RESEARCH

Real Analysis Exchange Vol. 22(2), 1996-97, pp. 740–759

P. S. Bullen, Department of Mathematics, University of British Columbia, Vanvouver BC, Canada V6T 1Z2,

e-mail address: bullen@unixg.math.ubc.ca

D. N. Sarkhel Department of Mathematics, University of Kalyani, Kalyani, W. B., India 741235

PROPERTIES OF DERIVATIVE-LIKE FUNCTIONS

Abstract

In this paper refinements and extensions of properties that give generalized derivatives the basic properties of ordinary derivatives are discussed; for instance the Darboux, Baire-1, Denjoy, Zahorski properties.

1 Introduction

It is known that a finite approximate derivative, $(ap)F' = f : I = [a, b] \rightarrow \mathbb{R}$, a < b, shares many of the interesting properties of ordinary derivatives; ([5], [7], [9], [16]). Properties such as:

- (i) the Baire-1 property,
- (ii) the Darboux or intermediate value property,
- (iii) the mean value property,
- (iv) the Denjoy or Denjoy-Clarkson property: and in addition,
- (v) f(x) = F'(x) on a dense open set in *I*.
- Further: Weil [17] has strengthened (iv) to:
- (vi) if $f^{-1}(]\alpha, \beta[) \neq \emptyset$, then $\{x; x \in f^{-1}(]\alpha, \beta[), f(x) = F'(x)\}$ has positive measure; and O'Malley [8] proved the surprisingly sharp property:

(vii) for every x in I there is an x_0 in I such that $f(x) = F'(x_0)$. Weil [18] has also proved:

Key Words: Generalized derivatives, porosity, partitioning covers, Baire-1, interlocking, Zahorski, Darboux

Mathematical Reviews subject classification: Primary: 26A24 Received by the editors October 20, 1996

⁷⁴⁰

(viii) f has a certain property Z on I, a property stronger than the Zahorski property M_3 [19].

It might be remarked that the Baire-1 property often seems crucial in the deduction of the other properties.

In a welcome attempt to reveal how the various properties arise Bruckner, O'Malley & Thomson [2] have studied the unified notion of path derivatives, and Thomson [15] has studied the more general notion of derivatives relative to simple systems, proving various properties of derivatives under the external intersection condition, (E.I.C. [m]), the intersection condition, (I.C.), and the non-porosity condition. The Baire-1 property in particular is obtained in [2, 6.3, p. 113] under (E.I.C. [m]), and in [15] under a wider condition [15, Lemma 9.7, p. 358]; the Darboux property is proved by assuming the Baire-1 property [2, 6.4, p. 113], [15, 8.1, p. 352].

In this paper we show, amongst other things, that a *semi-Baire-1* property and all the properties (ii) through (viii) in stronger and more revealing forms extend to functions like derivatives relative to *limiting systems*, (essentially two-sided simple systems [15, p. 280]), under an *interlocking condition* wider than (I.C.), and often a *generalized non-porosity condition*. The Baire-1 property may however fail even under stronger conditions. This and other critical aspects of the present theory are illustrated by appropriate examples.

2 Definitions and Lemmas

Throughout we suppose that $F, f: I = [a, b] \to \mathbb{R}$, a < b and T is a fixed *limiting* system on \mathbb{R} , by which we mean an arbitrary collection $T = \{T(x); x \in \mathbb{R}\}$ where each T(x) is a non-empty family of subsets of \mathbb{R} such that, if $A \in T(x)$, then $x \in A$ and x is a two-sided limit point of A, and $A \cap]c, d \in T(x)$ for all c, d, c < x < d.

For each $\tau(x) \in T(x), x \in I$, we denote by $I_{\tau(x)}$ the family of all closed intervals $[u, v], u \leq v$ with u in $\tau(x) \cap [a, x]$ and v in $\tau(x) \cap [x, b]$. We define the *extreme T*-derivates of F on I by

$$T\overline{F}'(x) = \inf_{\tau(x)\in T(x)} \left[\sup\left\{ \frac{F(v) - F(u)}{v - u}; [u, v] \in I_{\tau(x)}, u < v \right\} \right],\$$
$$T\underline{F}'(x) = \sup_{\tau(x)\in T(x)} \left[\inf\left\{ \frac{F(v) - F(u)}{v - u}; [u, v] \in I_{\tau(x)}, u < v \right\} \right].$$

Clearly $T(\overline{-F})'(x) = -T\underline{F}'(x)$. If $T\overline{F}'(x) \leq T\underline{F}'(x)$, then F is said to be T-derivable at the point x. If $T\overline{F}'(x) = T\underline{F}'(x)$, then this common value is called the T-derivative of F at x, TF'(x).

As well as finite or infinite T-derivatives we will also study T-derivative-like functions; that is, functions g that satisfy $T\overline{F}'(x) \leq g(x) \leq T\underline{F}'(x)$. **Remark 2.1** In the absence of other conditions we can have that $T\overline{F}'(x) < T\underline{F}'(x)$. This cannot happen if T is filtering down; that is, if the intersection of two members of T(x) is also a member of T(x). However we do not assume this condition.

Remark 2.2 The definition of the T-derivative is unique, but this is not true for the simple-derivatives. The simple system naturally associated with T is $S = \{S(x); x \in \mathbb{R}\}$, where $S(x) = \{E; \mathbb{R} \supseteq E \supseteq \tau(x) \in T(x)\}\}$. Then, according to Thomson [15, p. 281], F has an S-derivative α at a point x in I if for every $\eta > 0$ there is a $\tau(x) \in T(x)$ such that

$$|F(y) - F(x) - \alpha(y - x)| \le \eta |y - x|$$

for all y in $\tau(x) \cap I$. Clearly then F is T-derivable at x and $T\overline{F}'(x) \leq \alpha \leq T\underline{F}'(x)$, but the converse is not true.

Remark 2.3 The weakest limiting system is T_1 , where each $T_1(x)$ consists of all sets containing x and having x as a two-sided limit point. Clearly $T_1\overline{F}'(x) = \max\{D_+F(x), D_-F(x)\}$, and $T_1\underline{F}'(x) = \min\{D^+F(x), D^-F(x)\}$, with obvious modifications if x = a, b. Darboux and mean value properties of T_1 -derivative-like functions have been studied in Sarkhel & Seth [12], and Bullen & Sarkhel [4].

Our main line of reasoning will be Baire's theorem [10, (9.2), p. 54] and the partitioning property, which has many other interesting applications. (See [3] and [14].)

Let $E \subseteq X \subseteq I$. Following Sarkhel & Kar [11, §2], a sequence of sets $\{E_n\}$ whose union is E is called an *E*-form with parts E_n ; if further each part E_n is closed in E, then the *E*-form is said to be *closed*. An increasing *E*-form is called an *E*-chain. By a perfect portion of E we shall mean a section $E \cap [p, q]$ that is perfect and contains both p and q.

Every choice $\tau = \{\tau(x) \in T(x); x \in X\}$ is called a *T*-full cover of *E*. A finite, possibly empty, family $\varpi = \{([u_j, v_j], x_j); [u_j, v_j] \in I_{\tau(x_j)}\}$ is called a τ -partition over E (in *I*) if for all *j* the intervals $]u_j, v_j[$ are pairwise disjoint, and $x_j \in E$; if further $\bigcup_i [u_j, v_j] = E$, then ϖ is called a τ -partition of *E*. We put

$$|\varpi| = \sum_{j} (v_j - u_j), \qquad \sum (f, \varpi) = \sum_{j} f(x_j)(v_j - u_j),$$
$$\Delta(F, \varpi) = \sum_{j} (F(v_j) - F(u_j)),$$

where all these sums are to be zero if $\varpi = \emptyset$.

Given a neighborhood $]x_1, x_2[$ of each point $x \in E$ we will call $\{\tau(x) \cap |x_1, x_2[\}$ a refinement of τ on E.

