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PROPERTIES OF DERIVATIVE-LIKE
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Abstract

In this paper refinements and extensions of properties that give generalized
derivatives the basic properties of ordinary derivatives are discussed; for instance
the Darboux, Baire-1, Denjoy, Zahorski properties.

1 Introduction

It is known that a finite approximate derivative, (ap)F ′ = f : I = [a, b] → R, a < b,
shares many of the interesting properties of ordinary derivatives; ([5], [7], [9], [16]).
Properties such as:

(i) the Baire-1 property,

(ii) the Darboux or intermediate value property,

(iii) the mean value property,

(iv) the Denjoy or Denjoy-Clarkson property: and in addition,

(v) f(x) = F ′(x) on a dense open set in I.
Further: Weil [17] has strengthened (iv) to:

(vi) if f−1(]α, β[) 6= ∅, then {x; x ∈ f−1(]α, β[), f(x) = F ′(x)} has positive measure;
and O’Malley [8] proved the surprisingly sharp property:

(vii) for every x in I there is an x0 in I such that f(x) = F ′(x0).
Weil [18] has also proved:
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(viii) f has a certain property Z on I, a property stronger than the Zahorski property
M3 [19].

It might be remarked that the Baire-1 property often seems crucial in the deduc-
tion of the other properties.

In a welcome attempt to reveal how the various properties arise Bruckner, O’Malley
& Thomson [2] have studied the unified notion of path derivatives, and Thomson
[15] has studied the more general notion of derivatives relative to simple systems,
proving various properties of derivatives under the external intersection condition,
(E.I.C. [m]), the intersection condition, (I.C.), and the non-porosity condition. The
Baire-1 property in particular is obtained in [2, 6.3, p. 113] under (E.I.C. [m]), and in
[15] under a wider condition [15, Lemma 9.7, p. 358]; the Darboux property is proved
by assuming the Baire-1 property [2, 6.4, p. 113], [15, 8.1, p. 352].

In this paper we show, amongst other things, that a semi-Baire-1 property and
all the properties (ii) through (viii) in stronger and more revealing forms extend to
functions like derivatives relative to limiting systems, (essentially two-sided simple
systems [15, p. 280]), under an interlocking condition wider than (I.C.), and often
a generalized non-porosity condition. The Baire-1 property may however fail even
under stronger conditions. This and other critical aspects of the present theory are
illustrated by appropriate examples.

2 Definitions and Lemmas

Throughout we suppose that F, f : I = [a, b] → R, a < b and T is a fixed limiting
system on R, by which we mean an arbitrary collection T = {T (x);x ∈ R} where
each T (x) is a non-empty family of subsets of R such that, if A ∈ T (x), then x ∈ A
and x is a two-sided limit point of A, and A∩ ]c, d [∈ T (x) for all c, d, c < x < d.

For each τ(x) ∈ T (x), x ∈ I, we denote by Iτ(x) the family of all closed intervals
[u, v], u ≤ v with u in τ(x) ∩ [a, x] and v in τ(x) ∩ [x, b]. We define the extreme
T-derivates of F on I by

TF
′
(x) = inf

τ(x)∈T (x)

[
sup

{
F (v)− F (u)

v − u
; [u, v] ∈ Iτ(x), u < v

}]
,

TF ′(x) = sup
τ(x)∈T (x)

[
inf

{
F (v)− F (u)

v − u
; [u, v] ∈ Iτ(x), u < v

}]
.

Clearly T (−F )′(x) = −TF ′(x). If TF
′
(x) ≤ TF ′(x), then F is said to be T -derivable

at the point x. If TF
′
(x) = TF ′(x), then this common value is called the T-derivative

of F at x, TF ′(x).
As well as finite or infinite T -derivatives we will also study T -derivative-like func-

tions; that is, functions g that satisfy TF
′
(x) ≤ g(x) ≤ TF ′(x).
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Remark 2.1 In the absence of other conditions we can have that TF
′
(x) < TF ′(x).

This cannot happen if T is filtering down; that is, if the intersection of two members
of T (x) is also a member of T (x). However we do not assume this condition.

Remark 2.2 The definition of the T -derivative is unique, but this is not true for the
simple-derivatives. The simple system naturally associated with T is S = {S(x); x ∈
R}, where S(x) = {E; R ⊇ E ⊇ τ(x) ∈ T (x)}}. Then, according to Thomson [15,
p. 281], F has an S-derivative α at a point x in I if for every η > 0 there is a
τ(x) ∈ T (x) such that

|F (y)− F (x)− α(y − x)| ≤ η|y − x|

for all y in τ(x) ∩ I. Clearly then F is T -derivable at x and TF
′
(x) ≤ α ≤ TF ′(x),

but the converse is not true.

Remark 2.3 The weakest limiting system is T1, where each T1(x) consists of all sets

containing x and having x as a two-sided limit point. Clearly T1F
′
(x) = max{D+F (x), D−F (x)},

and T1F
′(x) = min{D+F (x), D−F (x)}, with obvious modifications if x = a, b. Dar-

boux and mean value properties of T1-derivative-like functions have been studied in
Sarkhel & Seth [12], and Bullen & Sarkhel [4].

Our main line of reasoning will be Baire’s theorem [10, (9.2), p. 54] and the par-
titioning property, which has many other interesting applications. (See [3] and [14].)

Let E ⊆ X ⊆ I. Following Sarkhel & Kar [11, §2], a sequence of sets {En} whose
union is E is called an E-form with parts En; if further each part En is closed in E,
then the E-form is said to be closed. An increasing E-form is called an E-chain. By
a perfect portion of E we shall mean a section E ∩ [p, q] that is perfect and contains
both p and q.

Every choice τ = {τ(x) ∈ T (x);x ∈ X} is called a T -full cover of E. A finite,
possibly empty, family $ = {([uj , vj ], xj); [uj , vj ] ∈ Iτ(xj)} is called a τ -partition over
E (in I) if for all j the intervals ]uj , vj [ are pairwise disjoint, and xj ∈ E; if further⋃
j [uj , vj ] = E, then $ is called a τ -partition of E. We put

|$| =
∑
j

(vj − uj),
∑

(f,$) =
∑
j

f(xj)(vj − uj),

∆(F,$) =
∑
j

(F (vj)− F (uj)),

where all these sums are to be zero if $ = ∅.
Given a neighborhood ]x1, x2[ of each point x ∈ E we will call {τ(x)∩

]x1, x2[} a refinement of τ on E.
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Lemma 2.1 Let τ be a T -full cover of a set E ⊆ I. If E is of measure zero, then
for every ε > 0 there is a refinement λ of τ on E such that for every λ-partition $
over E we have

∑
(|f |, $) < ε and |$| < ε.

