩Xi

|h− gn|
1 + |h− gn|

dµ∗

≥ 1

2iµ(Xi)
µ∗(h−1(M) ∩Xi) ·

min
1≤k≤mn

rnk

1 + min
1≤k≤mn

rnk

≥ 1

2iµ(Xi)
· µ(Xi)

j
· aMηn

1 + aMηn
>

1

2ij
· aMηn

1 + ηn
= δn.

It means by (13) that Bρ(gn, δn) ⊂ Bρ(fn, r
′
n) \ Ãi,j(M). Then in virtue

of (9) we get Bρ(gn, δn) ⊂ Bρ(f, rn) \ (F ∪ Ãi,j(M)). Consequently

γ(f, rn, F∪ →
∼
Ai,j(M)) ≥ δn >

aMαrn
6j

,

which justifies the porosity of F ∪ Ãi,j(M) at f .

Theorem 2. Let M be a σ-very porous set. Then A(χR\M ) is σ-superporous
in (M, ρ).

Proof. We may already suppose that M =
⋃∞
k=1Mk, where Mk is globally

very porous and aMk
< 1 for all k ∈ N.

Choose f ∈ A(χR\M ). Then we have

+∞ = µ(X)−
∫ ∗
X

|χR\M ◦ f | dµ∗ = µ(X)− µ∗(f−1(R \M))

≤ µ∗(f−1(M)) ≤
∑
i,k∈N

µ∗(f−1(Mk) ∩Xi),

thus µ∗(f−1(Mk)∩Xi) > 0 for some i, k ∈ N. It suffices now to pick j ∈ N such

that µ∗(f−1(Mk) ∩Xi) ≥ µ(Xi)
j . Then clearly f ∈ Ãi,j(Mk), consequently

A(χR\M ) ⊂
⋃

i,j,k∈N
Ãi,j(Mk),

which concludes the proof by Lemma 4.

Now we turn to characterizing the meagerness of A(χR\M ) in (M, ρ) in
terms of properties of M . We will need the following
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Lemma 5. If M is meager at some point of R, then Ai,j(M) is meager at
some point of (Mi, ρi) for all i, j ∈ N.

Proof. In the sequel we will use that the topology induced by ρi on Mi is
equivalent with the topology of convergence in measure on Xi, i.e. with the
topology induced by the metric mi = m|Mi×Mi (see [5, Problem 42(4)]).

Suppose that there exists an interval U = B(t0, r) (t0 ∈ R, r > 0) such that
U ∩M =

⋃∞
k=1Mk for some nowhere dense sets Mk ⊂ R (k ∈ N). Without

loss of generality we may assume that Mk ⊂ Mk+1 for all k ∈ N. Let f0 ≡ t0
on Xi and put V = Bmi

(f0, r).
We will show that V ∩ Ai,j(Mk) is nowhere dense in (Mi,mi): take an

open ball Bmi(f, ε) inMi. We may already suppose that f ∈ V and f equals
a simple function

∑m
s=1 bsχDs

where b1, . . . , bm ∈ U and D1, . . . , Dm is a
measurable partition of Xi.

Then the nowhere density of Mk in R yields some b′s ∈ R and 0 < ε0 <
µ(Xi)
j such that

B(b′s, ε0) ⊂ B(bs, ε) \Mk for any 1 ≤ s ≤ m. (14)

Choose g ∈ Bmi(f1, ε0) where f1 =
∑m
s=1 b

′
sχDs . Then by (14)

g−1(Mk) ⊂ {x ∈ Xi; |f1(x)− g(x)| ≥ ε0}.

