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AN ω-LIMIT SET FOR A LIPSCHITZ
FUNCTION WITH ZERO TOPOLOGICAL

ENTROPY

Abstract

Let Q be the middle thirds Cantor set in [0, 1], and take C to be the
countable set containing the midpoints of the intervals complementary
to Q, together with {− 1

6
}. We develop a Lipschitz function f : [− 1

4
, 1]→

[− 1
4
, 1] that possesses zero topological entropy, and for which Q ∪ C –

an uncountable set with isolated points – is an ω-limit set of f .

1 Introduction

The iterative properties of continuous functions have received considerable
attention in recent years. In particular, much has been learned about the
structure of the ω-limit sets that various classes of continuous functions pos-
sess. Bruckner and Smı́tal have characterized the structure of ω-limit sets for
the class of continuous functions as well as those continuous functions with
zero topological entropy [2], [3].

Theorem 1. Let F be a nonempty closed set. Then F is an ω-limit set for a
continuous function if and only if F is either nowhere dense, or F is a union
of finitely many nondegenerate closed intervals.

Theorem 2. Let F ⊂ (0, 1) be a nonempty infinite closed set. Then F is
an ω-limit set for a continuous function f : [0, 1]→ [0, 1] with zero topological
entropy if and only if F = Q∪C, where Q is a Cantor set, and C is countable,
dense in F if nonempty, and such that for any interval J contiguous to Q,
card(J ∩ C) ≤ 1 if 0 or 1 is in J , and card(J ∩ C) ≤ 2 otherwise.
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In [4] we investigate how the structure of possible ω-limit sets is affected
by considering classes of functions better behaved than the typical continuous
function. We endow the class of closed sets K contained in [0, 1] with the
Hausdorff metric ρ, and show that the typical closed set in {K, ρ} cannot be
an ω-limit set for any Lipschitz function. This is in marked contrast to the
continuous case since all of these typical sets are Cantor sets, and therefore
ω-limit sets of non-Lipschitz continuous functions. The main result of [8]
shows, however, that every nowhere dense compact set is homeomorphic to
an ω-limit set for a differentiable function with bounded derivative. The sig-
nificant cleavage between the class of ω-limit sets for continuous functions
and the class of ω-limit sets for Lipschitz functions must, then, be measure
based. In [9] we make some progress towards characterizing ω-limit sets for
Lipschitz functions, but many questions remain. In this note we answer one of
those queries by showing that a Lipschitz function possessing zero topological
entropy can have an infinite ω-limit set with isolated points.

We proceed through a couple sections. In section two we develop some
notation, give a few definitions and review those previously known results that
will be useful in the course of our construction. Section three is dedicated to
the development of the Lipschitz function f : [− 1

4 , 1]→ [− 1
4 , 1] possessing zero

topological entropy that also has an infinite ω-limit set with isolated points.

2 Preliminaries

In the ensuing section we will develop a Lipschitz function f : [− 1
4 , 1]→ [− 1

4 , 1]
that possesses zero topological entropy as well as an uncountable ω-limit set
with isolated points. We call a function f : [a, b] → [a, b] Lipschitz if there
exists a real number M such that | f(x)−f(y) |< M | x−y | for all x and y in
[a, b]. A set E is called an ω-limit set for a continuous function f mapping a
compact interval I into itself if there exists an x in I such that E = ω (x, f) is
the cluster set of the sequence {fn(x)}∞n=0 = {x, f(x), f(f(x)), . . . }. There are
many ways in which one can characterize those continuous functions f : I → I
that possess zero topological entropy. In [6] one finds a comprehensive list of
such characterizations. For our purposes, however, it suffices to note that the
topological entropy h(f) of a continuous function f is zero if and only if the
period of every periodic point of f is a power of two.

An important tool in the development of our function is the following
theorem due to Smı́tal [7].

Theorem 3. Let f : I → I be a continuous function with zero topological
entropy, and let E be an infinite ω-limit set of f . Then there is a sequence
{Jk}∞k=1 of f -periodic intervals so that, for any k,
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• Jk has period 2k;

• Jk+1 ∪ f2
k

(Jk+1) ⊂ Jk;

• E ⊂ ∪2ki=1f
i(Jk);

• E ∩ f i(Jk) 6= ∅ for every i.