Proof. Since |E| = 0, there are open sets Gn ⊇ E with |Gn| < n−12−nε, n =
1, 2, 3, . . .. It then suffices to take a refinement λ on E such that λ(x) is contained in
a component of Gn if n− 1 ≤ |f(x)| < n. �

We say that T is partitioning, or has the partitioning property on I if every T -full
cover τ of I induces a τ -partition of I.

Lemma 2.2 If T is partitioning on I, then it is also partitioning on every sub-
interval [c, d], c < d, of I.

Proof. Let λ be any T -full cover of [c, d]. For each x ∈ I \ [c, d] select τ(x) ∈ T (x)
such that τ(x) ⊆ ] −∞, c[ or τ(x) ⊆ ]d,∞[; also let τ(c) = λ(c), τ(d) = λ(d), and
τ(x) = λ(x) ∩ ]c, d[ for c < x < d. Then τ is a T -full cover of I, and hence there is a
τ -partition of I which clearly induces a λ-partition of [c, d]. �

The partitioning property arises from various intersection conditions, [2]. Fol-
lowing [2] and [15], we say that T satisfies the intersection condition, (I.C.), on I
if for every T -full cover τ of I there are δx > 0, x ∈ I, such that if x, y ∈ I and
0 < y − x < min{δx, δy}, then τ(x) ∩ τ(y) ∩ [x, y] 6= ∅. If An = {x ∈ I; δx > n−1},
then {An} is an I-chain. If x, y ∈ An and 0 < y − x < n−1, then τ(x) and τ(y)
intersect as above and so [x, y] has a τ -partition of the form {([x, u], x), ([u, y], y)}.
We generalize this to the interlocking property, ILP, in terms of the interlocking
condition, ILC, as follows.

We say τ satisfies ILC on a set A ⊆ I if for any two points x < y in A there is
a set E ⊂]x, y[, of measure zero, such that for any refinement λ of τ on E there is a
τ -partition of [x, y] of the form {([x, u], x), ([v, y], y)} ∪ $, where $ is a λ-partition
of [u, v] over E.

Then T is said to satisfy ILP on I if for every T -full cover τ of I there is an
I-chain {An} such that for each n there is a δn > 0 such that τ satisfies ILC on
An ∩ J for every closed interval J with |J | < δn. We then say that τ satisfies ILP on
I via {(An, δn)}.

The following result extends (4.7.3) of [2, p. 109].

Lemma 2.3 The interlocking property implies the partitioning property.

Proof. Let an arbitrary T -full cover τ of I satisfy ILP on I via {(An, δn)}. Let
E denote the set of points x of I such that every neighborhood of x in I contains
a closed interval admitting no τ -partition. Then E is clearly closed, and it is easily
seen that the closure of every interval contained in I \E has a τ -partition. Hence E
is perfect, and we need only show that E is empty.
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Suppose that E 6= ∅. Then by Baire’s theorem some Am must be dense in some
perfect portion, E ∩ [c, d] of E, with d− c < δm.

Let c ≤ u < v ≤ d. If E ∩ ]u, v[= ∅, then as remarked above [u, v] has a τ -
partition. If E ∩ ]u, v[6= ∅ put u1 = inf

(
E ∩ ]u, v[

)
and v1 = sup

(
E ∩ ]u, v[

)
.

Then u1, v1 ∈ E and u ≤ u1 < v1 ≤ v. Since E ∩ ]u, u1[= ∅ = E ∩ ]v1, v[, both
[u, u1], [v1, v] have τ -partitions, and because E is perfect u1, v1 must be limit points
of E ∩ ]u1, v1[, and hence of Am ∩ ]u1, v1[. Since {An} is an I-chain, there is an
An ⊇ Am such that u1, v1 ∈ An. Then there are points x, y ∈ Am, u1 < x < y < v1,
such that x− u1 < δn and v1 − y < δn. Since u1, x, y, v1 ∈ An, there are, by ILC, τ -
partitions of both [u1, x], and [y, v1]. Also since x, y ∈ Am and 0 < y−x < d−c < δm
we have, by ILC, a τ -partition of [x, y]. Hence it follows that every [u, v] ⊂]c, d[ has
a τ -partition, and this contradicts the condition E ∩ ]c, d[ 6= ∅. �

As observed by Thomson [15, p. 420], set porosity is precisely the right notion
to capture certain properties of generalized derivatives. The porosity of a set A at a
point x is the number

p(A, x) = lim sup
δ→0+

[
sup

{
(v − u)

δ
; ]u, v[⊆ ]x− δ, x+ δ[ \ (A ∪ {x})

}]
.

We set pT (x) = sup{p(A, x); A ∈ T (x)}, and if pT (x) = 0 for all x ∈ I, then T is said
to be non-porous on I.

We say that T is non-porous in the generalized sense on I, (NPG), if there is a
closed I-form {En} such that for each n we have that sup

{
pT (x); x ∈ En

}
< 1.

Note The properties ILP and (NPG) are hereditary.
The following lemma greatly extends Theorem 4.4 of [2, p. 106].

Lemma 2.4 Hypotheses: x ∈ E ⊆ I, E is closed, pT (x) < 1, F is monotone on

the closure of each component of I \ E, α ∈ R and M = max{α, TF ′(x)}; m =
min{α, TF ′(x)}.

Conclusions: (i) If F (v)− F (u) ≤ α(v − u) for all u, v ∈ E, u ≤ x ≤ v, then

F
′
(x) ≤

{
M
/

(1− pT (x)) if M ≥ 0,

M(1− pT (x)) if M ≤ 0;

if further x is a limit point of E, then

TF ′(x) ≤

{
α
/

(1− pT (x)) if TF ′(x) ≥ 0,

α(1− pT (x)) if TF ′(x) ≤ 0.

(ii) If F (v)− F (u) ≥ α(v − u) for all u, v ∈ E, u ≤ x ≤ v, then

F ′(x) ≥

{
m
/

(1− pT (x)) if m ≤ 0,

m(1− pT (x)) if m ≥ 0;
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if further x is a limit point of E, then

TF
′
(x) ≥

{
α
/

(1− pT (x)) if TF
′
(x) ≤ 0,

α(1− pT (x)) if TF
′
(x) ≥ .

