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ON BOREL MEASURABLE FUNCTIONS
THAT ARE V BG AND (N)

Abstract

The Banach-Zarecki Theorem states that V B ∩ (N) = AC for con-
tinuous functions on a closed set. Hence it is a linear space. In this
article we show that V B ∩ (N) is a linear space on any real Borel set.
Hence V BG ∩ (N) will also be a real linear space for Borel measurable
functions defined on an interval. As a consequence of this result, we
show that the AKN integral of Gordon ([3]) is well defined. We also
give answers to Gordon’s questions in [3].

1 Preliminaries

We denote by |X| the outer measure of the set X. Let C denote the class
of continuous functions. We denote by Cap the class of all approximately
continuous functions on an interval, by B1 the Baire one functions, and by
DB1 the Darboux Baire one functions. A function F : E → R is said to satisfy
Lusin’s condition (N), if |F (Z)| = 0 whenever Z ⊂ E with |Z| = 0. For the
definitions of V B and AC see [7].

Definition 1. Let E ⊆ [a, b]. A function F : E → R is said to be ACG
(respectively V BG, CG) on E if there exists a sequence of sets {En} with E =
∪nEn, such that F is AC (respectively V B, C) on each En. If in addition the
sets En are supposed to be closed, we obtain the classes [ACG], [V BG], [CG].
Note that ACG used here differs from that of [7] (because in our definition
continuity is not assumed).
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Definition 2. ([7], p. 108). Let E be a real set, xo ∈ E an accumulation
point of E, and let F : E → R. Let

FE(xo) = lim sup
x→xo,x∈E

F (x)− F (xo)

x− xo
and FE(xo) = lim inf

x→xo,x∈E

F (x)− F (xo)

x− xo
.

They are called respectively the upper and lower derivatives of F at xo relative
to the set E. When they are equal (finite or infinite) their value is termed the
derivative of F at xo relative to the set E, and is denoted by F ′E(xo).

Definition 3. Let E be a real set, xo ∈ E a right accumulation point of E,
and let F : E → R. Let

F
+

E(xo) = lim sup
x↘xo,x∈E

F (x)− F (xo)

x− xo
and F+

E(xo) = lim inf
x↘xo,x∈E

F (x)− F (xo)

x− xo
.

They are called respectively the upper and lower right Dini derivatives of F at
xo relative to the set E. When they are equal (finite or infinite) their value is
termed the right Dini derivative of F at xo relative to the set E, and is denoted

by F+
E (xo). Similarly we define F

−
E(xo), F−E(xo) and F−E (xo) whenever xo is a

left accumulation point of E. Clearly, if xo is a bilateral accumulation point of
E, then F

′

E(xo) exists (finite or infinite) if and only if the four Dini derivatives
of F relative to the set E agree at xo.

Lemma 1. ([7], p. 223.) Let E be a real set and let F : E → R. If the function
F is V B, then F ′E(x) exists and is finite for almost all x ∈ E. Moreover,
|F (Z)| = 0, where Z = {x ∈ E : F ′E(x) (finite or infinite) does not exist}.

Definition 4. The point xo is called a point of condensation of a real set E if
every open interval (a, b) containing xo contains an uncountable set of points
of E ([6], p. 52). We can define right and left versions of this as follows: xo is
called a point of right (respectively left) condensation of E if for every δ > 0
the set (xo, xo + δ) ∩ E (respectively (xo − δ, xo) ∩ E) is uncountable. xo is
called a bilateral condensation point of E if it is simultaneously a right and a
left condensation point of E.

Lemma 2. Let C be a real set and D ⊂ C, D at most countable. A point
x ∈ R is a right (resp. left; bilateral) condensation point of C, if and only if
it is a right (resp. left; bilateral) condensation point of C \D.

Proof. Let x ∈ R and let δ > 0. We have C ∩ (x, x+ δ) = ((C \D)∩ (x, x+
δ)) ∪ (D ∩ (x, x+ δ)). Now the assertion follows immediately.
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Lemma 3. Every uncountable set E ⊆ R can be represented as E = Q ∪D,
where D is at most countable and each point of Q is a bilateral condensation
point of Q.