Lemma 2.1 Let τ be a *T*-full cover of a set $E \subseteq I$. If *E* is of measure zero, then for every $\epsilon > 0$ there is a refinement λ of τ on *E* such that for every λ -partition ϖ over *E* we have $\sum(|f|, \varpi) < \epsilon$ and $|\varpi| < \epsilon$.

PROOF. Since |E| = 0, there are open sets $G_n \supseteq E$ with $|G_n| < n^{-1}2^{-n}\epsilon$, $n = 1, 2, 3, \ldots$ It then suffices to take a refinement λ on E such that $\lambda(x)$ is contained in a component of G_n if $n - 1 \le |f(x)| < n$.

We say that T is partitioning, or has the partitioning property on I if every T-full cover τ of I induces a τ -partition of I.

Lemma 2.2 If T is partitioning on I, then it is also partitioning on every subinterval [c, d], c < d, of I.

PROOF. Let λ be any *T*-full cover of [c, d]. For each $x \in I \setminus [c, d]$ select $\tau(x) \in T(x)$ such that $\tau(x) \subseteq] - \infty, c[$ or $\tau(x) \subseteq]d, \infty[$; also let $\tau(c) = \lambda(c), \tau(d) = \lambda(d)$, and $\tau(x) = \lambda(x) \cap]c, d[$ for c < x < d. Then τ is a *T*-full cover of *I*, and hence there is a τ -partition of *I* which clearly induces a λ -partition of [c, d].

The partitioning property arises from various intersection conditions, [2]. Following [2] and [15], we say that T satisfies the *intersection condition*, (*I.C.*), on Iif for every T-full cover τ of I there are $\delta_x > 0$, $x \in I$, such that if $x, y \in I$ and $0 < y - x < \min\{\delta_x, \delta_y\}$, then $\tau(x) \cap \tau(y) \cap [x, y] \neq \emptyset$. If $A_n = \{x \in I; \delta_x > n^{-1}\}$, then $\{A_n\}$ is an *I*-chain. If $x, y \in A_n$ and $0 < y - x < n^{-1}$, then $\tau(x)$ and $\tau(y)$ intersect as above and so [x, y] has a τ -partition of the form $\{([x, u], x), ([u, y], y)\}$. We generalize this to the *interlocking property*, *ILP*, in terms of the *interlocking* condition, *ILC*, as follows.

We say τ satisfies *ILC* on a set $A \subseteq I$ if for any two points x < y in A there is a set $E \subset]x, y[$, of measure zero, such that for any refinement λ of τ on E there is a τ -partition of [x, y] of the form $\{([x, u], x), ([v, y], y)\} \cup \varpi$, where ϖ is a λ -partition of [u, v] over E.

Then T is said to satisfy ILP on I if for every T-full cover τ of I there is an I-chain $\{A_n\}$ such that for each n there is a $\delta_n > 0$ such that τ satisfies ILC on $A_n \cap J$ for every closed interval J with $|J| < \delta_n$. We then say that τ satisfies ILP on I via $\{(A_n, \delta_n)\}$.

The following result extends (4.7.3) of [2, p. 109].

Lemma 2.3 The interlocking property implies the partitioning property.

PROOF. Let an arbitrary *T*-full cover τ of *I* satisfy ILP on *I* via $\{(A_n, \delta_n)\}$. Let *E* denote the set of points *x* of *I* such that every neighborhood of *x* in *I* contains a closed interval admitting no τ -partition. Then *E* is clearly closed, and it is easily seen that the closure of every interval contained in $I \setminus E$ has a τ -partition. Hence *E* is perfect, and we need only show that *E* is empty.

Suppose that $E \neq \emptyset$. Then by Baire's theorem some A_m must be dense in some perfect portion, $E \cap [c, d]$ of E, with $d - c < \delta_m$.

Let $c \leq u < v \leq d$. If $E \cap [u, v] = \emptyset$, then as remarked above [u, v] has a τ -partition. If $E \cap [u, v] \neq \emptyset$ put $u_1 = \inf(E \cap [u, v])$ and $v_1 = \sup(E \cap [u, v])$. Then $u_1, v_1 \in E$ and $u \leq u_1 < v_1 \leq v$. Since $E \cap [u, u_1] = \emptyset = E \cap [v_1, v]$, both $[u, u_1], [v_1, v]$ have τ -partitions, and because E is perfect u_1, v_1 must be limit points of $E \cap [u_1, v_1]$, and hence of $A_m \cap [u_1, v_1]$. Since $\{A_n\}$ is an I-chain, there is an $A_n \supseteq A_m$ such that $u_1, v_1 \in A_n$. Then there are points $x, y \in A_m, u_1 < x < y < v_1$, such that $x - u_1 < \delta_n$ and $v_1 - y < \delta_n$. Since $u_1, x, y, v_1 \in A_n$, there are, by ILC, τ -partitions of both $[u_1, x]$, and $[y, v_1]$. Also since $x, y \in A_m$ and $0 < y - x < d - c < \delta_m$ we have, by ILC, a τ -partition of [x, y]. Hence it follows that every $[u, v] \subset]c, d[$ has a τ -partition, and this contradicts the condition $E \cap]c, d[\neq \emptyset$.

As observed by Thomson [15, p. 420], set porosity is precisely the right notion to capture certain properties of generalized derivatives. The *porosity of a set A at a point x* is the number

$$p(A,x) = \limsup_{\delta \to 0+} \left[\sup \left\{ \frac{(v-u)}{\delta}; \]u, v[\subseteq]x - \delta, x + \delta[\setminus (A \cup \{x\}) \right\} \right].$$

We set $p_T(x) = \sup\{p(A, x); A \in T(x)\}$, and if $p_T(x) = 0$ for all $x \in I$, then T is said to be *non-porous on I*.

We say that T is non-porous in the generalized sense on I, (NPG), if there is a closed I-form $\{E_n\}$ such that for each n we have that $\sup\{p_T(x); x \in E_n\} < 1$.

Note The properties ILP and (NPG) are hereditary.

The following lemma greatly extends Theorem 4.4 of [2, p. 106].

Lemma 2.4 Hypotheses: $x \in E \subseteq I$, E is closed, $p_T(x) < 1$, F is monotone on the closure of each component of $I \setminus E$, $\alpha \in \mathbb{R}$ and $M = \max\{\alpha, T\overline{F}'(x)\}$; $m = \min\{\alpha, T\underline{F}'(x)\}$.

Conclusions: (i) If $F(v) - F(u) \le \alpha(v-u)$ for all $u, v \in E$, $u \le x \le v$, then

$$\overline{F}'(x) \le \begin{cases} M/(1-p_T(x)) & \text{if } M \ge 0; \\ M(1-p_T(x)) & \text{if } M \le 0; \end{cases}$$

if further x is a limit point of E, then

$$T\underline{F}'(x) \le \begin{cases} \alpha/(1-p_T(x)) & \text{if } T\underline{F}'(x) \ge 0, \\ \alpha(1-p_T(x)) & \text{if } T\underline{F}'(x) \le 0. \end{cases}$$

(ii) If $F(v) - F(u) \ge \alpha(v-u)$ for all $u, v \in E, u \le x \le v$, then

$$\underline{F}'(x) \ge \begin{cases} m/(1 - p_T(x)) & \text{if } m \le 0, \\ m(1 - p_T(x)) & \text{if } m \ge 0; \end{cases}$$

if further x is a limit point of E, then

$$T\overline{F}'(x) \ge \begin{cases} \alpha/(1-p_T(x)) & \text{if } T\overline{F}'(x) \le 0, \\ \alpha(1-p_T(x)) & \text{if } T\overline{F}'(x) \ge . \end{cases}$$

Note If $E = \{x\}$, then we can take any α in (i) and (ii). Hence, clearly, if F is non-decreasing on I, then

$$T\underline{F}'(x)(1-p_T(x)) \leq \underline{F}'(x) \text{ and } \overline{F}'(x) \leq \frac{T\overline{F}'(x)}{1-p_T(x)},$$

with equality holding if $p_T(x) = 0$.