Note If E = {x}, then we can take any α in (i) and (ii). Hence, clearly, if F is
non-decreasing on I, then

TF ′(x)(1− pT (x)) ≤ F ′(x) and F
′
(x) ≤ TF

′
(x)

1− pT (x)
,

with equality holding if pT (x) = 0.

Proof. (i) First, ignoring the trivial case M = ∞, let pT (x) < q < 1 and M < β,
where β < 0 if M < 0. Suppose a ≤ x < b. Then there are τ(x) ∈ T (x) and
t ∈ τ(x)∩ ]x, b[ such that

F (y)− F (x) ≤ β(y − x) if y ∈
(
E ∪ τ(x)

)
∩ [x, t], (1)

d− c < q(d− x) if ]c, d[⊆ ]x, t[ \ τ(x), c > x. (2)

Consider now any y ∈]x, t[ \
(
E ∪ τ(x)

)
, if there are any. Let ]r, s[ be the component

of ]x, t[ \E that contains y. Put

c = sup

((
E ∪ τ(x)

)
∩ [r, y[

)
and d = inf

((
E ∪ τ(x)

)
∩ ]y, s]

)
.

Then x ≤ r ≤ c ≤ y ≤ d ≤ s ≤ t, c > x. Since, by (2), d − y < q(d − x), there is
a v ∈

(
E ∪ τ(x)

)
∩ [d, s] such that v − y < q(v − x); and so (1 − q)(v − x) < y − x.

Again by (2), y − c < q(y − x) and hence there is a u ∈
(
E ∪ τ(x)

)
∩ [r, c] such that

y − u < q(y − x), whence (1− q)(y − x) < u− x.

Now by hypothesis, F is either non-decreasing or non-increasing on [r, s]. In the
first case, by the above and (1) F (y)− F (x) ≤ F (v)− F (x) ≤ β(v − x), whence

F (y)− F (x)

{
< β(y − x)

/
(1− q) if β > 0,

≤ β(y − x) if β < 0.

In the second case, by the above and (1), F (y) − F (x) ≤ F (u) − F (x) ≤ β(u − x),
whence

F (y)− F (x)

{
≤ β(y − x) if β > 0,

< β(1− q)(y − x) if β < 0.
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These, in conjunction with (1), clearly prove

D+F (x) ≤

{
β
/

(1− q) if β > 0,

β(1− q) if β < 0.

By symmetry, if a < x ≤ b, then

D−F (x) ≤

{
β
/

(1− q) if β > 0,

β(1− q) if β < 0.

So

F
′
(x) ≤

{
β
/

(1− q) if β > 0,

β(1− q) if β < 0.

Letting q → pT (x)+ and β → M+, the first two results follow. Next, let x be a
limit point of E on the right. Ignoring the trivial case when TF ′(x) = −∞, take
γ < TF ′(x), where γ > 0 if TF ′(x) > 0. Then there is λ(x) ∈ T (x) and e ∈ E ∩ ]x, b[
such that

F (y)− F (x) ≥ γ(y − x) if y ∈ λ(x) ∩ [x, e], (3)

s− r < q(s− x) if ]r, s[⊆ ]x, e[ \λ(x), r > x. (4)

Now, fix t ∈ λ(x)∩ ]x, e[. If t ∈ E, then by hypothesis and (3) α(t−x) ≥ F (t)−F (x) ≥
γ(t− x), from which α ≥ γ.

If t /∈ E, let ]r, s[ be the component of ]x, e[ \E containing t. Then r, s ∈ E and
x < r < t < s ≤ e. Let c = inf

(
λ(x)∩ ]r, t]

)
and d = sup

(
λ(x) ∩ [t, s[

)
. Since

by (4), c − r < q(c − x), there is a u ∈ λ(x) ∩ [c, t] such that u − r < q(u − x),
whence (1 − q)(u − x) < r − x. Again by (4) s − d < q(s − x), and hence there is a
v ∈ λ(x) ∩ [t, d] such that s− v < q(s− x), whence (1− q)(s− x) < v − x.

Now by hypothesis, F is either non-increasing or non-decreasing on [r, s]. In the
first case, by hypothesis and by the above and (3)

α(r − x) ≥ F (r)− F (x) ≥ F (u)− F (x) ≥ γ(u− x),

whence α(r−x) > γ(r−x)
/

(1−q) or α > γ
/

(1−q) if γ < 0, and α(r−x) ≥ γ(r−x)
or α ≥ γ if γ > 0. In the second case, by hypothesis and by the above and (3)

α(s− x) ≥ F (s)− F (x) ≥ F (v)− F (x) ≥ γ(v − x),

whence α(s − x) ≥ γ(s − x) or α ≥ γ if γ < 0, and α(s − x) > γ(s − x)(1 − q) or
α > γ(1− q) if γ > 0.
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Thus we always have α ≥ γ
/

(1 − q) if γ < 0 and α ≥ γ(1 − q) if γ > 0. Letting
γ → TF ′(x) and q → pT (x)+, the second two results follow.

A similar proof holds if x is a limit point of E on the left.
(ii) This follows form (i) applied to −F . �
Generalizing a well-known property of Baire-1 functions, we shall say that the

function f is semi-Baire-1 on I if for every α ∈ f(I) the level set f−1(α) contains a
point of continuity of f relative to the closure of f−1(α).

Finally we recall that a point x ∈ I is termed a point of absolute continuity of the
function F , an AC-point, if x has a neighborhood in I on which F is AC. Also F is
called (ACG) on I if F is AC on each part of some closed I-form.

The following examples illustrate some of our ideas.

Example 2.5 Every bilateral system of paths [2, p. 100] P = {Px; x ∈ R}, x ∈
Px ⊆ R and x a two-sided limit point of Px, generates a limiting system TP which
is defined by TP (x) = {Px ∩ ]c, d [ ; c < x < d}, which is filtering down. The notions
of P -derivative and TP -derivative coincide. If P satisfies (I.C.), then TP satisfies
(I.C.), and hence also ILP. If P is non-porous, then so is TP .

Example 2.6 If Tap(x) is the family of all measurable sets containing x, and having
density 1 at x, then Tap is a filtering down, non-porous limiting system satisfying
(I.C.), [2, p. 102]. The notions of approximate derivative and Tap-derivative coincide.

Example 2.7 For each α > 0, we construct a limiting system Tα which is non-
porous, and satisfies ILP but not (I.C.), and is or is not filtering down according as
α is rational or not.

