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SOME COMMENTS ON THE MCSHANE
AND HENSTOCK INTEGRALS

Abstract

The basic distinction between the Henstock and McShane integrals
involves the location of the tags. Another way to look at this difference
is through the type of set associated with each tag; intervals for the
Henstock integral and finite unions of intervals for the McShane inte-
gral. Does this distinction make any difference in the definition of the
Riemann integral? What happens if the intervals are replaced with ar-
bitrary measurable sets? These questions are answered in this paper. A
relationship between the Henstock integral and outer Lebesgue measure
is also included.

The Henstock integral and the McShane integral have similar definitions
that are based upon allowing the mesh size in the Riemann integral definition
to vary from point to point rather than to be constant. This rather subtle
change from the Riemann definition has a great impact on what functions
are integrable. The difference between the Henstock and McShane defini-
tions involves the location of the tags. For the Henstock integral, the tag
of an interval must belong to that interval whereas for the McShane inte-
gral the tag of an interval need not belong to the interval. Consequently, it
is more difficult for a function to be McShane integrable and, as it turns
out, the McShane definition kicks out those functions that are not abso-
lutely integrable. It can be shown that the McShane integral is equivalent
to the Lebesgue integral and that the Henstock integral is equivalent to the
restricted Denjoy integral. The fact that such powerful integrals can be de-
fined almost as simply as the Riemann integral is of pedagogical interest to
some. The main focus in this paper will be the distinction between the two
definitions.

The first question that will be examined is whether or not tags in versus
tags out makes any difference when using a constant mesh size. Since the
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Henstock and McShane integrals are equivalent for the class of bounded func-
tions (both are equivalent to the Lebesgue integral in this case) and a constant
mesh size yields the Riemann integral, it is to be expected that the location
of the tags will make no difference when the mesh is constant. However, a
proof of this fact does not immediately manifest itself. We begin with some
notation.

A partition {Jk : 1 ≤ k ≤ q} of the interval [a, b] is a finite collection

of non-overlapping closed intervals such that [a, b] =
q⋃

k=1

Jk. We will always

assume that the intervals in a partition are listed in increasing order with
respect to the number line. A tagged interval, denoted (x, [c, d]), consists
of an interval [c, d] and a tag x ∈ [c, d]. A free tagged interval is a tagged
interval in which the tag is free of the restriction that it belong to the in-
terval. For example, (1, [1, 2]) is a tagged interval and (0, [1, 2]) is a free
tagged interval. Every tagged interval is a free tagged interval but not ev-
ery free tagged interval is a tagged interval. A tagged partition (free tagged
partition) of [a, b] is a partition of [a, b] in which each interval is a tagged
(free tagged) interval. Given a positive number δ, a tagged partition (free
tagged partition) is said to be δ-fine if each tagged (free tagged) interval
(x, [c, d]) satisfies [c, d] ⊆ (x − δ, x + δ). For a function f : [a, b] → R and
a tagged partition (free tagged partition) {(xk, Jk) : 1 ≤ k ≤ q} of [a, b], the
sum

q∑
k=1

f(xk)`(Jk)

(`(Jk) is the length of the interval Jk) represents the Riemann sum of f over
the given tagged partition (free tagged partition).

It should be clear that a function f : [a, b] → R is Riemann integrable on
[a, b] if and only if there exists a number L with the following property: for
each ε > 0 there exists a positive number δ such that

∣∣∣ q∑
k=1

f(xk)`(Jk)− L
∣∣∣ < ε

whenever {(xk, Jk) : 1 ≤ k ≤ q} is a δ-fine tagged partition of [a, b]. We would
like to prove that this result remains valid when δ-fine tagged partitions of
[a, b] are replaced with δ-fine free tagged partition of [a, b]. In other words, it
makes no difference whether or not the tags belong to the interval as long as
all of the tagged intervals are δ-fine. To prove this result, we need some more
notation and a lemma.
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Let f be a function defined on the interval [a, b]. Given a partition {Jk :
1 ≤ k ≤ q} of [a, b], let J0 = J1 and Jq+1 = Jq and define

m(f, Jk) = inf{f(x) : x ∈ Jk};
m&(f, Jk) = inf{f(x) : x ∈ Jk−1 ∪ Jk ∪ Jk+1};
M(f, Jk) = sup{f(x) : x ∈ Jk};