Proof. Let P = {x ∈ R : x is a condensation point of E} and P1 = {x ∈
E ∩ P : x is isolated on the right or on the left for E ∩ P}. Then P1 is at
most countable (see [7] p. 260). The set D1 = E \P is also at most countable
(see Corollary 2 of [6], p. 53). Let Q = (E ∩ P ) \ P1 and D = P1 ∪D1. Then
E = Q ∪ D and the set D is at most countable. Let xo ∈ Q and let δ > 0.
Since xo is not right isolated for E∩P , it follows that (xo, xo+δ)∩(E∩P ) 6= ∅.
Let yo ∈ (xo, xo + δ) ∩ (E ∩ P ). Then (xo, xo + δ) ∩ E is uncountable. But
E = Q ∪ D; so (xo, xo + δ) ∩ E = ((xo, xo + δ) ∩ Q)) ∪ ((xo, xo + δ) ∩ D).
Therefore (xo, xo + δ) ∩Q is uncountable and thus xo is a right condensation
point for Q. Similarly it follows that xo is a left condensation point for Q.

Lemma 4. Let E be a real uncountable set, and let F : E → R, F ∈ V B.
Then there exists Q ⊆ E such that each point of Q is a bilateral conden-
sation point of Q, F|Q is continuous on Q and E \ Q is at most countable.
Consequently, F ∈ (N) on E if and only if F ∈ (N) on Q.

Proof. By Lemma 4.1 of [7] (p. 221) there exists G : R → R, G ∈ V B,
such that G(x) = F (x) for each x ∈ E. It follows that the set of discontinuity
points of G is countable in each compact interval [a, b]. Since R = ∪∞n=1[−n, n],
it follows that D1 = {x ∈ R : G is discontinuous at x} is countable. Then
F|(E\D1) is continuous on E \ D1. By Lemma 3, E \ D1 can be represented
as E \D1 = Q ∪D2, where D2 is at most countable and each point of Q is a
bilateral condensation point of Q. Let D = D1 ∪D2. Then E = Q ∪D, F|Q
is continuous on Q and D is countable.

Corollary 1. Let E be a real uncountable set, and let F1, F2 : E → R,
F1, F2 ∈ V B. Then there exists Q ⊆ E such that each point of Q is a bi-
lateral condensation point of Q, (F1)|Q, (F2)|Q are continuous on Q and E \Q
is at most countable.

Proof. For Fi there exists Qi such that each point of Qi is a bilateral conden-
sation point of Qi, (Fi)|Qi

is continuous on Qi and E \Qi is at most countable,
i = 1, 2 (see Lemma 4). Let Q = Q1∩Q2. Then (F1)|Q and (F2)|Q are contin-
uous on Q and Q1 \Q ⊆ E \Q ⊆ (E \Q1)∪ (E \Q2). Hence E \Q and Q1 \Q
are both at most countable. By Lemma 2 (taking C = Q1 and D = Q1 \Q),
it follows that each point of Q is a bilateral condensation point of Q.

Theorem 1 (Souslin). ([4], p. 396). Let X and Y be two complete metric
separable spaces, and let A be a Borel subset of X. If F : A → Y is a
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continuous one-to-one function, then F (A) is a Borel set. (In fact F may be
supposed to be only a Borel measurable function, see [4], p. 397).

2 V BG∩(N) is a Real Linear Space for Borel Measurable
Functions

Lemma 5. Let E be a real set and let F : E → R. Let A = {x ∈ E : F ′E(x)
exists and is finite}. Then F ∈ (N) on A.

Proof. For n = 1, 2, . . . let An = {x ∈ A : |F (t)−F (x)| ≤ n|t−x| whenever
t ∈ [x− 1/n, x+ 1/n]∩E} . Let An,i = [i/n, (i+ 1)/n]∩An for each integer i.
Then A = ∪nAn = ∪n ∪iAn,i. Let n and i be such that An,i contains at least
two points x1 < x2. Then |F (t)−F (x1)| ≤ n(t−x1), for every t ∈ [x1, x2]∩E.
For t = x2 we obtain that |F (x2)− F (x1)| ≤ n(x2 − x1). It follows that F is
a Lipschitz function on An,i. Hence F ∈ (N) on A.

Lemma 6. Let E be a real set and let F : E → R, F ∈ V B. Let

E+∞ = {x ∈ E : F ′E(x) = +∞} and E−∞ = {x ∈ E : F ′E(x) = −∞} .

Then F ∈ (N) on E if and only if |F (E−∞ ∪ E+∞)| = 0.

Proof. Let A = {x ∈ E : F ′E(x) exists and is finite} and Z = {x ∈ E :
F ′E(x) (finite or infinite) does not exist}. Then E = A∪Z ∪E−∞ ∪E+∞. By
Lemma 1, it follows that F ∈ (N) on Z and |E+∞| = |E−∞| = 0. By Lemma
5, F ∈ (N) on A. Therefore F ∈ (N) on E if and only if |F (E−∞ ∪E+∞)| =
0.