Define

Tα(x) =

{
{]c, d [ ; c < x < d} if x ∈ Q, and

{]c, d[ ∩ (x+ tQ); c < x < d, t = 1, α} if x is irrational.

Clearly, Tα is a non-porous limiting system.
Let now τ be any Tα-full cover of I. Let An = {x ∈ I; τ(x) is dense in ]x−n−1, x+

n−1[}, n = 1, 2, . . .. Clearly {An} is an I-chain. Let x, y ∈ An and 0 < y − x < n−1.
Fix a rational r ∈]x, y[. If λ is any refinement of τ on {r}, then λ(r) is a neighborhood
of r. Also, τ(x) is dense in ]x, r[ and τ(y) is dense in ]r, y[. So λ(r) intersects both
τ(x)∩]x, r[ and τ(y)∩]r, y[. Hence, plainly, τ satisfies ILP on I via {(An, n−1)}.
Thus Tα satisfies ILP.

But, consider any I-chain {En}. Obviously some En must contain an uncountable
set B of irrationals. Then some ξ ∈ B must be such that every neighborhood of ξ
contains uncountably many points of B; [6, p. 129]. Since ξ + Q + αQ is countable,
every neighborhood of ξ contains points η ∈ B such that η /∈ ξ+Q+αQ. This means
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that
[
(ξ+Q)∪ (ξ+αQ)

]
∩
[
(η+Q)∪ (η+αQ)

]
= ∅. Since ξ, η ∈ B ⊆ En, it follows

that Tα cannot satisfy (I.C.) on I.
Lastly, if α is rational, then x + tQ = x + Q for t = 1, α; but if α is irrational,

then (x + Q) ∩ (x + αQ) = {x}. Hence clearly Tα is filtering down if α is rational,
but not if α is irrational.

3 Main Results

We begin with a monotonicity theorem.

Theorem 3.1 Suppose that T is partitioning on I.

(i) If TF
′
(x) < ∞ on I and TF

′ ≤ α a.e. on I, then F (x) − αx is non-increasing
on I.

(ii) If TF ′(x) > −∞ on I and TF ′ ≥ β a.e. on I, then F (x)− βx is non-decreasing
on I.

Proof. (i) Let A = {x ∈ I; TF
′
(x) ≤ α}, E = I \ A, and ε > 0. Assuming that

f(x) > TF
′
(x) for all x ∈ I, with f(x) = α+ ε for x ∈ A, there is a T -full cover τ of

I such that

F (v)− F (u) ≤ f(x)(v − u) for all [u, v] ∈ Iτ(x), x ∈ I.

Again, since |E| = 0, by (2.1), τ has a refinement λ on I such that for every λ-partition
$0 over E we have

∑
(|f |, $0) < ε and |$0| < ε.

Now let a ≤ c < d ≤ b. By (2.2) [c, d] has a λ-partition, say $. Then $ = $1∪$0

where $1 and $0 are λ-partitions, (and so τ -partitions), over A and E respectively.
Hence, recalling the choice of f, τ and λ, we have

F (d)− F (c) = ∆(F,$) ≤
∑

(f,$) =
∑

(f,$1) +
∑

(f,$0)

≤ (α+ ε)|$1|+
∑

(|f |, $0)

< α(d− c)− α|$0|+ ε|$1|+ ε

≤ α(d− c) + |α|ε+ ε|I|+ ε.

Letting ε→ 0+ we get F (d)− F (c) ≤ α(d− c), which proves (i).
(ii) This follows by applying (i) to −F . �
Next we prove the fundamental theorem of this paper.

Theorem 3.2 Suppose T satisfies ILP on I, and TF
′
(x) < ∞ and TF ′(x) > −∞

for all x ∈ I. Then:
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(i) F lies between its one-sided extreme limits on either side, everywhere in I,

(ii) F is (ACG) on I, it is Darboux on I, (ap)F ′(x) exists finitely a.e. on I, and
F ′(x) exists finitely a.e. on a dense open set in I,

(iii) if F is of bounded variation, VB, on a closed set X ⊆ I and F |X is continuous,
then F is AC on X,

(iv) either F is strictly monotonic and AC on I, or F has a local extremum at some
AC-point of F on ]a, b[.

Note Other variants of (iv) appear in [12, p. 14] and [4, p. 227].

Proof. Part (i) is obvious. For (ii), assuming f(x) > TF
′
(x) and −f(x) < TF ′(x),

there are T -full covers τ, λ of I such that

F (v)− F (u) ≤ f(x)(v − u) for all [u, v] ∈ Iτ(x), x ∈ I,
F (v)− F (u) ≥ −f(x)(v − u) for all [u, v] ∈ Iλ(x), x ∈ I.

Let τ, λ satisfy ILP on I via {(An, δn)}, {(Bn, ηn)} respectively. Put

En = {x ∈ An ∩Bn; |f(x)| ≤ n}, ρn = min{δn, ηn}.

Then {En} is an I-chain and both τ, λ satisfy ILP on I via {(En, ρn)}.
Let x, y ∈ En, 0 < y− x < ρn, and Z ⊂ ]x, y[ be the zero measure set as required

by ILC of τ . By (2.1), given ε > 0 there is a refinement µ of τ on Z such that for
every µ-partition $ over Z we have

∑
(|f |, $) < ε. By ILC of τ , there is a τ -partition

{([x, u], x), ([v, y], y)} ∪ $ of [x, y] where $ is a µ-partition of [u, v]. Then by the
choice of f and τ we have

F (y)− F (x) =
(
F (u)− F (x)

)
+ ∆(F,$) +

(
F (y)− F (v)

)
≤ f(x)(u− x) +

∑
(f,$) + f(y)(y − v)

< n(u− x) + ε+ n(y − v).

Hence F (y)− F (x) ≤ n(y − x). Similarly, from ILC of λ, F (y)− F (x) ≥ −n(y − x).
Hence |F (y)− F (x)| ≤ n(y − x), and F |En is continuous.

Now, for any n, let Jn be any closed interval with 0 < |Jn| < ρn, and let x1 < y1
be any two points in the closure of En∩Jn. There is Em ⊇ En such that x1, y1 ∈ Em.
Since 0 < y1 − x1 < ρn and F |Em is continuous, choosing points x, y ∈ En close to
x1, y1 respectively it follows at once from above that |F (y1)− F (x1)| ≤ n(y1 − x1).