PROOF. (i) First, ignoring the trivial case $M = \infty$, let $p_T(x) < q < 1$ and $M < \beta$, where $\beta < 0$ if M < 0. Suppose $a \leq x < b$. Then there are $\tau(x) \in T(x)$ and $t \in \tau(x) \cap]x, b[$ such that

$$F(y) - F(x) \le \beta(y - x) \quad \text{if} \quad y \in (E \cup \tau(x)) \cap [x, t], \tag{1}$$

$$d - c < q(d - x) \quad \text{if} \quad]c, d[\subseteq]x, t[\setminus \tau(x), c > x.$$

$$(2)$$

Consider now any $y \in]x, t[\setminus (E \cup \tau(x))$, if there are any. Let]r, s[be the component of $]x, t[\setminus E$ that contains y. Put

$$c = \sup\left(\left(E \cup \tau(x)\right) \cap [r, y]\right) \text{ and } d = \inf\left(\left(E \cup \tau(x)\right) \cap [y, s]\right).$$

Then $x \leq r \leq c \leq y \leq d \leq s \leq t$, c > x. Since, by (2), d - y < q(d - x), there is a $v \in (E \cup \tau(x)) \cap [d, s]$ such that v - y < q(v - x); and so (1 - q)(v - x) < y - x. Again by (2), y - c < q(y - x) and hence there is a $u \in (E \cup \tau(x)) \cap [r, c]$ such that y - u < q(y - x), whence (1 - q)(y - x) < u - x.

Now by hypothesis, F is either non-decreasing or non-increasing on [r, s]. In the first case, by the above and (1) $F(y) - F(x) \le F(v) - F(x) \le \beta(v - x)$, whence

$$F(y) - F(x) \begin{cases} <\beta(y-x)/(1-q) & \text{if } \beta > 0, \\ \le \beta(y-x) & \text{if } \beta < 0. \end{cases}$$

In the second case, by the above and (1), $F(y) - F(x) \le F(u) - F(x) \le \beta(u - x)$, whence

$$F(y) - F(x) \begin{cases} \leq \beta(y-x) & \text{if } \beta > 0, \\ < \beta(1-q)(y-x) & \text{if } \beta < 0. \end{cases}$$

These, in conjunction with (1), clearly prove

$$D^+F(x) \le \begin{cases} \beta/(1-q) & \text{if } \beta > 0, \\ \beta(1-q) & \text{if } \beta < 0. \end{cases}$$

By symmetry, if $a < x \leq b$, then

$$D^{-}F(x) \leq \begin{cases} \beta/(1-q) & \text{if } \beta > 0, \\ \beta(1-q) & \text{if } \beta < 0. \end{cases}$$

 \mathbf{So}

$$\overline{F}'(x) \le \begin{cases} \beta/(1-q) & \text{if } \beta > 0, \\ \beta(1-q) & \text{if } \beta < 0. \end{cases}$$

Letting $q \to p_T(x)$ + and $\beta \to M$ +, the first two results follow. Next, let x be a limit point of E on the right. Ignoring the trivial case when $T\underline{F}'(x) = -\infty$, take $\gamma < T\underline{F}'(x)$, where $\gamma > 0$ if $T\underline{F}'(x) > 0$. Then there is $\lambda(x) \in T(x)$ and $e \in E \cap]x, b[$ such that

$$F(y) - F(x) \ge \gamma(y - x) \text{ if } y \in \lambda(x) \cap [x, e],$$
(3)

$$s - r < q(s - x)$$
if $]r, s[\subseteq]x, e[\setminus \lambda(x), r > x.$ (4)

Now, fix $t \in \lambda(x) \cap]x, e[$. If $t \in E$, then by hypothesis and (3) $\alpha(t-x) \ge F(t) - F(x) \ge \gamma(t-x)$, from which $\alpha \ge \gamma$.

If $t \notin E$, let]r, s[be the component of $]x, e[\setminus E$ containing t. Then $r, s \in E$ and $x < r < t < s \leq e$. Let $c = \inf(\lambda(x) \cap [r, t])$ and $d = \sup(\lambda(x) \cap [t, s])$. Since by (4), c - r < q(c - x), there is a $u \in \lambda(x) \cap [c, t]$ such that u - r < q(u - x), whence (1 - q)(u - x) < r - x. Again by (4) s - d < q(s - x), and hence there is a $v \in \lambda(x) \cap [t, d]$ such that s - v < q(s - x), whence (1 - q)(s - x) < v - x.

Now by hypothesis, F is either non-increasing or non-decreasing on [r, s]. In the first case, by hypothesis and by the above and (3)

$$\alpha(r-x) \ge F(r) - F(x) \ge F(u) - F(x) \ge \gamma(u-x),$$

whence $\alpha(r-x) > \gamma(r-x)/(1-q)$ or $\alpha > \gamma/(1-q)$ if $\gamma < 0$, and $\alpha(r-x) \ge \gamma(r-x)$ or $\alpha \ge \gamma$ if $\gamma > 0$. In the second case, by hypothesis and by the above and (3)

$$\alpha(s-x) \ge F(s) - F(x) \ge F(v) - F(x) \ge \gamma(v-x),$$

whence $\alpha(s-x) \ge \gamma(s-x)$ or $\alpha \ge \gamma$ if $\gamma < 0$, and $\alpha(s-x) > \gamma(s-x)(1-q)$ or $\alpha > \gamma(1-q)$ if $\gamma > 0$.

Thus we always have $\alpha \geq \gamma/(1-q)$ if $\gamma < 0$ and $\alpha \geq \gamma(1-q)$ if $\gamma > 0$. Letting $\gamma \to T\underline{F}'(x)$ and $q \to p_T(x)+$, the second two results follow.

A similar proof holds if x is a limit point of E on the left.

(ii) This follows form (i) applied to -F.

Generalizing a well-known property of Baire-1 functions, we shall say that the function f is *semi-Baire-1* on I if for every $\alpha \in f(I)$ the level set $f^{-1}(\alpha)$ contains a point of continuity of f relative to the closure of $f^{-1}(\alpha)$.

Finally we recall that a point $x \in I$ is termed a point of absolute continuity of the function F, an AC-point, if x has a neighborhood in I on which F is AC. Also F is called (ACG) on I if F is AC on each part of some closed I-form.

The following examples illustrate some of our ideas.

Example 2.5 Every bilateral system of paths [2, p. 100] $P = \{P_x; x \in \mathbb{R}\}, x \in P_x \subseteq \mathbb{R}$ and x a two-sided limit point of P_x , generates a limiting system T_P which is defined by $T_P(x) = \{P_x \cap]c, d[; c < x < d\}$, which is filtering down. The notions of P-derivative and T_P -derivative coincide. If P satisfies (I.C.), then T_P satisfies (I.C.), and hence also ILP. If P is non-porous, then so is T_P .

Example 2.6 If $T_{ap}(x)$ is the family of all measurable sets containing x, and having density 1 at x, then T_{ap} is a filtering down, non-porous limiting system satisfying (I.C.), [2, p. 102]. The notions of approximate derivative and T_{ap} -derivative coincide.

Example 2.7 For each $\alpha > 0$, we construct a limiting system T_{α} which is nonporous, and satisfies ILP but not (I.C.), and is or is not filtering down according as α is rational or not.

Define

$$T_{\alpha}(x) = \begin{cases} \{]c, d [; c < x < d \} & \text{if } x \in \mathbb{Q}, \text{ and} \\ \{]c, d [\cap (x + t\mathbb{Q}); c < x < d, t = 1, \alpha \} & \text{if } x \text{ is irrational} \end{cases}$$

Clearly, T_{α} is a non-porous limiting system.