Lemma 7. Let E be a Borel set such that each of its points is a bilateral accu-
mulation point of E, and let F : E → R be a Borel measurable function. Then

F
+

E(x), F+
E(x), F

−
E(x) and F−E(x) are Borel measurable functions. Therefore

E+∞ and E−∞ are Borel measurable sets.

Proof. For each pair (m,n) of positive integers with n > m, let

Dn,m(F : x) = sup

{
F (t)− F (x)

t− x
: t ∈

(
x+

1

n
, x+

1

m

)
∩ E

}
.

(Here we consider sup ∅ = 0.) Now the proof is as that of Theorem 4.3 of [7],
p. 113. (Also see the proof of Theorem 2.1 of [1], pp. 54-55.)

Theorem 2. Let E be a real Borel set and F1, F2 : E → R. If F1, F2 ∈
V B ∩ (N), then F1 + F2 ∈ V B ∩ (N). Therefore V B ∩ (N) is a real linear
space on E.
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Proof. Clearly F = F1 + F2 ∈ V B. It remains to show that F ∈ (N).
If E is a countable set, then there is nothing to prove. Suppose that E is
uncountable. By Lemma 4 and Corollary 1 it follows that we may suppose
without loss of generality that each point of E is a bilateral condensation
point of E (Therefore each point of E is a bilateral accumulation point of E.)
and F1, F2 are continuous on E. Hence F is continuous on E. Suppose on
the contrary that F /∈ (N) on E. By Lemma 6 it follows for example that
|F (E+∞)| > 0. For n = 1, 2, . . . let

En =

{
x ∈ E+∞ :

F (y)− F (x)

y − x
≥1 whenever y ∈

(
x, x+

1

n

]
∩ E

}
and for each integer i let En,i = [i/n, (i+1)/n]∩En. Then E+∞ = ∪nEn =

∪n,iEn,i. Consider n and i such that |F (En,i)| > 0.
We show that F is strictly increasing on E ∩ En,i. If x1, x2 ∈ En,i and

x1 < x2, then
F (x2)− F (x1)

x2 − x1
≥ 1. (1)

Let xo, yo ∈ E ∩ En,i, xo < yo. Then there exists a sequence {xk} of points
in En,i converging to xo, and a sequence {yk} of points in En,i converging to
yo, such that xk < yk for each k. By (1), F (yk) − F (xk) ≥ yk − xk. Since F
is continuous on E, it follows that F (yo) − F (xo) ≥ yo − xo; so F is strictly
increasing on E ∩ En,i.

Let P = E+∞ ∩En,i. Therefore F is strictly increasing on P . By Lemma
7, P is a Borel set and since F is continuous on P , it follows that F (P ) is
also a Borel set (see Theorem 1); so F (P ) is a Lebesgue measurable set with
positive measure. Then F (P ) contains a compact set Q of positive measure.
Let P1 = P ∩F−1(Q). Since F is strictly increasing on P1, it follows that F|P1

has an inverse on P1; namely (F|P1
)−1 : Q → P1, that is strictly increasing.

But the set Q1 = {x ∈ Q : (F|P1
)−1 is discontinuous at x} is countable.

Let G ⊃ Q1 be an open set such that |G| < |Q|/2. Then Q2 = Q \ G is
a compact set of positive measure and (F|P1

)−1 is continuous on Q2. Hence
P2 = (F|P1

)−1(Q2) ⊆ P1 ⊆ P is a compact set (because any continuous
function maps a compact set into a compact set). But F1, F2 ∈ V B ∩ (N)∩ C
on P2; so by the Banach-Zarecki Theorem (see [7], p. 227), F1, F2 ∈ AC on
P2. It follows that F ∈ AC & (N) on P2. But F (P2) = Q2, |Q2| > 0 and
|P2| = 0, a contradiction.

Corollary 2. Let P be a Borel measurable subset of R. Then the set A =
{F : P → R : F ∈ V BG ∩ (N) and F is a Borel measurable function} is a
real linear space.
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Proof. For F1, F2 ∈ A, there exists a sequence {Pk}k of sets, such that
∪kPk = P and F1, F2 ∈ V B on each Pk. Let Gk,i : R → R, Gk,i = Fi on Pk

and Gk,i ∈ V B on R, i = 1, 2. (This is possible - see for example [7], Lemma
4.1, p. 221.) Let Ek,i = {x ∈ P : Fi(x) = Gk,i(x)}. Since a V G function on R
is Borel measurable and since F1 and F2 are Borel measurable functions too,
it follows that each Ek,i is a Borel set and contains Pk. Then Ek = Ek,1∩Ek,2

is a Borel set containing Pk. By Theorem 2, F = F1 +F2 ∈ V B∩ (N) on each
Ek. Therefore on each Pk. It follows that F ∈ V BG ∩ (N) on P .