These Lipschitz conditions evidently imply that F is (ACG) on I. Hence (ap)F ′(x)
exists finitely a.e. on I, [10, p. 223 infra], and F ′(x) exists finitely a.e. on a dense
open set in I (since by Baire’s theorem the AC-points of F are dense in I). Again,
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since F is (ACG) on I it is Baire-1 on I, which by (i) implies that F is Darboux on
I, [13, Theorem III, p. 21], [1, Theorem 6.1, p. 103].

(iii) This follows from [10, (6.7), p. 227], since being (ACG) F satisfies Lusin’s
condition (N) on I, [10, (6.1), p. 225].

(iv) Let E denote the set of points of I having no neighborhood in I on which
F is strictly monotonic. Clearly E is closed. Routine arguments shows that F is
strictly monotone on every component ]u, v[ of ]a, b[ \E, and then (i) implies that F
is strictly monotone and continuous on [u,v], and hence by (iii) F is AC on [u, v]. It
follows at once that, if E has an isolated point, c say, then a < c < b, c is an AC-point
of F , and F has a strict local extremum at c, but if E is empty, then F is strictly
monotonic and AC on I.

Suppose now E is non-empty and perfect. Then, since by (ii) F is (ACG) on I,
by Baire’s theorem F must be AC on some perfect portion E ∩ [p, q] of E.

Since, as shown above, F is monotone and AC on each closed interval contiguous
to E in [p, q], it easily follows that F is VB and continuous on [p, q]. Hence by (iii)
F is AC on [p, q]. Also, since E∩]p, q[6= ∅, F is not strictly monotone on [p, q] and
hence F must have a local extremum at some point c ∈ ]p, q[. �

The above proof of (3.2)(ii) contains the germ of

Theorem 3.3 Suppose T satisfies ILP on I and is non-porous on I. If ∞ 6=
TF
′
(x) ≤ TF ′(x) 6= −∞ for all x in I, then F ′(x) exists finitely for all x in a

dense open set in I.

Proof. From the proof of (3.2)(ii), F is Lipschitz on each part of some closed I-form.
So by Baire’s theorem, for every [c, d] ⊆ I with c < d, there is a perfect portion [p, q]
of [c, d] on which F is Lipschitz, say |F (y) − F (x)| ≤ N(y − x) for p ≤ x < y ≤ q.
Then G(x) = F (x) + Nx is non-decreasing on [p, q]. So for all x ∈ ]p, q[, since

pT (x) = 0, using Note 2.4 for G we clearly have G
′
(x) = TG

′
(x) = TF

′
(x) +N and

G′(x) = TG′(x) = TF ′(x) +N . Since ∞ 6= TF
′
(x) ≤ TF ′(x) 6= −∞, it follows that

G′(x) exists finitely for all x in ]p, q[. Hence F ′(x) = G′(x)−N exists finitely for all
x in ]p, q[. �

We are now ready to analyze the Darboux property of derivatives.

Theorem 3.4 Hypotheses: T satisfies ILP on I, TF
′
(x) < ∞ and TF ′(x) > −∞

for all x in I, the set D of points of I where F is T -derivable contains at least the AC-
points of F in ]a, b[, D∗ = {x ∈ D; TF ′(x) exists}, Dac = {x ∈ D∗andx is an AC-point of F in ]a, b[}.
Conclusions:

(i) If TF
′
(p) < α < TF ′(q) for some α ∈ R and p, q ∈ I, with possibly p = q, then

for every ]u, v[⊂ I with p, q ∈ [u, v], F has an AC-point d ∈ ]u, v[ where TF ′(d)
exists, so d ∈ Dac, and equals α.
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(ii) If Dac ⊆ E ⊆ D, then every extended real-valued function g, satisfying TF
′
(x) ≤

g(x) ≤ TF ′(x) for all x in E is Darboux on E; in particular both TF
′

and TF ′

are Darboux on E.

(iii) If Dac ⊆ E ⊆ D∗, then TF ′ is Darboux on E.

Proof. Clearly (i) implies both (ii) and (iii).

To prove (i) let G(x) = F (x)− αx for all x ∈ I. Then TG
′
(p) = TF

′
(p)− α < 0

and TG′(q) = TF ′(q)−α > 0, which together imply that G is not monotone on [u, v].

Since TG
′
(x) = TF

′
(x)− α <∞ and TG′(x) = TF ′(x)− α > −∞ for all x ∈ [u, v],

it follows from (3.2)(iv) that there is a d ∈ ]u, v[, an AC-point of G, (hence also of

F ), such that G(d) is a local extremum of G; so TG
′
(d) ≥ 0 and TG′(d) ≤ 0. Since

by hypothesis F is T -derivable at d, we get

0 ≤ TG′(d) = TF
′
(d)− α ≤ TF ′(d)− α = TG′(d) ≤ 0.

Hence it follows that TF ′(d) exists with value α. �
A similar result to this is the desired mean value property.

Theorem 3.5 Under the hypotheses of (3.4), F has an AC-point c ∈]a, b[ where
TF ′(c) exists and equals r =

(
F (b)− F (a)

)/
(b− a).

Proof. This follows from the preceding proof, since now G(x) = F (x) − rx is not
strictly monotone on I because G(a) = G(b). �

Corollary 3.6 If in (3.4) it is assumed further that TF ′(x) ≥ 0 for all x in Dac,
then F is non-decreasing on I.

Next we prove the semi-Baire-1 property, in a form which also gives a strengthened
version of the O’Malley property [8].

Theorem 3.7 Suppose T satisfies ILP on I and is (NPG) in I, and TF
′
(x) ≤

f(x) ≤ TF ′(x) for all x in I. Then f is semi-Baire-1 on I.
In fact, if E is the closure of f−1

(
f(t)

)
for any t ∈ I, then F has an AC-point c

in I, a ≤ t ≤ c < b or a < c ≤ t ≤ b, such that f(c) = f(t) and F ′(c) exists, (and so

does TF ′(c)), with the value f(c) = f(t), and all of the functions f, TF
′
, TF ′, F

′
, F ′

are continuous at c relative to E.

Proof. We can assume without loss in generality that f(t) = 0, for otherwise we
could consider the functions F (x)− f(t)x and f(x)− f(t). Now F is T -derivable on

I, and TF
′
(x) < ∞ and TF ′(x) > −∞ for all x in I since f(x) is a finite function.