To simplify our work with the f -periodic intervals f i(Jk), we code them
with finite tuples of zeros and ones using a device found in [5]. Let N denote
the natural numbers, and take N to be the set of sequences composed of zeros
and ones. If n ∈N and n = {ni}∞i=1, we let n | k = (n1, n2, . . . , nk). Set
0 = {0, 0, 0, . . . .} and 1 = {1, 1, 1, . . . .}. Now, define a function A : N → N
given by A(n) = n+10, where addition is modulus two from left to right. For
each k ∈ N and i ∈ N put F1|k = Jk and FAi(1)|k = f i(Jk). Thus, for every

m and n in N and k ∈ N there is a j ∈ N such that Aj(m | k) = n | k; the
above relations define Fn|k for all n ∈ N and k ∈ N. In the construction that
follows, we will take Fn|k,1 to lie to the left of Fn|k,0 for all n ∈ N and k ∈ N.

We let Q be the middle thirds Cantor set contained in [0, 1], and take C
to be the set comprised of the midpoints of the complementary intervals of Q
contained in [0, 1], together with the point {− 1

6}.

3 Example

A brief discussion of the ideas behind our construction may prove helpful.
Our intention is to reverse Smı́tal’s Theorem, and let the sets Fn|k determine
our function f , rather than the other way around. We start with the compact
interval [− 1

4 , 1], and split it so that each midpoint c of an interval (a, b) comple-
mentary to Q is always contained in the same periodic interval Fn|k as the right
endpoint b, for each k. We also take Fn|k,1 ⊂ int(Fn|k) for each k (see Theo-
rem 3.1,[1]). Moreover, if we set Fn = ∩∞k=1Fn|k = ∩∞k=1[an|k, bn|k] = [an, bn],
then Fn = [an, bn] for an an ∈ C and bn = max{x : x ∈ Q, x < an} whenever
n has a tail of ones, and Fn = {x} is a singleton otherwise. The trick is not so
much to find sets Fn|k for which we can do this, but to insure that the function
f to which they give rise is Lipschitz and has zero topological entropy.

We begin our construction by defining inductively the f -periodic inter-
vals Fn|k. Let F1 = [− 1

4 ,
1
3 ] and F0 = [ 23 −

1
4 , 1], and suppose Fn|k−1 =

[an|k−1, bn|k−1]. If n | k − 1 6= 1 | k − 1, set Fn|k−1,0 = [bn|k−1 − ( 1
3 )k −

( 3
4 )( 1

3 )k, bn|k−1] and Fn|k−1,1 = [an|k−1 + 1
2j+1 [ 14 ( 1

3 )l], bn|k−1 − 2( 1
3 )k], where

j is the length of the string of ones in which n | k − 1 terminates, and
l = (k − 1) − j. If n | k − 1 = 1 | k − 1, we define Fn|k−1,0 as we
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did above, but in this case set F1|k−1,1 = [a1|k−1 + 1
2k−1 [ 14 ( 1

3 )], bn|k−1 −
2( 1

3 )k]. We let G = (maxF1,minF0) = (b1, a0), and in general, take Gn|k =
(maxFn|k,1,minFn|k,0) = (bn|k,1, an|k,0). For each n ∈N , let Fn = ∩∞k=1Fn|k
= ∩∞k=1[an|k, bn|k] = [an, bn]. It follows that C = {an : n ∈M}, where M
consists of all the elements of N having a tail of ones. If we let S be composed
of all x such that {x} = Fn for some n ∈N , then S consists of all the elements
of Q except for those that are the right endpoint of an interval complementary
to Q, and {0}. If we take B = {bn : n ∈M}, then Q = S ∪B.