M&(f, Jk) = sup{f(x) : x ∈ Jk−1 ∪ Jk ∪ Jk+1};

for 1 ≤ k ≤ q. The norm of the partition {Jk : 1 ≤ k ≤ q} is the maximum of
the lengths of the intervals in the partition. Recall that a function f : [a, b]→ R
is Riemann integrable on [a, b] if and only if there exists δ > 0 such that

q∑
k=1

(
M(f, Jk)−m(f, Jk)

)
`(Jk) < ε

whenever {Jk : 1 ≤ k ≤ q} is a partition of [a, b] with norm less than δ. This
is one version of the Cauchy criterion for Riemann integrability.

Lemma 1. If f : [a, b]→ R is Riemann integrable on [a, b], then for each ε > 0
there exists η > 0 such that

q∑
k=1

(
M&(f, Jk)−m&(f, Jk)

)
`(Jk) < ε

for every partition {Jk : 1 ≤ k ≤ q} of [a, b] with norm less than η and

q∑
k=1

m&(f, Jk)`(Jk) ≤
∫ b

a

f ≤
q∑

k=1

M&(f, Jk)`(Jk)

for each such partition of [a, b].

Proof. Let ε > 0. Since f is Riemann integrable on [a, b], there exists δ > 0
such that

n∑
j=1

(
M(f, Ij)−m(f, Ij)

)
`(Ij) < ε/3

whenever {Ij : 1 ≤ j ≤ n} is a partition of [a, b] with norm less than δ. Let
η = δ/3 and suppose that {Jk : 1 ≤ k ≤ q} is a partition of [a, b] with norm
less than η. Let Ik = Jk−1 ∪ Jk ∪ Jk+1 for 1 ≤ k ≤ q and note that

m&(f, Jk) = m(f, Ik) and M&(f, Jk) = M(f, Ik)



332 Russell A. Gordon

for 1 ≤ k ≤ q. Define sets

S0 = {k : 1 ≤ k ≤ q and k ≡ 0 (mod 3)};
S1 = {k : 1 ≤ k ≤ q and k ≡ 1 (mod 3)};
S2 = {k : 1 ≤ k ≤ q and k ≡ 2 (mod 3)}.

Now {Ik : k ∈ S0} is a finite collection of non-overlapping intervals in [a, b]
with norm less than δ. Although this collection may not be a partition of
[a, b], it still follows that (since adding more terms only increases the sum)∑
k∈S0

(
M&(f, Jk)−m&(f, Jk)

)
`(Jk) ≤

∑
k∈S0

(
M(f, Ik)−m(f, Ik)

)
`(Ik) < ε/3.

The same inequality is valid for sums with k ∈ S1 and k ∈ S2. Therefore,

q∑
k=1

(
M&(f, Jk)−m&(f, Jk)

)
`(Jk) =

∑
k∈S0

′′ +
∑
k∈S1

′′ +
∑
k∈S2

′′

< ε/3 + ε/3 + ε/3 = ε.

The second part of the conclusion follows from the inequality

q∑
k=1

m&(f, Jk)`(Jk) ≤
q∑

k=1

m(f, Jk)`(Jk) ≤
∫ b

a

f

≤
q∑

k=1

M(f, Jk)`(Jk) ≤
q∑

k=1

M&(f, Jk)`(Jk).

This completes the proof.

Theorem 2. A function f : [a, b] → R is Riemann integrable on [a, b] if and
only if there exists a number L with the following property: for each ε > 0
there exists a positive number δ such that∣∣∣ q∑

k=1

f(xk)`(Jk)− L
∣∣∣ < ε

whenever {(xk, Jk) : 1 ≤ k ≤ q} is a δ-fine free tagged partition of [a, b].