Let now τ be any T_{α} -full cover of I. Let $A_n = \{x \in I; \tau(x) \text{ is dense in } |x-n^{-1}, x+n^{-1}[\}, n = 1, 2, \dots$ Clearly $\{A_n\}$ is an I-chain. Let $x, y \in A_n$ and $0 < y - x < n^{-1}$. Fix a rational $r \in]x, y[$. If λ is any refinement of τ on $\{r\}$, then $\lambda(r)$ is a neighborhood of r. Also, $\tau(x)$ is dense in]x, r[and $\tau(y)$ is dense in]r, y[. So $\lambda(r)$ intersects both $\tau(x) \cap]x, r[$ and $\tau(y) \cap]r, y[$. Hence, plainly, τ satisfies ILP on I via $\{(A_n, n^{-1})\}$. Thus T_{α} satisfies ILP.

But, consider any I-chain $\{E_n\}$. Obviously some E_n must contain an uncountable set B of irrationals. Then some $\xi \in B$ must be such that every neighborhood of ξ contains uncountably many points of B; [6, p. 129]. Since $\xi + \mathbb{Q} + \alpha \mathbb{Q}$ is countable, every neighborhood of ξ contains points $\eta \in B$ such that $\eta \notin \xi + \mathbb{Q} + \alpha \mathbb{Q}$. This means

that $[(\xi + \mathbb{Q}) \cup (\xi + \alpha \mathbb{Q})] \cap [(\eta + \mathbb{Q}) \cup (\eta + \alpha \mathbb{Q})] = \emptyset$. Since $\xi, \eta \in B \subseteq E_n$, it follows that T_α cannot satisfy (I.C.) on I.

Lastly, if α is rational, then $x + t\mathbb{Q} = x + \mathbb{Q}$ for $t = 1, \alpha$; but if α is irrational, then $(x + \mathbb{Q}) \cap (x + \alpha \mathbb{Q}) = \{x\}$. Hence clearly T_{α} is filtering down if α is rational, but not if α is irrational.

3 Main Results

We begin with a monotonicity theorem.

Theorem 3.1 Suppose that T is partitioning on I.

- (i) If $T\overline{F}'(x) < \infty$ on I and $T\overline{F}' \leq \alpha$ a.e. on I, then $F(x) \alpha x$ is non-increasing on I.
- (ii) If $T\underline{F}'(x) > -\infty$ on I and $T\underline{F}' \ge \beta$ a.e. on I, then $F(x) \beta x$ is non-decreasing on I.

PROOF. (i) Let $A = \{x \in I; T\overline{F}'(x) \leq \alpha\}$, $E = I \setminus A$, and $\epsilon > 0$. Assuming that $f(x) > T\overline{F}'(x)$ for all $x \in I$, with $f(x) = \alpha + \epsilon$ for $x \in A$, there is a *T*-full cover τ of *I* such that

$$F(v) - F(u) \le f(x)(v-u) \text{ for all } [u,v] \in I_{\tau(x)}, x \in I.$$

Again, since |E| = 0, by (2.1), τ has a refinement λ on I such that for every λ -partition ϖ_0 over E we have $\sum (|f|, \varpi_0) < \epsilon$ and $|\varpi_0| < \epsilon$.

Now let $a \leq c < d \leq b$. By (2.2) [c, d] has a λ -partition, say ϖ . Then $\varpi = \varpi_1 \cup \varpi_0$ where ϖ_1 and ϖ_0 are λ -partitions, (and so τ -partitions), over A and E respectively. Hence, recalling the choice of f, τ and λ , we have

$$F(d) - F(c) = \Delta(F, \varpi) \le \sum (f, \varpi) = \sum (f, \varpi_1) + \sum (f, \varpi_0)$$
$$\le (\alpha + \epsilon) |\varpi_1| + \sum (|f|, \varpi_0)$$
$$< \alpha (d - c) - \alpha |\varpi_0| + \epsilon |\varpi_1| + \epsilon$$
$$\le \alpha (d - c) + |\alpha| \epsilon + \epsilon |I| + \epsilon.$$

Letting $\epsilon \to 0+$ we get $F(d) - F(c) \le \alpha(d-c)$, which proves (i).

(ii) This follows by applying (i) to -F.

Next we prove the fundamental theorem of this paper.

Theorem 3.2 Suppose T satisfies ILP on I, and $T\overline{F}'(x) < \infty$ and $T\underline{F}'(x) > -\infty$ for all $x \in I$. Then:

- (i) F lies between its one-sided extreme limits on either side, everywhere in I,
- (ii) F is (ACG) on I, it is Darboux on I, (ap)F'(x) exists finitely a.e. on I, and F'(x) exists finitely a.e. on a dense open set in I,
- (iii) if F is of bounded variation, VB, on a closed set $X \subseteq I$ and F|X is continuous, then F is AC on X,
- (iv) either F is strictly monotonic and AC on I, or F has a local extremum at some AC-point of F on]a, b[.

Note Other variants of (iv) appear in [12, p. 14] and [4, p. 227].

PROOF. Part (i) is obvious. For (ii), assuming $f(x) > T\overline{F}'(x)$ and $-f(x) < T\underline{F}'(x)$, there are T-full covers τ, λ of I such that

$$F(v) - F(u) \le f(x)(v-u) \text{ for all } [u,v] \in I_{\tau(x)}, x \in I,$$

$$F(v) - F(u) \ge -f(x)(v-u) \text{ for all } [u,v] \in I_{\lambda(x)}, x \in I.$$

Let τ, λ satisfy ILP on I via $\{(A_n, \delta_n)\}, \{(B_n, \eta_n)\}$ respectively. Put

$$E_n = \{ x \in A_n \cap B_n; |f(x)| \le n \}, \quad \rho_n = \min\{\delta_n, \eta_n\}.$$

Then $\{E_n\}$ is an *I*-chain and both τ, λ satisfy ILP on *I* via $\{(E_n, \rho_n)\}$.

Let $x, y \in E_n$, $0 < y - x < \rho_n$, and $Z \subset]x, y[$ be the zero measure set as required by ILC of τ . By (2.1), given $\epsilon > 0$ there is a refinement μ of τ on Z such that for every μ -partition ϖ over Z we have $\sum(|f|, \varpi) < \epsilon$. By ILC of τ , there is a τ -partition $\{([x, u], x), ([v, y], y)\} \cup \varpi$ of [x, y] where ϖ is a μ -partition of [u, v]. Then by the choice of f and τ we have

$$F(y) - F(x) = (F(u) - F(x)) + \Delta(F, \varpi) + (F(y) - F(v))$$

$$\leq f(x)(u - x) + \sum (f, \varpi) + f(y)(y - v)$$

$$< n(u - x) + \epsilon + n(y - v).$$

Hence $F(y) - F(x) \le n(y-x)$. Similarly, from ILC of λ , $F(y) - F(x) \ge -n(y-x)$. Hence $|F(y) - F(x)| \le n(y-x)$, and $F|E_n$ is continuous.

Now, for any n, let J_n be any closed interval with $0 < |J_n| < \rho_n$, and let $x_1 < y_1$ be any two points in the closure of $E_n \cap J_n$. There is $E_m \supseteq E_n$ such that $x_1, y_1 \in E_m$. Since $0 < y_1 - x_1 < \rho_n$ and $F|E_m$ is continuous, choosing points $x, y \in E_n$ close to x_1, y_1 respectively it follows at once from above that $|F(y_1) - F(x_1)| \le n(y_1 - x_1)$.

These Lipschitz conditions evidently imply that F is (ACG) on I. Hence (ap)F'(x) exists finitely a.e. on I, [10, p. 223 infra], and F'(x) exists finitely a.e. on a dense open set in I (since by Baire's theorem the AC-points of F are dense in I). Again,

since F is (ACG) on I it is Baire-1 on I, which by (i) implies that F is Darboux on I, [13, Theorem III, p. 21], [1, Theorem 6.1, p. 103].

(iii) This follows from [10, (6.7), p. 227], since being (ACG) F satisfies Lusin's condition (N) on I, [10, (6.1), p. 225].

(iv) Let E denote the set of points of I having no neighborhood in I on which F is strictly monotonic. Clearly E is closed. Routine arguments shows that F is strictly monotone on every component]u, v[of $]a, b[\ E$, and then (i) implies that F is strictly monotone and continuous on [u,v], and hence by (iii) F is AC on [u,v]. It follows at once that, if E has an isolated point, c say, then a < c < b, c is an AC-point of F, and F has a strict local extremum at c, but if E is empty, then F is strictly monotonic and AC on I.