So by (3.4)(ii) f is Darboux on I.
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First suppose E has no perfect portion. Then E must have an isolated point c,
such that either a ≤ t ≤ c < b or a < c ≤ t ≤ b, and then f(c) = f(t) = 0. Continuity
at c relative to E is then trivial. Also, let a ≤ c < d ≤ b where E∩]c, d] = ∅.
Since f−1(0) ⊆ E, the Darboux property of f implies that for all x ∈]c, d[, either

TF
′
(x) ≤ f(x) < 0 or 0 < f(x) ≤ TF ′(x). Hence by (2.3) and (3.1) F is monotone

on [c, d], and hence by (3.2)(i), (iii) F is AC on [c, d]. Besides, pT (c) < 1 since T is

(NPG) on I, and TF
′
(c) ≤ f(c) = 0 ≤ TF ′(c). Hence from (2.4) we get F ′+(c) = 0.

By symmetry, if a < c ≤ b, then F is AC on some [d, c], d < c, and F ′−(c) = 0. Thus
c is an AC-point of F on I and F ′(c) = 0 = f(t).

Next suppose that E has a perfect portion. Then since T is (NPG) on I and, by
(3.2)(ii), F is (ACG) on I, so by Baire’s theorem there must exist a perfect portion
E0 of E and 0 < q < 1, such that pT (x) < q for all x ∈ E0, and F is AC on E0.

Now, given an ε > 0 let η = ε(1 − q)2
/

3. Then there are T -full covers τ, λ of I
such that for all x ∈ I we have

F (v)− F (u) ≤ (f(x) + η)(v − u) for all [u, v] ∈ Iτ(x),
F (v)− F (u) ≥ (f(x)− η)(v − u) for all [u, v] ∈ Iλ(x).

Let τ and λ satisfy ILP on I via {(An, δn)} and {(Bn, ρn)} respectively. Then I is
the union of the sets

En,i = An ∩Bn ∩ f−1
(
[iη, (i+ 1)η]

)
, n = 1, 2, . . . , i = 0,±1,±2, . . . .

So by Baire’s theorem some En,i must be dense in some perfect portion of E0 which
we can take as E0∩ [r, s] = E∩ [r, s] with 0 < s−r < min{δn, ρn}. Since f−1(0) ⊆ E,
it follows as before that F is monotone and AC on each closed interval contiguous to
E in [r, s], and hence by (3.2)(iii) F is AC on [r, s].

Again, let x, y ∈ En,i ∩ [r, s], x < y. By ILC of τ and (2.1), given δ > 0 there is a
τ -partition {([x, u], x), ([v, y], y)} ∪$ of [x, y], where $ is a τ -partition of [u, v] with∑

(|f |, $) < δ and v − u < δ. Then

F (y)− F (x) =
(
F (u)− F (x)

)
+ ∆(F,$) +

(
F (y)− F (v)

)
≤ (f(x) + η)(u− x) +

∑
(f,$) + η(v − u) + (f(y) + η)(y − v)

< (i+ 2)η(u− x) + δ + ηδ + (i+ 2)η(y − v)

≤ (i+ 2)η(y − x) + |i+ 2|ηδ + (1 + η)δ.

Letting δ → 0+ we get that F (y)− F (x) ≤ (i+ 2)η(y − x). Similarly from ILC of λ
we get that F (y)− F (x) ≥ (i− 1)η(y − x).

Hence, since the set En,i is dense in E ∩ [r, s] and F is continuous on [r, s], for all
distinct x, y ∈ E ∩ [r, s] we have

(i− 1)η ≤ F (y)− F (x)

y − x
≤ (i+ 2)η. (5)
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Now, since E is the closure of f−1(0) and E ∩ ]r, s[6= ∅, there is an e ∈ E ∩ ]r, s[ such

that f(e) = 0. Then TF
′
(e) ≤ 0 ≤ TF ′(e) and pT (e) < 1. Hence by (5) and (2.4) we

get
(i− 1)η

1− pT (e)
≤ 0 ≤ (i+ 2)η

1− pT (e)
.

So −2 ≤ i ≤ 1. Hence by (1), for all distinct x, y ∈ E ∩ [r, s] we have

−3η ≤ F (y)− F (x)

y − x
≤ 3η.

Hence by (2.4), for all x ∈ E ∩ [r, s], if TF ′(x) ≥ 0, then TF
′
(x) ≤ TF ′(x) <

3η
/

(1− q), and if TF
′
(x) ≤ 0, then TF ′(x) ≥ TF ′(x) > −3η

/
(1− q), but always

min{−3η, TF ′(x)}
1− pT (x)

≤ F ′(x) ≤ F
′
(x) ≤ max{3η, TF ′(x)}

1− pT (x)
.

Hence for all x ∈ E ∩ [r, s], considering all possible signs of TF ′(x) and TF
′
(x) we

get −3η
/

(1− q)2 < F ′(x) ≤ F
′
(x) < 3η

/
(1− q)2. Thus −ε < F ′(x) ≤ F

′
(x) < ε for

all x ∈ E ∩ [r, s].
Consequently, taking ε to be 1, 1/2, 1/3, . . . in succession, we can find intervals

[rn, sn] with end points in E, such that rn < rn+1 < sn+1 < sn < rn + n−1, F is

AC on [r1, s1], and −n−1 < F ′(x) ≤ TF
′
(x) ≤ f(x) ≤ TF ′(x) ≤ F

′
(x) < n−1 for all

x ∈ E ∩ [rn, sn]. Then the point c = lim rn = lim sn evidently fulfills all the required
conditions . �

This permits sharper versions of the Darboux and mean value properties.

Corollary 3.8 Hypotheses: T satisfies ILP and is (NPG) on I, ∞ 6= TF
′
(x) ≤

TF ′(x) 6= −∞ for all x in I, I∗ = {x ∈ I, TF ′(x) exists} and Iac = {x ∈ I∗, x is an
AC-point of F in ]a, b[ and F ′(x) exists}. Conclusions:

(i) If TF
′
(p) < α < TF ′(q) for some α ∈ R and p, q ∈ I, with possibly p = q, then

for every ]u, v[⊂ I with p, q ∈ [u, v], F has an AC-point d ∈ ]u, v[ where F ′(d)
exists, so d ∈ Iac, and equals α.

(ii) If Iac ⊆ E ⊆ I, then every extended real-valued function g satisfying TF
′
(x) ≤

g(x) ≤ TF ′(x) for all x ∈ E, is Darboux on E.

(iii) If Iac ⊆ E ⊆ I∗, then TF ′ is Darboux on E.

(iv) There is a d ∈ Iac such that F (b)− F (a) = (b− a)F ′(d).