Therefore µ∗(g−1(Mk)) ≤ ε0 <
µ(Xi)
j , so g /∈ Ai,j(Mk). On the other hand

f1 ∈ Bmi(f, ε); thus,

∅ 6= Bmi(f, ε) ∩Bmi(f1, ε0) ⊂ Bmi(f, ε) \Ai,j(Mk),

which justifies the nowhere density of V ∩Ai,j(Mk) in Mi.
Finally, denote V0 = Bmi(f0, r0) where r0 = min{r, 1

j }. Pick h ∈ Ai,j(M)∩
V0. Then h−1(M \ U) ⊂ {x ∈ Xi; |h(x)− f0(x)| ≥ r0}, so µ∗(h−1(M \ U)) ≤
r0 ≤ 1

j <
µ(Xi)

2j . Furthermore in view of the regularity of µ∗ we get (cf. [3,

Section 2.1.5(1)])

µ(Xi)

j
≤ µ∗(h−1(M)) ≤ µ∗(h−1(M ∩ U)) + µ∗(h−1(M \ U)

< lim
k→∞

µ∗(h−1(Mk)) +
µ(Xi)

2j
,

hence lim
k→∞

µ∗(h−1(Mk)) > µ(Xi)
2j , so h ∈ Ai,2j(Mk) ∩ V0 ⊂ Ai,2j(Mk) ∩ V for

some k ∈ N. Therefore

Ai,j(M) ∩ V0 ⊂
∞⋃
k=1

Ai,2j(Mk) ∩ V
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which means that Ai,j(M) is meager at f0 in Mi.

Theorem 3. If M is meager at some point of R, then A(χR\M ) is meager in
(M, ρ).

Proof. Let t0 ∈ R and r > 0 be such that B(t0, r) ∩M is meager in R.
Let Vi = Bmi

(f0, r0) where f0 ≡ t0 on X and 0 < r0 = min{r, 1
2}. Then by

Lemma 5 Ai,2(M) ∩ Vi is meager in (Mi, ρi) for all i ∈ N.

Choose f ∈ A(χR\M ). Then µ∗(f−1(R\M)) < +∞ and by the regularity of
µ∗ there exists a µ∗-hull B of f−1(R\M) (see [3, Section 2.1.4]). Consequently,
µ(B ∩Xi) = µ∗(f−1(R \M) ∩Xi) = µ∗(Xi \ (Xi ∩ f−1(M))); thus,

+∞ > µ∗(f−1(R\M)) = µ(B) =
∞∑
i=1

µ(B∩Xi) =

∞∑
i=1

µ∗(Xi\(Xi∩f−1(M))).

Then for all i ≥ m (m ∈ N) we have

µ(Xi)

2
> 1 > µ∗(Xi \ (Xi ∩ f−1(M))) ≥ µ(Xi)− µ∗(Xi ∩ f−1(M)),

hence f |Xi
∈ Ai,2(M) for all i ≥ m. Accordingly,

A(χR\M ) ⊂
∞⋃
m=1

Pm where Pm = Πm−1
i=1 Mi ×Π∞i=mAi,2(M) for each m ∈ N.

It suffices now to show by Remark 1 that Pm is meager in P = Π∞i=1Mi

for every m ∈ N: Let U = Πn
i=1Ui × Π∞n+1Mi be any basic open set of

the product topology on P such that n ≥ m. Denote by V the open set
Πn
i=1Ui × Vn+1 × Π∞n+2Mi ⊂ P . Then V ⊂ U and V ∩ Pm ⊂ Πn

i=1Ui ×
(Vn+1 ∩ An+1,2(M)) × Π∞i=n+2Ai,2(M), which is meager in P . It means by
Theorem 1.7. in [6] that Pm is meager in P .

Corollary 1. A(χR\M ) is meager in (s, ρF ) if and only if M is meager at
some point of R.

Proof. The sufficiency follows from the previous theorem by putting X = N,
S = P(N) and the counting measure on N for µ.