Suppose now E is non-empty and perfect. Then, since by (ii) F is (ACG) on I, by Baire's theorem F must be AC on some perfect portion $E \cap [p,q]$ of E.

Since, as shown above, F is monotone and AC on each closed interval contiguous to E in [p,q], it easily follows that F is VB and continuous on [p,q]. Hence by (iii) F is AC on [p,q]. Also, since $E \cap]p,q[\neq \emptyset, F$ is not strictly monotone on [p,q] and hence F must have a local extremum at some point $c \in]p,q[$.

The above proof of (3.2)(ii) contains the germ of

Theorem 3.3 Suppose T satisfies ILP on I and is non-porous on I. If $\infty \neq T\overline{F}'(x) \leq T\underline{F}'(x) \neq -\infty$ for all x in I, then F'(x) exists finitely for all x in a dense open set in I.

PROOF. From the proof of (3.2)(ii), F is Lipschitz on each part of some closed I-form. So by Baire's theorem, for every $[c,d] \subseteq I$ with c < d, there is a perfect portion [p,q] of [c,d] on which F is Lipschitz, say $|F(y) - F(x)| \le N(y-x)$ for $p \le x < y \le q$. Then G(x) = F(x) + Nx is non-decreasing on [p,q]. So for all $x \in [p,q[$, since $p_T(x) = 0$, using Note 2.4 for G we clearly have $\overline{G}'(x) = T\overline{G}'(x) = T\overline{F}'(x) + N$ and $\underline{G}'(x) = T\underline{G}'(x) = T\underline{F}'(x) + N$. Since $\infty \neq T\overline{F}'(x) \le T\underline{F}'(x) \neq -\infty$, it follows that G'(x) exists finitely for all x in [p,q[. Hence F'(x) = G'(x) - N exists finitely for all x in [p,q[.

We are now ready to analyze the Darboux property of derivatives.

Theorem 3.4 Hypotheses: T satisfies ILP on I, $T\overline{F}'(x) < \infty$ and $T\underline{F}'(x) > -\infty$ for all x in I, the set D of points of I where F is T-derivable contains at least the ACpoints of F in $]a, b[, D_* = \{x \in D; TF'(x) \text{ exists}\}, D_{ac} = \{x \in D_* \text{ and } x \text{ is an AC-point of } F \text{ in }]a, b[\}.$ Conclusions:

(i) If $T\overline{F}'(p) < \alpha < T\underline{F}'(q)$ for some $\alpha \in \mathbb{R}$ and $p, q \in I$, with possibly p = q, then for every $]u, v[\subset I \text{ with } p, q \in [u, v], F$ has an AC-point $d \in]u, v[$ where TF'(d)exists, so $d \in D_{ac}$, and equals α . (ii) If $D_{ac} \subseteq E \subseteq D$, then every extended real-valued function g, satisfying $T\overline{F}'(x) \leq g(x) \leq T\underline{F}'(x)$ for all x in E is Darboux on E; in particular both $T\overline{F}'$ and $T\underline{F}'$ are Darboux on E.

(iii) If $D_{ac} \subseteq E \subseteq D_*$, then TF' is Darboux on E.

PROOF. Clearly (i) implies both (ii) and (iii).

To prove (i) let $G(x) = F(x) - \alpha x$ for all $x \in I$. Then $T\overline{G}'(p) = T\overline{F}'(p) - \alpha < 0$ and $T\underline{G}'(q) = T\underline{F}'(q) - \alpha > 0$, which together imply that G is not monotone on [u, v]. Since $T\overline{G}'(x) = T\overline{F}'(x) - \alpha < \infty$ and $T\underline{G}'(x) = T\underline{F}'(x) - \alpha > -\infty$ for all $x \in [u, v]$, it follows from (3.2)(iv) that there is a $d \in [u, v]$, an AC-point of G, (hence also of F), such that G(d) is a local extremum of G; so $T\overline{G}'(d) \ge 0$ and $T\underline{G}'(d) \le 0$. Since by hypothesis F is T-derivable at d, we get

$$0 \le T\overline{G}'(d) = T\overline{F}'(d) - \alpha \le T\underline{F}'(d) - \alpha = T\underline{G}'(d) \le 0$$

Hence it follows that TF'(d) exists with value α .

A similar result to this is the desired mean value property.

Theorem 3.5 Under the hypotheses of (3.4), F has an AC-point $c \in]a, b[$ where TF'(c) exists and equals r = (F(b) - F(a))/(b - a).

PROOF. This follows from the preceding proof, since now G(x) = F(x) - rx is not strictly monotone on I because G(a) = G(b).

Corollary 3.6 If in (3.4) it is assumed further that $TF'(x) \ge 0$ for all x in D_{ac} , then F is non-decreasing on I.

Next we prove the semi-Baire-1 property, in a form which also gives a strengthened version of the O'Malley property [8].

Theorem 3.7 Suppose T satisfies ILP on I and is (NPG) in I, and $T\overline{F}'(x) \leq f(x) \leq T\underline{F}'(x)$ for all x in I. Then f is semi-Baire-1 on I.

In fact, if E is the closure of $f^{-1}(f(t))$ for any $t \in I$, then F has an AC-point c in I, $a \leq t \leq c < b$ or $a < c \leq t \leq b$, such that f(c) = f(t) and F'(c) exists, (and so does TF'(c)), with the value f(c) = f(t), and all of the functions $f, T\overline{F}', T\underline{F}', \overline{F}', \underline{F}'$ are continuous at c relative to E.

PROOF. We can assume without loss in generality that f(t) = 0, for otherwise we could consider the functions F(x) - f(t)x and f(x) - f(t). Now F is T-derivable on I, and $T\overline{F}'(x) < \infty$ and $T\underline{F}'(x) > -\infty$ for all x in I since f(x) is a finite function. So by (3.4)(ii) f is Darboux on I.

First suppose E has no perfect portion. Then E must have an isolated point c, such that either $a \leq t \leq c < b$ or $a < c \leq t \leq b$, and then f(c) = f(t) = 0. Continuity at c relative to E is then trivial. Also, let $a \leq c < d \leq b$ where $E \cap]c, d] = \emptyset$. Since $f^{-1}(0) \subseteq E$, the Darboux property of f implies that for all $x \in]c, d[$, either $T\overline{F}'(x) \leq f(x) < 0$ or $0 < f(x) \leq T\underline{F}'(x)$. Hence by (2.3) and (3.1) F is monotone on [c, d], and hence by (3.2)(i), (iii) F is AC on [c, d]. Besides, $p_T(c) < 1$ since T is (NPG) on I, and $T\overline{F}'(c) \leq f(c) = 0 \leq T\underline{F}'(c)$. Hence from (2.4) we get $F'_+(c) = 0$. By symmetry, if $a < c \leq b$, then F is AC on some [d, c], d < c, and $F'_-(c) = 0$. Thus c is an AC-point of F on I and F'(c) = 0 = f(t).

Next suppose that E has a perfect portion. Then since T is (NPG) on I and, by (3.2)(ii), F is (ACG) on I, so by Baire's theorem there must exist a perfect portion E_0 of E and 0 < q < 1, such that $p_T(x) < q$ for all $x \in E_0$, and F is AC on E_0 .