Proof. Clearly (i) implies (ii) and (iii). Now, assume that TF
′
(x) ≤ f(x) ≤ TF ′(x)

for all x ∈ I. Then by (3.7), for every c ∈]a, b[ there is a d ∈ Iac such that F ′(d) = f(c).
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Since f(c) = TF ′(c) whenever TF ′(c) exists, (i) and (iv) follow from (3.4)(i) and (3.5),
respectively. �

We may show by example that the function f in (3.7) may fail to be Baire-1 even
under stronger conditions.

Example 3.9 We shall construct a bounded F having a non-Baire-1 finite path
derivative F ′P on I, relative to a bilateral non-porous system of paths P satisfying
(I.C.), recall (2.5).

Let E be a non-dense perfect set with bounds a, b and let {]an, bn[} be the sequence
of the distinct components of I \ E. By induction we define distinct sequences of
positive integers {1k}, {2k}, {3k}, . . . such that

bn < · · · < bn2
< bn1

, bnk
→ bn as k →∞, (6)

ank
− bnk+1

ank
− bn

→ 0 as k →∞; (7)

and since they are distinct

m 6= p =⇒ mj 6= pk, j, k = 1, 2, . . . . (8)

First observe the following construction: for any n and any dn > bn there is
c1 ∈ E ∩ ]bn, dn[. Let cj = bn + (c1 − bn)

/
j, j = 2, 3, . . .. Then bn < · · · < c2 < c1,

and cj → bn as j → ∞. We can select n1 such that bn1
∈ ]c2, c1], and then select

the integers nk+1 successively such that ]ank+1
, bnk+1

[ intersects ]c2+jk , c1+jk [, where
jk is the unique index such that ank

∈]c1+jk , cjk ]. Clearly {nk} satisfies (6), and it
also satisfies (7) because

0 <
ank
− bnk+1

ank
− bn

<
cjk − c2+jk
c1+jk − bn

<
2

jk
→ 0 as k →∞.

Now, taking n = 1, so d1 > b1, take d1 = b say, we construct a sequence as above
and call it {1k}. Suppose then for some n ≥ 2 and p = 1, 2, . . . , n − 1 the sequences
{pk} have been defined so as to satisfy (6), (7) and (8) among them. Evidently we
can find dn > bn such that ]bn, dn[ does not contain any of the points bpk for p =
1, 2, . . . , n− 1 and k = 1, 2, . . .. Then we define {nk} as above with {bnk

} ⊂ ]bn, dn[.
This completes the induction.

Now, for each n we define a strictly increasing two-way sequence
{tn,i}∞i=−∞ in ]an, bn[ as follows:

tn,i = an +
n(bn − an)

2(n− i)
for i = 0,−1,−2, . . . ,

tn,i = bn −
n(bn − an)

2(n+ i)
for i = 1, 2, . . . .
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So tn,−j → an, and tn,j → bn as j →∞. Also we have

max

{
tn,i+5 − tn,i
tn,i+5 − an

,
tn,i+5 − tn,i
bn − tn,i

}
≤ 5

n+ |i|
. (9)

Let In,r = ∪∞i=−∞ ]tn,6i+r, tn,6i+r+1] for r = 0, 1, . . . , 5 only. Then In,r ∩ In,s = ∅ for
r 6= s. We define

Px =


(R \ I) ∪ E ∪

⋃∞
n=1 In,0 if x ∈ E, x /∈ {bn

{x} ∪ In,2 ∪
⋃∞
k=1 Ink,4 if x = bn, n = 1, 2, . . . ,

R if x ∈ R \ E.

Using (6), (7) and (9) we readily verify that P = {Px; x ∈ R} is a bilateral, non-
porous system of paths.

Also, if δ : R→]0, 1[ is such that δ(bn) < min{ |b1− bn|, |b2− bn|, . . . , |bn−1− bn| }
for n ≥ 2, then |bm − bn| > min{δ(bm), δ(bn)} for all m 6= n and hence, clearly P
satisfies (I.C.) with respect to δ.

Now, recalling (3), for each n we define n∗ = m if n = mk for some m and k,
and n∗ = n otherwise. Then we define

F (x) =


0 if x ∈ E ∪

⋃∞
n=1 In,0,

x− bn if x ∈ In,2, n = 1, 2, . . .,

x− bn∗ if x ∈ In,4, n = 1, 2, . . ..

Also we define F (x) on each of In,1, In,3, In,5 in such a way that F becomes differ-
entiable on each of the intervals ]an, bn[, and remains bounded on I. Then we see at
once that F ′P (x) exists finitely for all x in I. (Note that (nk)∗ = n.) But F ′P (bn) = 1
for all n and F ′P (x) = 0 for all x ∈ E, x /∈ {bn}, so F ′P has no points of continuity
in E relative to E since {an} and {bn} are disjoint dense subsets of E. Hence F ′P is
not Baire-1 on I, though by (3.7) it is semi-Baire-1 on I.

Our next example shows that the O’Malley property is non-trivial insofar as it
may fail even for strictly increasing absolutely continuous F and for T satisfying (IC),
in the absence of the condition (NPG).

Example 3.10 It is not difficult to find a strictly increasing absolutely continuous
F , such that 0 < F ′(x) <∞ for all x in ]a, b] but with 0 = D+F (a) < D+F (a) <∞.
Then there is a strictly decreasing sequence {an} in ]a, b[ converging to a such that(
F (an) − F (a)

)/
(an − a) → 0. We define a bilateral system of paths P by setting

Px = R for x 6= a, and Pa =]−∞, a]∪ {an}. Obviously P satisfies (I.C.), and F ′P (x)
exists finitely for all x in I with F ′P (a) = 0. But the O’Malley property fails at a,
since F ′(a) does not exist and F ′(x) > 0 for a < x ≤ b.
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Next, we give a proof of a stronger version of the Weil property [17], inclusive of
the Denjoy property.

Theorem 3.11 Suppose T satisfies ILP on I and is (NPG) on I, and TF
′
(x) ≤ f(x)

≤ TF ′(x) for all x in I. Then for every t ∈ I and α < f(t) < β, every one-sided
neighborhood of t in I contains an interval J on which F is AC, (so f(x) = F ′(x)
a.e. on J), such that |J ∩ f−1(]α, β[)| > 0.