Conversely, suppose that M is non-meager everywhere in R. Then M
with the relative topology is a dense Baire subspace of R. Then the product
E = MN is a Baire space which is clearly dense in s ([6, Lemma 5.6]). Therefore
E is non-meager in s and hence A(χR\M ) ⊃ E is non-meager in s.
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Remark 2. In connection with the Corollary a question arises if a similar
characterization of A(χR\M ) is possible also in M. Mimicking the above proof
and using Remark 1 it would be sufficient to prove that non-meagerness of M
everywhere in R implies non-meagerness of Ai,0 everywhere in Mi for each
i ∈ N, further that Mi is separable for each i ∈ N. This last condition is
needed for the theorem on product of Baire spaces ([6, Lemma 5.6].), thus
we may consider the question only for separable measure spaces (X,S, µ) (see
[5, §41]).

It is not hard to show that this is really the case if each Xi is a finite
disjoint sum of atoms, however in general the answer is not known to me.

Remark 3. Another question here arises in connection with finding necessary
conditions for σ-porosity of A(χR\M ) in M (or at least in s). If we want to
use some argument similar to that of in the Corollary, we would need some
“porosity-Baire” product theorem as the mentioned result of Oxtoby ([9], [6]).
This ultimately breaks down to proving a porosity version of the well-known
Kuratowski-Ulam theorem on sections of nowhere dense subsets of the product
space ([10, Theorem 15.1]). More precisely, the questions are as follows:

(i) If X and Y are separable metric spaces and E is a porous subset of
X ×Y with (say) the box metric, then are the x-sections Ex of E porous in Y
except for a σ-porous set in X?

(ii) Call a metric space Z p-Baire if every nonempty open subset of Z is
non-σ-porous. Is the property of being separably p-Baire (countably) produc-
tive?

The preceding theorems provide sufficient background for investigating the
class

U = {Φ ∈ F ; A(Φ) is σ-superporous in (M, ρ)}.

Theorem 4. We have

(i) card (U ∩ Fm) = cardU = 2c

(ii) card (F \ U) = 2c for (s, ρF ).

Proof. (i) Every subset of the Cantor’s ternary set C is very porous therefore
in view of Theorem 2 χR\E ∈ U ∩ Fm for every E ⊂ C, further χR\E 6= χR\E′

provided E 6= E′. Consequently card (U ∩ Fm) ≥ cardP(C) = 2c. Further
clearly cardU ≤ cardF ≤ card (RR) = 2c.

(ii) If we restrict ourselves to (s, ρF ) only, then χE /∈ U for each E ⊂ C
since A(χE) = s \ A(χR\E) and (s, ρF ) is a nonmeager space by Lemma 2.
Thus again 2c = cardP(C) ≤ card (F \ U) ≤ cardF ≤ 2c.

Further we have
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Theorem 5. U is residual in F .

Proof. See [12, Lemma 2] and our Theorem 1.

Remark 4. It is worth noticing that if we restrict our investigations onto
Fm only, then similar results hold. Actually, Lemma 3–4 and Theorem 1–2
hold without change, we need only to replace µ∗ by µ and the upper integral by
integral, respectively in the proofs.

We can also prove the analogue of Tóth’s Theorem (Theorem 5) for Fm:

Theorem 5’ U ∩ Fm is residual in (Fm, d).
Proof. See Lemma 2 in [12]. The only difference is in proving the density of
U0 = {Φ ∈ Fm; Φ satisfies (6) for some t0 ∈ R} in (Fm, d), more precisely in
proving that Ψ = ΦχM + ε

4χR\M ∈ Fm, where Φ ∈ Fm, ε > 0 and M = {t ∈
R; either t /∈ (0, 1) or t ∈ (0, 1) and |Φ(t)| ≥ ε

4}.
To show this pick f ∈M, c ∈ R arbitrarily and observe that

(Ψ ◦ f)−1([c,+∞)) =


Φ ◦ f)−1([c,+∞)), if c > ε

4

(Φ ◦ f)−1([c,+∞)) ∪ (f−1((0, 1))

∩(Φ ◦ f)−1((− ε4 ,
ε
4 ))), if c ≤ ε

4

thus Ψ ◦ f ∈M.

References

[1] S. Agronsky and A. Bruckner, Local compactness and porosity in metric
spaces, Real Analysis Exchange, 11 (1985-86), 365–379.
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