Proof. Suppose that f is Riemann integrable on [a, b] and let ε > 0. Choose
η > 0 according to the previous lemma and let δ = η/4. Suppose that
{(xi, [ci−1, ci]) : 1 ≤ i ≤ n} is a δ-fine free tagged partition of [a, b]. Since
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the length of each interval [ci−1, ci] is less than η/2, there exists an increasing
set {ik : 0 ≤ k ≤ q} of indices such that

0 = i0 < i1 < i2 < · · · < iq = n and η/2 < cik − cik−1
< η

for 1 ≤ k ≤ q. Let Jk = [cik−1
, cik ] for 1 ≤ k ≤ q and note that {Jk : 1 ≤

k ≤ q} is a partition of [a, b] with norm less than η. Fix an integer k such
that 1 ≤ k ≤ q. Note that {[ci−1, ci] : ik−1 < i ≤ ik} is a partition of Jk. In
addition, since δ = η/4 and `(Jk) > η/2, we find that xi ∈ Jk−1 ∪ Jk ∪ Jk+1

for each ik−1 < i ≤ ik. For these values of i,

m&(f, Jk)(ci − ci−1) ≤ f(xi)(ci − ci−1) ≤M&(f, Jk)(ci − ci−1),

and it follows that

m&(f, Jk)`(Jk) ≤
ik∑

i=ik−1+1

f(xi)(ci − ci−1) ≤M&(f, Jk)`(Jk).

Summing these inequalities for 1 ≤ k ≤ q yields

q∑
k=1

m&(f, Jk)`(Jk) ≤
n∑
i=1

f(xi)(ci − ci−1) ≤
q∑

k=1

M&(f, Jk)`(Jk).

Using both parts of the conclusion of the previous lemma, we find that∣∣∣ n∑
i=1

f(xi)(ci − ci−1)−
∫ b

a

f
∣∣∣ < ε,

where
∫ b
a
f is the Riemann integral of f . This completes the proof.

Theorem 2 shows that for a constant δ the location of the tags does not
affect the integral. With a variable δ, this result is no longer valid. If the tags
are required to be in the interval, the Henstock integral is obtained; if the tags
are allowed to move out of the interval, the McShane integral is obtained. The
practical distinction that then occurs is that in the McShane case a given tag
may be associated with many intervals and these intervals can, to a certain
extent, be scattered about. It is this property that prohibits nonabsolutely
integrable functions from being McShane integrable (see Chapter 10 of [1]).
There is another way to view this difference between the two integrals. Rather
than focusing on intervals and whether or not the tag belongs to an interval, we
can consider the set that is associated with a tag. In the Henstock definition
the set associated with a given tag is a closed interval whereas in the McShane
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definition the set associated with a given tag is a figure, a finite union of non-
overlapping closed intervals. Hence, the Henstock definition involves tagged
intervals and the McShane definition involves tagged figures. We will now
formalize this distinction.

A degenerate interval is an interval consisting of a single point; the point
c can be written in interval form as [c, c]. In the sequel, we will include
degenerate intervals in the collection of closed intervals. For the record, the
length of a degenerate interval is zero. A figure is a finite union of non-
overlapping closed intervals and the length of a figure is the sum of the lengths
of the intervals that make up the figure. Two figures are said to be non-
overlapping if their intersection is a finite set. A tagged figure, denoted (x, V ),
consists of a figure V and a point x ∈ V . A figure partition of [a, b] is a finite
collection of non-overlapping figures whose union is [a, b]. A tagged figure
partition of [a, b] is a figure partition of [a, b] in which each figure is a tagged
figure. For the sake of illustration, a typical tagged figure might look like
(0, V ) where

V = [0, 0] ∪
[
1
3 ,

1
2

]
∪
[
1
5 ,

1
4

]
∪
[
1
7 ,

1
6

]
∪ · · · ∪

[
1

101 ,
1

100

]
.

Given a positive function δ defined on [a, b] (which of course may be constant),
a tagged figure partition is said to be δ-fine if each tagged figure (x, V ) satisfies
V ⊆ (x − δ(x), x + δ(x)). For a function f : [a, b] → R and a tagged figure
partition {(xk, Vk) : 1 ≤ k ≤ q} of [a, b], the sum

q∑
k=1

f(xk)`(Vk)

represents the Riemann sum of f over the given tagged figure partition.
Using this notation and terminology, we can rephrase the definitions of the

Riemann, Henstock, and McShane integrals. These statements must be read
carefully as only one or two words (number or function, interval or figure)
make all the difference. Definition A is a rephrasing of Theorem 2.