Now, given an $\epsilon > 0$ let $\eta = \epsilon (1-q)^2/3$. Then there are *T*-full covers τ, λ of *I* such that for all $x \in I$ we have

$$F(v) - F(u) \le (f(x) + \eta)(v - u) \text{ for all } [u, v] \in I_{\tau(x)},$$

$$F(v) - F(u) \ge (f(x) - \eta)(v - u) \text{ for all } [u, v] \in I_{\lambda(x)}.$$

Let τ and λ satisfy ILP on I via $\{(A_n, \delta_n)\}$ and $\{(B_n, \rho_n)\}$ respectively. Then I is the union of the sets

$$E_{n,i} = A_n \cap B_n \cap f^{-1}([i\eta, (i+1)\eta]), \ n = 1, 2, \dots, \ i = 0, \pm 1, \pm 2, \dots$$

So by Baire's theorem some $E_{n,i}$ must be dense in some perfect portion of E_0 which we can take as $E_0 \cap [r, s] = E \cap [r, s]$ with $0 < s - r < \min\{\delta_n, \rho_n\}$. Since $f^{-1}(0) \subseteq E$, it follows as before that F is monotone and AC on each closed interval contiguous to E in [r, s], and hence by (3.2)(iii) F is AC on [r, s].

Again, let $x, y \in E_{n,i} \cap [r, s], x < y$. By ILC of τ and (2.1), given $\delta > 0$ there is a τ -partition $\{([x, u], x), ([v, y], y)\} \cup \varpi$ of [x, y], where ϖ is a τ -partition of [u, v] with $\sum (|f|, \varpi) < \delta$ and $v - u < \delta$. Then

$$F(y) - F(x) = (F(u) - F(x)) + \Delta(F, \varpi) + (F(y) - F(v))$$

$$\leq (f(x) + \eta)(u - x) + \sum (f, \varpi) + \eta(v - u) + (f(y) + \eta)(y - v)$$

$$< (i + 2)\eta(u - x) + \delta + \eta\delta + (i + 2)\eta(y - v)$$

$$\leq (i + 2)\eta(y - x) + |i + 2|\eta\delta + (1 + \eta)\delta.$$

Letting $\delta \to 0+$ we get that $F(y) - F(x) \le (i+2)\eta(y-x)$. Similarly from ILC of λ we get that $F(y) - F(x) \ge (i-1)\eta(y-x)$.

Hence, since the set $E_{n,i}$ is dense in $E \cap [r, s]$ and F is continuous on [r, s], for all distinct $x, y \in E \cap [r, s]$ we have

$$(i-1)\eta \leq \frac{F(y) - F(x)}{y - x} \leq (i+2)\eta.$$
 (5)

Now, since E is the closure of $f^{-1}(0)$ and $E \cap]r, s[\neq \emptyset$, there is an $e \in E \cap]r, s[$ such that f(e) = 0. Then $T\overline{F}'(e) \le 0 \le T\underline{F}'(e)$ and $p_T(e) < 1$. Hence by (5) and (2.4) we get

$$\frac{(i-1)\eta}{1-p_T(e)} \le 0 \le \frac{(i+2)\eta}{1-p_T(e)}.$$

So $-2 \leq i \leq 1$. Hence by (1), for all distinct $x, y \in E \cap [r, s]$ we have

$$-3\eta \le \frac{F(y) - F(x)}{y - x} \le 3\eta.$$

Hence by (2.4), for all $x \in E \cap [r, s]$, if $T\underline{F}'(x) \ge 0$, then $T\overline{F}'(x) \le T\underline{F}'(x) < 3\eta/(1-q)$, and if $T\overline{F}'(x) \le 0$, then $T\underline{F}'(x) \ge T\overline{F}'(x) > -3\eta/(1-q)$, but always

$$\frac{\min\{-3\eta, T\underline{F}'(x)\}}{1 - p_T(x)} \le \underline{F}'(x) \le \overline{F}'(x) \le \frac{\max\{3\eta, T\overline{F}'(x)\}}{1 - p_T(x)}$$

Hence for all $x \in E \cap [r, s]$, considering all possible signs of $T\underline{F}'(x)$ and $T\overline{F}'(x)$ we get $-3\eta/(1-q)^2 < \underline{F}'(x) \le \overline{F}'(x) < 3\eta/(1-q)^2$. Thus $-\epsilon < \underline{F}'(x) \le \overline{F}'(x) < \epsilon$ for all $x \in E \cap [r, s]$.

Consequently, taking ϵ to be $1, 1/2, 1/3, \ldots$ in succession, we can find intervals $[r_n, s_n]$ with end points in E, such that $r_n < r_{n+1} < s_{n+1} < s_n < r_n + n^{-1}$, F is AC on $[r_1, s_1]$, and $-n^{-1} < \underline{F}'(x) \le T\overline{F}'(x) \le f(x) \le T\underline{F}'(x) \le \overline{F}'(x) < n^{-1}$ for all $x \in E \cap [r_n, s_n]$. Then the point $c = \lim r_n = \lim s_n$ evidently fulfills all the required conditions .

This permits sharper versions of the Darboux and mean value properties.

Corollary 3.8 Hypotheses: T satisfies ILP and is (NPG) on I, $\infty \neq T\overline{F}'(x) \leq T\underline{F}'(x) \neq -\infty$ for all x in I, $I_* = \{x \in I, TF'(x) \text{ exists}\}$ and $I_{ac} = \{x \in I_*, x \text{ is an AC-point of } F \text{ in }]a, b[and F'(x) \text{ exists}\}$. Conclusions:

- (i) If $T\overline{F}'(p) < \alpha < T\underline{F}'(q)$ for some $\alpha \in \mathbb{R}$ and $p, q \in I$, with possibly p = q, then for every $]u, v[\subset I \text{ with } p, q \in [u, v], F$ has an AC-point $d \in]u, v[$ where F'(d)exists, so $d \in I_{ac}$, and equals α .
- (ii) If $I_{ac} \subseteq E \subseteq I$, then every extended real-valued function g satisfying $T\overline{F}'(x) \leq g(x) \leq T\underline{F}'(x)$ for all $x \in E$, is Darboux on E.
- (iii) If $I_{ac} \subseteq E \subseteq I_*$, then TF' is Darboux on E.
- (iv) There is a $d \in I_{ac}$ such that F(b) F(a) = (b a)F'(d).

PROOF. Clearly (i) implies (ii) and (iii). Now, assume that $T\overline{F}'(x) \leq f(x) \leq T\underline{F}'(x)$ for all $x \in I$. Then by (3.7), for every $c \in]a, b[$ there is a $d \in I_{ac}$ such that F'(d) = f(c).

Since f(c) = TF'(c) whenever TF'(c) exists, (i) and (iv) follow from (3.4)(i) and (3.5), respectively.

We may show by example that the function f in (3.7) may fail to be Baire-1 even under stronger conditions.

Example 3.9 We shall construct a bounded F having a non-Baire-1 finite path derivative F'_P on I, relative to a bilateral non-porous system of paths P satisfying (I.C.), recall (2.5).

Let E be a non-dense perfect set with bounds a, b and let $\{]a_n, b_n[\}$ be the sequence of the distinct components of $I \setminus E$. By induction we define distinct sequences of positive integers $\{1_k\}, \{2_k\}, \{3_k\}, \ldots$ such that

$$b_n < \dots < b_{n_2} < b_{n_1}, \ b_{n_k} \to b_n \ as \ k \to \infty, \tag{6}$$

$$\frac{a_{n_k} - b_{n_{k+1}}}{a_{n_k} - b_n} \to 0 \text{ as } k \to \infty;$$
(7)

and since they are distinct

$$m \neq p \implies m_j \neq p_k, \ j, k = 1, 2, \dots$$
 (8)

First observe the following construction: for any n and any $d_n > b_n$ there is $c_1 \in E \cap]b_n, d_n[$. Let $c_j = b_n + (c_1 - b_n)/j$, j = 2, 3, ... Then $b_n < \cdots < c_2 < c_1$, and $c_j \to b_n$ as $j \to \infty$. We can select n_1 such that $b_{n_1} \in]c_2, c_1]$, and then select the integers n_{k+1} successively such that $]a_{n_{k+1}}, b_{n_{k+1}}[$ intersects $]c_{2+j_k}, c_{1+j_k}[$, where j_k is the unique index such that $a_{n_k} \in]c_{1+j_k}, c_{j_k}]$. Clearly $\{n_k\}$ satisfies (6), and it also satisfies (7) because

$$0 < \frac{a_{n_k} - b_{n_{k+1}}}{a_{n_k} - b_n} < \frac{c_{j_k} - c_{2+j_k}}{c_{1+j_k} - b_n} < \frac{2}{j_k} \to 0 \quad \text{as} \quad k \to \infty.$$

Now, taking n = 1, so $d_1 > b_1$, take $d_1 = b$ say, we construct a sequence as above and call it $\{1_k\}$. Suppose then for some $n \ge 2$ and p = 1, 2, ..., n-1 the sequences $\{p_k\}$ have been defined so as to satisfy (6), (7) and (8) among them. Evidently we can find $d_n > b_n$ such that $]b_n, d_n[$ does not contain any of the points b_{p_k} for p =1, 2, ..., n-1 and k = 1, 2, ... Then we define $\{n_k\}$ as above with $\{b_{n_k}\} \subset]b_n, d_n[$. This completes the induction.