Proof. Let E denote the closure of f−1
(
f(t)

)
, and suppose that a ≤ t < v < b. By

(3.7), F has an AC-point c in [t, v[ such that f(c) = f(t), (so α < f(c) < β) and both

TF
′
, TF ′ are continuous at c relative to E ∩ [t, v[. Then let c < d < v be such that

F is AC on J0 = [c, d], and

α < TF
′
(x) ≤ f(x) ≤ TF ′(x) < β for all x ∈ E ∩ J0. (10)

If |E ∩ J0| > 0, then by (10) |J ∩ f−1(]α, β[)| > 0 with J = J0.
Suppose that |E ∩ J0| = 0. Let J = [r, s] be the closure of a component of

J0 \ E. Since c ∈ E, clearly r ∈ E ∩ J0. So by (10) D+F (r) ≥ TF ′(r) > α, and

D+F (r) ≤ TF ′(r) < β, which by (3.1)(i), (ii) imply, respectively

|{x ∈ J ; TF
′
(x) > α}| > 0 and |{x ∈ J ; TF ′(x) < β}| > 0.

Since TF
′
(x) ≤ f(x) ≤ TF ′(x) for all x in J = [r, s] we get

|{x ∈ J ; f(x) > α}| > 0 and |{x ∈ J ; f(x) < β}| > 0. (11)

But, since ]r, s[∩ f−1
(
f(t)

)
= ∅, the Darboux property of f , (3.4)(ii), implies that

either f(x) < f(t) < β or f(x) > f(t) > α for x ∈ ]r, s[. Hence, by (11), in either
case |J ∩ f−1( ]α, β[ )| > 0.

Similarly, if a < u < t ≤ b, we can find a J in some [d, c] ⊂]u, t], and this completes
the proof of the theorem. �

Finally we will say that a function f has the property Z∗ on I, if for every c ∈ I
and ε > 0, η > 0 there is a neighborhood Ic of c in I such that the following conditions
Z+, Z− hold.

Z+: If f(x) ≥ f(c)− ε a.e. on a closed interval J ⊂ Ic then |A| − |B| ≤ ηρ(c, J),
where A = {x ∈ J ; f(x) ≥ f(c) + ε} and B = {x ∈ J ; f(c) − ε ≤ f(x) < f(c)}, and
ρ(c, J) = max{|x− c|;x ∈ J}.

Z−: If f(x) ≤ f(c) + ε a.e. on a closed interval J ⊂ Ic then |A| − |B| ≤ ηρ(c, J),
where A = {x ∈ J ; f(x) ≤ f(c)− ε} and B = {x ∈ J ; f(c) < f(x) ≤ f(c) + ε}.

We remark that f satisfies Z− if and only if −f satisfies Z+. In another paper it
will be shown that property Z∗ is strictly stronger than the Zahorski-Weil property
Z; ([18, p. 528], has a misprint of ≤ ε for ≥ ε), and that every approximate Peano
derivative has the property Z∗.
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Theorem 3.12 If T satisfies ILP on I and is non-porous on I and TF
′
(x) ≤ f(x) ≤

TF ′(x) for all x in I, then f has the property Z∗ on I.

Proof. Considering −f and −F clearly we need only prove Z+ for f .
Fix c ∈ I, ε > 0, η > 0, put G(x) = F (x)−F (c)−(x−c)f(c) and g(x) = f(x)−f(c)

for x in I. Then G(c) = g(c) = 0, and

TG
′
(x) = TF

′
(x)− f(c) ≤ g(x) ≤ TF ′(x)− f(c) = TG′(x), x ∈ I.

Since TG
′
(c) ≤ 0 ≤ TG′(c), there are τ(c), λ(c) ∈ T (c) such that

G(q)

q − c

<
εη

4
if c 6= q ∈ I ∩ τ(c),

> −εη
4

if c 6= q ∈ I ∩ λ(c).
(12)

Since pT (c) = 0, there is a neighborhood Ic of c in I such that

s− r ≤ η

4
ρ(c, [r, s]) if ]r, s[⊂ Ic \ τ(c) or ]r, s[⊂ Ic \ λ(c). (13)

We show that for every J = [x, y] ⊂ Ic for which G|J is continuous, there is a
[u, v] ⊆ J such that

u− x+ y − v ≤ η

2
ρ(c, J) and G(v)−G(u) ≤ εη

2
ρ(c, J). (14)

If c < x ≤ y, take v = inf{t ∈ [x, y]; ]t, y[ ∩ τ(c) = ∅} and u = sup{t ∈ [x, v]; ]x, t[ ∩λ(c) =
∅}. Note that, if u 6= v, then v and u belong to the closures of λ(c) ∩ [u, v] and
τ(c) ∩ [u, v], respectively.

If x ≤ y < c take v = inf{t ∈ [x, y]; ]t, y[∩λ(c) = ∅} and u = sup{t ∈ [x, v]; ]x, t[∩τ(c) =
∅}. Note that, if here u 6= v, then v and u belong to the closures of λ(c) ∩ [u, v] and
τ ∩ [u, v] respectively.

If x ≤ c ≤ y take v = sup
(
[c, y] ∩ τ(c)

)
and u = inf

(
[x, c] ∩ τ(c

)
). Note that, now

both of u, v belong to the closure of τ(c) ∩ [u, v].
In all cases, the first part of (14) follows at once from (13), and the second part

follows by noting that, if u 6= v, then continuity of G
∣∣[u, v] implies by (12) that

G(v) ≤
(
εη
/

4
)
|v − c| and −G(u) ≤

(
εη
/

4
)
|u− c|.

Now, let f(x) ≥ f(c) − ε a.e. on some J = [x, y] ⊂ Ic. With A,B as in Z+, we
have A = {x ∈ J ; g(x) ≥ ε}, and B = {x ∈ J ; −ε ≤ g(x) < 0}.

Since TG′(x) ≥ g(x) ≥ −ε a.e. on J , by (3.1) G(x) + εx is non-decreasing on J .
Hence, clearly, by (3.2)(i), (iii) G is AC on J . So there is a [u, v] ⊆ J satisfying (14),
and since g(x) = G′(x) a.e. on J and g(x) ≥ 0 a.e. on J \A ∪B, we have, further

G(v)−G(u) =

∫ v

u

g ≥ ε
∣∣A ∩ [u, v]

∣∣− ε∣∣B ∩ [u, v]
∣∣. (15)



758 P. S. Bullen and D. N. Sarkhel

Since |A|− |B| ≤ u−x+y−v+
∣∣A∩ [u, v]

∣∣− ∣∣B∩ [u, v]
∣∣, from (14) and (15) it follows

that |A| − |B| ≤ ηρ(c, J).
Thus f has the property Z+ on I, and we are finished. �
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