Definition A. A function f : [a, b]→ R is Riemann integrable on [a, b] if and
only if there exists a number L with the following property: for each ε > 0
there exists a positive number δ such that

∣∣∣ q∑
k=1

f(xk)`(Vk)− L
∣∣∣ < ε

whenever {(xk, Vk) : 1 ≤ k ≤ q} is a δ-fine tagged figure partition of [a, b].
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Definition B. A function f : [a, b]→ R is Henstock integrable on [a, b] if and
only if there exists a number L with the following property: for each ε > 0
there exists a positive function δ defined on [a, b] such that∣∣∣ q∑

k=1

f(xk)`(Ik)− L
∣∣∣ < ε

whenever {(xk, Ik) : 1 ≤ k ≤ q} is a δ-fine tagged (interval) partition of [a, b].

Definition C. A function f : [a, b]→ R is McShane integrable on [a, b] if and
only if there exists a number L with the following property: for each ε > 0
there exists a positive function δ defined on [a, b] such that∣∣∣ q∑

k=1

f(xk)`(Vk)− L
∣∣∣ < ε

whenever {(xk, Vk) : 1 ≤ k ≤ q} is a δ-fine tagged figure partition of [a, b].

It is often stated, quite correctly, that both the Henstock and McShane
integrals are generalizations of the Riemann integral. Both generalize the
Riemann integral by considering a positive function rather than a positive
number. It is evident that Definition B for the Henstock integral is almost
identical to the definition of the Riemann integral. For the McShane integral,
it is also necessary to allow the tags to come out of their intervals. The
advantage of Definition A (which is Theorem 2) is that it keeps the focus on
the positive function – there is no need to consider misplaced tags. Thus,
Definition C for the McShane integral is almost identical to an equivalent
definition for the Riemann integral.

In the case of a constant δ, there is no difference between tagged interval
partitions and tagged figure partitions as far as the collection of integrable
functions is concerned while in the case of a variable δ, the difference between
tagged interval partitions and tagged figure partitions is quite dramatic. What
happens if we allow other sets to form the partition? In particular, suppose
that we use measurable sets rather than figures. Does this change the col-
lection of integrable functions? At this stage in the paper, the reader should
have no trouble giving a definition for a δ-fine tagged measurable partition
of [a, b]. (For consistency, we will still say that two measurable sets are non-
overlapping if their intersection is a finite set.) As the next two theorems
indicate, the transition to measurable sets makes no difference. We will use
µ(E) to represent the Lebesgue measure of the set E.

Theorem 3. A function f : [a, b] → R is Riemann integrable on [a, b] if and
only if there is a number L with the following property: for each ε > 0 there
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exists a positive number δ such that∣∣∣ n∑
i=1

f(xi)µ(Ei)− L
∣∣∣ < ε

whenever {(xi, Ei) : 1 ≤ i ≤ n} is a δ-fine tagged measurable partition of
[a, b].

Proof. Suppose that f is Riemann integrable on [a, b] and let ε > 0. Choose
η > 0 according to Lemma 1 and let δ = min{η/2, (b− a)/3}. Since

b− a
δ
− b− a

2δ
=
b− a

2δ
≥ 3

2
,

there exists a positive integer q such that

b− a
2δ

< q <
b− a
δ

or δ <
b− a
q

< 2δ.

Let ck = a+k(b−a)/q for 0 ≤ k ≤ q and let Jk = [ck−1, ck] for 1 ≤ k ≤ q. Note
that the collection {Jk : 1 ≤ k ≤ q} is a partition of [a, b] with norm less than
η. Suppose that {(xi, Ei) : 1 ≤ i ≤ n} is a δ-fine tagged measurable partition
of [a, b]. Without loss of generality, we may assume that for each i there is an
index k such that Ei \ {xi} ⊆ Jk. To see this, simply replace (xi, Ei) with the
tagged measurable sets from the collection {(xi, (Ei∩Jk)∪{xi}) : 1 ≤ k ≤ q}.
(Except for the trivial (xi, {xi}), there are at most three sets in this collection;
Ei has nonempty intersection with at most three of the intervals Jk.) Finally,
let Sk = {i : Ei \{xi} ⊆ Jk} for 1 ≤ k ≤ q. Note that the symmetric difference( ⋃

i∈Sk

Ei

)
4 Jk

is a finite set and that xi ∈ Jk−1 ∪ Jk ∪ Jk+1 when i ∈ Sk. It follows that∑
i∈Sk

f(xi)µ(Ei) ≥
∑
i∈Sk

m&(f, Jk)µ(Ei) = m&(f, Jk)`(Jk);

∑
i∈Sk

f(xi)µ(Ei) ≤
∑
i∈Sk

M&(f, Jk)µ(Ei) = M&(f, Jk)`(Jk).