Corollary 3 (Sarkhel and Kar, [11]). [V BG] ∩ (N) is a real linear space on
a real compact set.

Proof. Let Q be a real compact set and F1, F2 : Q→ R, F1, F2 ∈ [V BG] on
Q. Then there exists a sequence {Qn} of closed sets such that Q = ∪nQn and
F1, F2 ∈ V B ∩ (N) on each Qn. By Theorem 2, F1 + F2 ∈ V B ∩ (N) on each
Qn. Hence F1 + F2 ∈ [V BG] ∩ (N) on Q.

This result was first obtained by Sarkhel and Kar (see Corollary 3.1.1 and
Theorem 3.6 of [11]).

3 Gordon’s AKN Integral is Well Defined

Definition 5 (Gordon, [3]). A function f : [a, b] → R is said to be AKN

integrable on [a, b] if there exists a function F : [a, b]→ R such that

(1) F ∈ Cap on [a, b],

(2) F ∈ V BG ∩ (N) on [a, b],

(3) F
′

ap(x) = f(x) a.e. on [a, b].

The number F (b) − F (a) is called the definite AKN integral of f , and F is
called an indefinite AKN integral of f on [a, b].

Lemma 8. The AKN integral is well defined.

Proof. Let f : [a, b] → R be AKN integrable, and let F1 and F2 be two
AKN primitives of f . By Corollary 2, V BG∩ (N)∩ Cap is a real linear space.
Since Cap ⊂ DB1 (see [1], p. 21), it follows that F1 − F2 ∈ DB1 ∩ (N) and

(F1 − F2)
′

ap(x) = 0 a.e. on [a, b]. We have the following result of C. M. Lee
(see [5] or [2], p. 146).

If a function F : [a, b] → R is DB1 ∩ (N) on [a, b] and F
′
(x) ≥ 0 a.e.

where F is derivable, then F is increasing and AC on [a, b].
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By this result we obtain that F1 − F2 is a constant on [a, b]. Therefore the
AKN integral is well defined.

Remark 1. Gordon’s proof about the AKN integral being well defined is not
complete. He seems to assume (see [3]) that V BG ∩ (N) ∩ Cap is a real linear
space, but the proof of this fact is not easy (see our Corollary 2).

4 Answers to Gordon’s Questions of [3]

In [3] Gordon posed the following questions.

1. Is every V BG ∩ (N) ∩ Cap function a [CG] function ?

2. Is every indefinite AP integral a [CG] function ?

The answer to question 1 is negative. This follows because

V BG ∩ (N) ∩ [CG] ∩ Cap & [V BG] ∩ (N) ∩ Cap ⊆ V BG ∩ (N) ∩ Cap . (2)

Indeed, by the Banach-Zarecki Theorem ([7], p. 227) we have that V BG ∩
[CG] ∩ (N) = [ACG]. Hence V BG ∩ [CG] ∩ (N) ∩ Cap = [ACG] ∩ Cap. In [11]
Sarkhel and Kar constructed a function F : [a, b]→ R such that

F ∈ Cap ∩ (N) ∩ [V BG], but F /∈ ACG on [a, b] . (3)

It follows that V BG∩ [CG]∩ (N)∩ Cap & [V BG]∩ (N)∩ Cap (because if F|P
is V B, and F|P is continuous, then F is V B on P , see for example [2], p. 42).

The answer to question 2 is affirmative. Let F : [a, b] → R be an AP -
primitive. Then F is also a primitive for the β-Ridder integral (see Remark
5.17.3 of [2]). By the definition of the β-Ridder integral (see for example
Remark 5.17.1 (ii) of [2]) it follows that F ∈ Cap∩ [ACG]. Therefore F ∈ [CG].

5 Questions

Starting from relations (2) and (3), the following questions arise.

1) [V BG] ∩ (N) ∩ Cap & V BG ∩ (N) ∩ Cap on [a, b] ?

2) Is there a function F : [a, b] → R such that F ∈ ACG ∩ Cap and F /∈
[V BG] ∩ (N) ∩ Cap ?
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