Now, for each n we define a strictly increasing two-way sequence $\{t_{n,i}\}_{i=-\infty}^{\infty}$ in $]a_n, b_n[$ as follows:

$$t_{n,i} = a_n + \frac{n(b_n - a_n)}{2(n-i)} \text{ for } i = 0, -1, -2, \dots$$

$$t_{n,i} = b_n - \frac{n(b_n - a_n)}{2(n+i)} \text{ for } i = 1, 2, \dots$$

So $t_{n,-j} \to a_n$, and $t_{n,j} \to b_n$ as $j \to \infty$. Also we have

$$\max\left\{\frac{t_{n,i+5} - t_{n,i}}{t_{n,i+5} - a_n}, \frac{t_{n,i+5} - t_{n,i}}{b_n - t_{n,i}}\right\} \leq \frac{5}{n+|i|}.$$
(9)

Let $I_{n,r} = \bigcup_{i=-\infty}^{\infty} [t_{n,6i+r}, t_{n,6i+r+1}]$ for $r = 0, 1, \ldots, 5$ only. Then $I_{n,r} \cap I_{n,s} = \emptyset$ for $r \neq s$. We define

$$P_x = \begin{cases} (\mathbb{R} \setminus I) \cup E \cup \bigcup_{n=1}^{\infty} I_{n,0} & \text{if } x \in E, \ x \notin \{b_n \\ \{x\} \cup I_{n,2} \cup \bigcup_{k=1}^{\infty} I_{n_k,4} & \text{if } x = b_n, n = 1, 2, \dots, \\ \mathbb{R} & \text{if } x \in \mathbb{R} \setminus E. \end{cases}$$

Using (6), (7) and (9) we readily verify that $P = \{P_x; x \in \mathbb{R}\}$ is a bilateral, nonporous system of paths.

Also, if $\delta : \mathbb{R} \to]0,1[$ is such that $\delta(b_n) < \min\{|b_1 - b_n|, |b_2 - b_n|, \dots, |b_{n-1} - b_n|\}$ for $n \ge 2$, then $|b_m - b_n| > \min\{\delta(b_m), \delta(b_n)\}$ for all $m \ne n$ and hence, clearly P satisfies (I.C.) with respect to δ .

Now, recalling (3), for each n we define $n^* = m$ if $n = m_k$ for some m and k, and $n^* = n$ otherwise. Then we define

$$F(x) = \begin{cases} 0 & \text{if } x \in E \cup \bigcup_{n=1}^{\infty} I_{n,0}, \\ x - b_n & \text{if } x \in I_{n,2}, n = 1, 2, \dots, \\ x - b_{n^*} & \text{if } x \in I_{n,4}, n = 1, 2, \dots \end{cases}$$

Also we define F(x) on each of $I_{n,1}$, $I_{n,3}$, $I_{n,5}$ in such a way that F becomes differentiable on each of the intervals $]a_n, b_n[$, and remains bounded on I. Then we see at once that $F'_P(x)$ exists finitely for all x in I. (Note that $(n_k)^* = n$.) But $F'_P(b_n) = 1$ for all n and $F'_P(x) = 0$ for all $x \in E, x \notin \{b_n\}$, so F'_P has no points of continuity in E relative to E since $\{a_n\}$ and $\{b_n\}$ are disjoint dense subsets of E. Hence F'_P is not Baire-1 on I, though by (3.7) it is semi-Baire-1 on I.

Our next example shows that the O'Malley property is non-trivial insofar as it may fail even for strictly increasing absolutely continuous F and for T satisfying (IC), in the absence of the condition (NPG).

Example 3.10 It is not difficult to find a strictly increasing absolutely continuous F, such that $0 < F'(x) < \infty$ for all x in]a, b] but with $0 = D_+F(a) < D^+F(a) < \infty$. Then there is a strictly decreasing sequence $\{a_n\}$ in]a, b[converging to a such that $(F(a_n) - F(a))/(a_n - a) \to 0$. We define a bilateral system of paths P by setting $P_x = \mathbb{R}$ for $x \neq a$, and $P_a =]-\infty, a] \cup \{a_n\}$. Obviously P satisfies (I.C.), and $F'_P(x)$ exists finitely for all x in I with $F'_P(a) = 0$. But the O'Malley property fails at a, since F'(a) does not exist and F'(x) > 0 for $a < x \leq b$.

Next, we give a proof of a stronger version of the Weil property [17], inclusive of the Denjoy property.

Theorem 3.11 Suppose T satisfies ILP on I and is (NPG) on I, and $T\overline{F}'(x) \leq f(x) \leq T\underline{F}'(x)$ for all x in I. Then for every $t \in I$ and $\alpha < f(t) < \beta$, every one-sided neighborhood of t in I contains an interval J on which F is AC, (so f(x) = F'(x) a.e. on J), such that $|J \cap f^{-1}(]\alpha, \beta[)| > 0$.

PROOF. Let *E* denote the closure of $f^{-1}(f(t))$, and suppose that $a \leq t < v < b$. By (3.7), *F* has an AC-point *c* in [t, v] such that f(c) = f(t), (so $\alpha < f(c) < \beta$) and both $T\overline{F}', T\underline{F}'$ are continuous at *c* relative to $E \cap [t, v]$. Then let c < d < v be such that *F* is AC on $J_0 = [c, d]$, and

$$\alpha < T\overline{F}'(x) \le f(x) \le T\underline{F}'(x) < \beta \text{ for all } x \in E \cap J_0.$$
(10)

If $|E \cap J_0| > 0$, then by (10) $|J \cap f^{-1}(]\alpha, \beta[)| > 0$ with $J = J_0$.

Suppose that $|E \cap J_0| = 0$. Let J = [r, s] be the closure of a component of $J_0 \setminus E$. Since $c \in E$, clearly $r \in E \cap J_0$. So by (10) $D^+F(r) \ge T\underline{F}'(r) > \alpha$, and $D_+F(r) \le T\overline{F}'(r) < \beta$, which by (3.1)(i), (ii) imply, respectively

$$|\{x \in J; T\overline{F}'(x) > \alpha\}| > 0 \text{ and } |\{x \in J; T\underline{F}'(x) < \beta\}| > 0.$$

Since $T\overline{F}'(x) \le f(x) \le T\underline{F}'(x)$ for all x in J = [r, s] we get

$$|\{x \in J; f(x) > \alpha\}| > 0 \text{ and } |\{x \in J; f(x) < \beta\}| > 0.$$
(11)

But, since $]r, s[\cap f^{-1}(f(t)) = \emptyset$, the Darboux property of f, (3.4)(ii), implies that either $f(x) < f(t) < \beta$ or $f(x) > f(t) > \alpha$ for $x \in]r, s[$. Hence, by (11), in either case $|J \cap f^{-1}(]\alpha, \beta[)| > 0$.

Similarly, if $a < u < t \le b$, we can find a J in some $[d, c] \subset]u, t]$, and this completes the proof of the theorem.

Finally we will say that a function f has the property Z^* on I, if for every $c \in I$ and $\epsilon > 0, \eta > 0$ there is a neighborhood I_c of c in I such that the following conditions Z^+, Z^- hold.