Summing these inequalities for 1 ≤ k ≤ q yields

q∑
k=1

m&(f, Jk)`(Jk) ≤
n∑
i=1

f(xi)µ(Ei) ≤
q∑

k=1

M&(f, Jk)`(Jk).
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Using both parts of the conclusion of Lemma 1, we find that

∣∣∣ n∑
i=1

f(xi)µ(Ei)−
∫ b

a

f
∣∣∣ < ε.

As the converse is trivial, the proof is complete.
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The proof for the McShane integral is essentially a consequence of one of
Littlewood’s three principles – namely, a measurable set is almost a figure (see
Royden [3]). We first prove the following lemma.

Lemma 4. Let δ be a positive function defined on [a, b], let {xi : 1 ≤ i ≤ n}
be a finite set of points in [a, b], let {Hi : 1 ≤ i ≤ n} be a finite collection of
disjoint closed sets in [a, b] such that Hi ⊆ (xi − δ(xi), xi + δ(xi)) for each i,
and let β > 0. Then there exists a finite collection {(xi, Vi) : 1 ≤ i ≤ n} of
non-overlapping δ-fine tagged figures such that Hi ⊆ Vi and µ(Vi \Hi) < β/n
for each i.

Proof. Since the sets Hi are disjoint and compact, there exists a positive
number α such that

inf{|x− y| : x ∈ Hi, y ∈ Hj} > α whenever i 6= j.

For each index i, choose an open set Oi such that xi ∈ Oi and

Hi ⊆ Oi ⊆ (xi − δ(xi), xi + δ(xi)) and µ(Oi \Hi) < β/n.

Now fix i and define a positive function δi on [a, b] as follows:

if x ∈ [a, b]\Hi, then choose δi(x) > 0 so that (x−δi(x), x+δi(x))∩Hi = ∅;
if x ∈ Hi, then choose 0 < δi(x) < α/4 so that (x− δi(x), x+ δi(x)) ⊆ Oi.

Let {(ck, Ik) : 1 ≤ k ≤ q} be a δi-fine tagged (interval) partition of [a, b] and
let Vi be the figure consisting of all the closed intervals Ik for which Hi∩Ik 6= ∅
along with the degenerate interval [xi, xi]. By the definition of δi, we find that

Hi ⊆ Vi ⊆ Oi, xi ∈ Vi ⊆ (xi − δ(xi), xi + δ(xi)), and

µ(Vi \Hi) ≤ µ(Oi \Hi) < β/n.

Finally, choosing δi(x) < α/4 when x ∈ Hi guarantees that the figures Vi
and Vj are non-overlapping when i and j are distinct. This completes the
proof.

A familiar result, Henstock’s Lemma, makes an appearance in the proof
of the next theorem. Anyone with any experience in this field is aware of this
lemma. In informal language, it states that once a function δ has been chosen
that “works” for δ-fine tagged figure partitions, the same function “works” for
any collection of non-overlapping δ-fine tagged figures. The use of Henstock’s
Lemma in the following proof should make this statement clear. A proof of
this lemma can be found in [1].
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Theorem 5. A function f : [a, b] → R is McShane integrable on [a, b] if and
only if there is a number L with the following property: for each ε > 0 there
exists a positive function δ defined on [a, b] such that∣∣∣ n∑

i=1

f(xi)µ(Ei)− L
∣∣∣ < ε

whenever {(xi, Ei) : 1 ≤ i ≤ n} is a δ-fine tagged measurable partition of [a, b].

Proof. Suppose that f is McShane integrable on [a, b] and let ε > 0. Since
f is McShane integrable on [a, b], there exists a positive function δ defined on
[a, b] such that ∣∣∣ q∑

k=1

f(xk)`(Vk)−
∫ b

a

f
∣∣∣ < ε

whenever {(xk, Vk) : 1 ≤ k ≤ q} is a δ-fine tagged figure partition of [a, b],

where
∫ b
a
f is the McShane integral of f on [a, b]. Since the indefinite McShane

integral of f is absolutely continuous on [a, b], there exists 0 < η < ε such that∣∣∫
V
f
∣∣ < ε whenever V is a figure in [a, b] that satisfies `(V ) < η. Suppose

that {(xi, Ei) : 1 ≤ i ≤ n} is a δ-fine tagged measurable partition of [a, b].
Let M = 1 + max{|f(xi)| : 1 ≤ i ≤ n}, let E be the set of all x in [a, b]
such that x ∈ Ei ∩ Ej for some pair i, j of distinct indices, and note that
E is a finite set. For each index i, there exists a closed set Hi ⊆ Ei \ E
such that µ(Ei \Hi) < η/2nM . Since {Hi : 1 ≤ i ≤ n} is a finite collection
of disjoint closed sets in [a, b], the previous lemma states that there exists a
finite collection {(xi, Vi) : 1 ≤ i ≤ n} of non-overlapping δ-fine tagged figures
such that Hi ⊆ Vi and µ(Vi \Hi) < η/2nM for each i. It should be clear that
there exists a figure V such that {Vi : 1 ≤ i ≤ n} ∪ V is a figure partition of
[a, b]. Since

Ei 4Vi = (Ei \ Vi) ∪ (Vi \ Ei) ⊆ (Ei \Hi) ∪ (Vi \Hi),

it follows that µ(Ei 4Vi) < η/nM and

µ(V ) = µ
( n⋃
i=1

Ei \
n⋃
i=1

Vi

)
≤

n∑
i=1

µ(Ei \ Vi) <
η

M
≤ η.

Using all of this information and Henstock’s Lemma, we obtain∣∣∣ n∑
i=1

f(xi)µ(Ei)−
∫ b

a

f
∣∣∣

=
∣∣∣ n∑
i=1

f(xi)µ(Ei)−
n∑
i=1

f(xi)µ(Vi) +

n∑
i=1

f(xi)`(Vi)−
n∑
i=1

∫
Vi

f −
∫
V

f
∣∣∣
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≤
n∑
i=1

|f(xi)|
∣∣µ(Ei)− µ(Vi)

∣∣+
∣∣∣ n∑
i=1

f(xi)`(Vi)−
n∑
i=1

∫
Vi

f
∣∣∣+
∣∣∣∫
V

f
∣∣∣

≤M
n∑
i=1

µ(Ei 4Vi) + ε+ ε < η + ε+ ε < 3ε.

This completes the proof.

The final comments in this paper concern the use of the Henstock integral
to define measure. Once the Henstock integral has been defined without any
mention of measure theory and its properties established, one can say that a
set E ⊆ [a, b] is integrable if χE (the characteristic function of E) is Henstock
integrable on [a, b]. It is then possible to use the properties of the Henstock
integral to show that the collection of integrable sets possesses the same prop-
erties as the collection of measurable sets. Proponents of this definition argue
that the simplicity of the Henstock integral makes this a gentler introduction
to measure theory. Although I am not in favor of introducing measurable sets
in this way (see [2]), the following connection between the Henstock integral
and Lebesgue outer measure is of interest in this construction of a measure.

Given a set E ⊆ [a, b] and a positive function δ defined on [a, b], let

Mδ(E) = sup
{ q∑
k=1

χE(xk)`(Ik)
}
,

where the supremum is taken over all δ-fine tagged partitions {(xk, Ik) : 1 ≤
k ≤ q} of [a, b], then define

h∗(E) = inf{Mδ(E) : δ is a positive function defined on [a, b]}.

Lebesgue outer measure will be defined in the usual way as

µ∗(E) = inf
{ ∞∑
k=1

`(Ik) : {Ik} is a sequence of open intervals such that

E ⊆
∞⋃
k=1

Ik

}
.

We will prove that h∗(E) = µ∗(E) for every set E ⊆ [a, b]. The following
lemma, which is due to R. G. Bartle, will be useful in the proof.