 $Z^+: \text{ If } f(x) \ge f(c) - \epsilon \text{ a.e. on a closed interval } J \subset I_c \text{ then } |A| - |B| \le \eta \rho(c, J),$ where $A = \{x \in J; f(x) \ge f(c) + \epsilon\}$ and $B = \{x \in J; f(c) - \epsilon \le f(x) < f(c)\},$ and $\rho(c, J) = \max\{|x - c|; x \in J\}.$

 $Z^{-}: \text{ If } f(x) \leq f(c) + \epsilon \text{ a.e. on a closed interval } J \subset I_c \text{ then } |A| - |B| \leq \eta \rho(c, J),$ where $A = \{x \in J; f(x) \leq f(c) - \epsilon\}$ and $B = \{x \in J; f(c) < f(x) \leq f(c) + \epsilon\}.$

We remark that f satisfies Z^- if and only if -f satisfies Z^+ . In another paper it will be shown that property Z^* is strictly stronger than the Zahorski-Weil property Z; ([18, p. 528], has a misprint of $\leq \epsilon$ for $\geq \epsilon$), and that every approximate Peano derivative has the property Z^* .

Theorem 3.12 If T satisfies ILP on I and is non-porous on I and $T\overline{F}'(x) \leq f(x) \leq T\underline{F}'(x)$ for all x in I, then f has the property Z^* on I.

PROOF. Considering -f and -F clearly we need only prove Z^+ for f.

Fix $c \in I$, $\epsilon > 0$, $\eta > 0$, put G(x) = F(x) - F(c) - (x - c)f(c) and g(x) = f(x) - f(c) for x in I. Then G(c) = g(c) = 0, and

$$T\overline{G}'(x) = T\overline{F}'(x) - f(c) \le g(x) \le T\underline{F}'(x) - f(c) = T\underline{G}'(x), \quad x \in I$$

Since $T\overline{G}'(c) \leq 0 \leq T\underline{G}'(c)$, there are $\tau(c), \lambda(c) \in T(c)$ such that

$$\frac{G(q)}{q-c} \begin{cases} < \frac{\epsilon\eta}{4} & \text{if } c \neq q \in I \cap \tau(c), \\ > -\frac{\epsilon\eta}{4} & \text{if } c \neq q \in I \cap \lambda(c). \end{cases}$$
(12)

Since $p_T(c) = 0$, there is a neighborhood I_c of c in I such that

$$s - r \le \frac{\eta}{4}\rho(c, [r, s]) \text{ if }]r, s[\subset I_c \setminus \tau(c) \quad \text{or} \quad]r, s[\subset I_c \setminus \lambda(c).$$
(13)

We show that for every $J = [x, y] \subset I_c$ for which G|J is continuous, there is a $[u, v] \subseteq J$ such that

$$u - x + y - v \le \frac{\eta}{2}\rho(c,J)$$
 and $G(v) - G(u) \le \frac{\epsilon\eta}{2}\rho(c,J).$ (14)

If $c < x \le y$, take $v = \inf\{t \in [x, y];]t, y[\cap \tau(c) = \emptyset\}$ and $u = \sup\{t \in [x, v];]x, t[\cap \lambda(c) = \emptyset\}$. Note that, if $u \ne v$, then v and u belong to the closures of $\lambda(c) \cap [u, v]$ and $\tau(c) \cap [u, v]$, respectively.

If $x \leq y < c$ take $v = \inf\{t \in [x, y]; |t, y| \cap \lambda(c) = \emptyset\}$ and $u = \sup\{t \in [x, v]; |x, t| \cap \tau(c) = \emptyset\}$. Note that, if here $u \neq v$, then v and u belong to the closures of $\lambda(c) \cap [u, v]$ and $\tau \cap [u, v]$ respectively.

If $x \leq c \leq y$ take $v = \sup([c, y] \cap \tau(c))$ and $u = \inf([x, c] \cap \tau(c))$. Note that, now both of u, v belong to the closure of $\tau(c) \cap [u, v]$.

In all cases, the first part of (14) follows at once from (13), and the second part follows by noting that, if $u \neq v$, then continuity of G|[u,v] implies by (12) that $G(v) \leq (\epsilon \eta/4)|v-c|$ and $-G(u) \leq (\epsilon \eta/4)|u-c|$.

Now, let $f(x) \ge f(c) - \epsilon$ a.e. on some $J = [x, y] \subset I_c$. With A, B as in Z^+ , we have $A = \{x \in J; g(x) \ge \epsilon\}$, and $B = \{x \in J; -\epsilon \le g(x) < 0\}$.

Since $T\underline{G}'(x) \ge g(x) \ge -\epsilon$ a.e. on J, by (3.1) $G(x) + \epsilon x$ is non-decreasing on J. Hence, clearly, by (3.2)(i), (iii) G is AC on J. So there is a $[u, v] \subseteq J$ satisfying (14), and since g(x) = G'(x) a.e. on J and $g(x) \ge 0$ a.e. on $J \setminus A \cup B$, we have, further

$$G(v) - G(u) = \int_{u}^{v} g \ge \epsilon \left| A \cap [u, v] \right| - \epsilon \left| B \cap [u, v] \right|.$$

$$\tag{15}$$

Since $|A| - |B| \le u - x + y - v + |A \cap [u, v]| - |B \cap [u, v]|$, from (14) and (15) it follows that $|A| - |B| \le \eta \rho(c, J)$.

Thus f has the property Z^+ on I, and we are finished.

References

- A. M. Bruckner and J. G. Ceder, *Darboux continuity*, Jber. Deutsch. Math. Verein, 67 (1965), 93–117.
- [2] A. M. Bruckner, R. J. O'Malley and B. S. Thomson, Path derivatives: A unified view of certain generalized derivatives, Trans. Amer. Math. Soc., 283 (1984), 97–125.
- [3] P. S. Bullen, Some applications of partitioning covers, Real Analysis Exch., 9 (1983-1984), 539-557.
- [4] P. S. Bullen and D. N. Sarkhel, On Darboux and mean value properties, Canad. Math. Bull., 30 (1987), 223–230.
- [5] C. Goffman and C. J. Neugebauer, On approximate derivatives, Proc. Amer. Math. Soc., 11 (1960), 962–966.
- [6] E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier Series, Vol. 1, Dover, New York, 1957.
- [7] A. Khintchine, Recherches sur la structure des fonctions mesurables, Fund. Math., 9 (1927), 217–279.
- [8] R. J. O'Malley, The set where an approximate derivative is a derivative, Proc. Amer. Math. Soc., 54 (1976), 122–124.
- [9] S. Marcus, On a theorem of Denjoy and on approximate derivative, Monatsh. Math., 66 (1962), 435–440.
- [10] S. Saks, Theory of the Integral, Dover, New York, 1964.
- [11] D. N. Sarkhel and A. B. Kar, (PVB) function and integration, J. Austral. Math. Soc., Ser. A, 36 (1984), 335–353.
- [12] D. N. Sarkhel and P. K. Seth, On some generalized approximative relative derivatives, Rendiconti Circolo Mat. Palermo, 35(2) (1986), 5–21.
- [13] H. K. Sen, Darboux's property and its applications, Proc. Benares Math. Soc., (N.S.) 2 (1940), 17–23.

- [14] B. S. Thomson, On full covering properties, Real Analysis Exch., 6 (1980-1981), 77–93.
- [15] B. S. Thomson, Derivation bases on the real line, II, Real Analysis Exch., 8 (1982-1983), 278–442.
- [16] G. P. Tolstoff, Sur la dérivée approximative exacte, Rec. Math. (Mat. Sb.), (N.S.) 4 (1938), 499–504.
- [17] C. E. Weil, On approximate and Peano derivatives, Proc. Amer. Math. Soc., 20 (1969), 487–490.
- [18] C. E. Weil, A property for certain derivatives, Indiana Univ. Math. J., 23 (1973-74), 527–536.
- [19] Z. Zahorski, Sur la prémière dérivée, Trans. Amer. Math. Soc., 69 (1950), 1–54.