Lemma 6. Let E be any set of real numbers. If δ is a positive function defined
on R, then there exists a countable collection {(xk, Jk)} of non-overlapping

δ-fine tagged intervals such that xk ∈ E for each k and E ⊆
∞⋃
k=1

Jk.
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Proof. It is sufficient to prove the lemma for the case E ⊆ [0, 1]. Let {In}
be the following sequence of dyadic intervals:

[0, 12 ], [ 12 , 1], [0, 14 ], [ 14 ,
1
2 ], [ 12 ,

3
4 ], [ 34 , 1], [0, 18 ], [ 18 ,

1
4 ], · · · .

For each x ∈ E, there exists a least positive integer nx such that x ∈ Inx
⊆

(x − δ(x), x + δ(x)). The collection {Inx
: x ∈ E} is countable and E ⊆⋃

x∈E
Inx

. By removing those intervals in the collection that are contained in

other intervals in the collection, we obtain a countable collection {Jk} of non-

overlapping closed intervals such that E ⊆
∞⋃
k=1

Jk. For each k, there exists a

point xk ∈ E∩Jk such that (xk, Jk) is a δ-fine tagged interval. This completes
the proof.

Theorem 7. If E ⊆ [a, b], then h∗(E) = µ∗(E).

Proof. Let {Ik} be a sequence of open intervals such that E ⊆
∞⋃
k=1

Ik and

let O =
∞⋃
k=1

Ik. Define a positive function δ on [a, b] as follows:

if x ∈ E, then choose δ(x) > 0 so that (x− δ(x), x+ δ(x)) ⊆ O;

if x ∈ [a, b] \ E, then let δ(x) = b− a.

Let {(xi,Ki) : 1 ≤ i ≤ q} be any δ-fine tagged partition of [a, b] and note that
xi ∈ E implies Ki ⊆ O. Hence,

q∑
i=1

χE(xi)`(Ki) ≤ µ(O) ≤
∞∑
k=1

`(Ik).

It follows that h∗(E) ≤ Mδ(E) ≤
∞∑
k=1

`(Ik). Since the sequence {Ik} is arbi-

trary, we find that h∗(E) ≤ µ∗(E).

Now let δ be a positive function defined on [a, b]. By Lemma 6, there exists
a countable collection {(xk, Jk)} of non-overlapping δ-fine tagged intervals such

that xk ∈ E for each k and E ⊆
∞⋃
k=1

Jk. Without loss of generality, we may

assume that Jk ⊆ [a, b] for each k. Let ε > 0. By making each of the closed
intervals Jk a little bigger, we can obtain a sequence {Ik} of open intervals
such that

E ⊆
∞⋃
k=1

Ik and

∞∑
k=1

`(Ik) <

∞∑
k=1

`(Jk) + ε.
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Since the Jk’s are non-overlapping, we can pick a positive integer n such that
∞∑

k=n+1

`(Jk) < ε, then choose a δ-fine tagged partition {(ci,Ki) : 1 ≤ i ≤ q}

of [a, b] that contains the collection {(xk, Jk) : 1 ≤ k ≤ n}. Since xk ∈ E for
each k,

∞∑
k=1

`(Ik) <

∞∑
k=1

`(Jk) + ε <

n∑
k=1

`(Jk) + 2ε =

n∑
k=1

χE(xk)`(Jk) + 2ε

≤
q∑
i=1

χE(ci)`(Ki) + 2ε ≤Mδ(E) + 2ε.

It follows that µ∗(E) ≤ Mδ(E) + 2ε. Since ε > 0 was arbitrary, µ∗(E) ≤
Mδ(E). Since this is true for every positive function δ defined on [a, b], we
obtain µ∗(E) ≤ h∗(E). This completes the proof.

It follows that the collection of integrable sets is identical to the collection
of measurable sets. A discussion of the properties of this measure can either
follow the standard line of argument or appeal to the properties of the Henstock
integral.

References

[1] R. A. Gordon, The integrals of Lebesgue, Denjoy, Perron, and Henstock,
Graduate Studies in Mathematics, Vol. 4, American Mathematical Society,
Providence, RI, 1994.

[2] R. A. Gordon, Is nonabsolute integration worth doing?, Real Analysis Ex-
change, 22 (1996-97), 23–33.

[3] H. L. Royden, Real analysis, 3rd ed., Macmillan, New York, 1988.