Now, set L = Q ∪ C ∪ {an|k : n ∈N , k ∈ N}. We begin to define our

function f : [− 1
4 , 1]→ [− 1

4 , 1] by describing its behavior on L. If x ∈ S, define
f(x) so that {f(x)} = FA(n) when {x} = Fn. On C ∪ B we define f so that
f(an) = aA(n) and f(bn) = bA(n), and when n | k 6= 1 | k, we let f(an|k) =
aA(n)|k. We complete our definition of f on L by setting f(a1|k) = a0|k+1.

Our map f : L→ L is continuous. To show this, it suffices to establish the
continuity of f at each point of C,B and S as the remaining points of L are
isolated. We show that f is continuous at a1 and b1; the proofs for the other
points of Q ∪ C are similar. To show that f is continuous at a1, let U be a
neighborhood of f(a1) = a0 = sup(Q ∪ C) = 1. There exists k ∈ N such that
F0|k ⊂ U . Let V = (a1|k+1, b) where b ∈ (a1, b1) = (− 1

6 , 0). Then V ∩ L =
{a1|j : j > k+1}∪{a1}, and f(V ∩L) = {a0|j+1 : j > k+1}∪{a0} ⊂ F0|k ⊂ U .
We conclude that f is continuous at a1. Now, let U be a neighborhood of
f(b1) = b0 = sup(Q ∪ C) = 1. Choose k ∈ N so that F0|k ⊂ U . Let
V = (b, b1|k+1) where b ∈ (a1, b1). Then sup{f(x) : x ∈ V ∩ L} = 1, and
inf{f(x) : x ∈ V ∩ L} = f(a1|k+1,0) = a0|k+1,1 ⊂ F0|k ⊂ U , so that f is
continuous at b1, too.

We now extend our function linearly to the intervals contiguous to the
closed set L obtaining a function also denoted by f that is continuous on all
of [− 1

4 , 1]. Our next task is to verify that f : [− 1
4 , 1] → [− 1

4 , 1] does indeed
have zero topological entropy. From our development of f , one sees that
f(Gn|k) = GA(n)|k for n | k 6= 1 | k, G ⊂ f(G), and G0|k ⊂ f(G1|k). From

this we conclude that f2
k

is linear on G0|k and has a slope greater than one.
Thus, G contains exactly one periodic point, which is necessarily a repelling
fixed point, and each Gn|k contains exactly one periodic point of period 2k,
which is also repelling (1). We also note that f(Fn|k) = FA(n)|k whenever
n | k 6= 1 | k, and f(F1|k) is a proper subset of F0|k (2). From (1) and (2),

Bruckner and Ceder are able to conclude that for each x ∈ [− 1
4 , 1], either

ω(x, f) is a 2k cycle for some k, or ω(x, f) ⊂ ∩∞k=1 ∪n∈N Fn|k ([1], proof of
Theorem 4.3). Since ∩∞k=1∪n∈N Fn|k contains no cycles, it follows that f must
be a 2∞ function, and that h(f) is zero.

We now establish that our function f : [− 1
4 , 1] → [− 1

4 , 1] is Lipschitz.
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We begin by noting that f is increasing on conv(F1|k,0) for each k ∈ N ∪
{0}, and since f(F1|k,0) = F0|k,1, one sees that f | F1|k,0 is Lipschitz with

growth constant three. Since f(G) = conv(F1 ∪ G ∪ F01) and, in general,
f(G1|k) = conv(F0|k,1 ∪G0|k ∪ F0|k+1,1), it follows from the similarity within

our construction that f | G1|k is Lipschitz for a particular constant M that

works for all k ∈ N ∪ {0}. In fact, we can take M = 16 5
6 , as a tedious but

not terribly difficult calculation shows. In a rather straightforward way one
also shows that f is Lipschitz of constant 31

9 on [− 1
4 ,−

1
6 ]. To establish that

f is Lipschitz at x = 0, we note that f(0) = 1, and |1−f(y)||0−y| is largest when

y = a1|k,0. For all k ≥ 1,
|1−f(a1|k,0)|
|0−a1|k,0|

=
1−a0|k,1

a1|k,0
<

2

3k
1

3k+1
= 3

2 . We conclude,

then, that f : [− 1
4 , 1]→ [− 1

4 , 1] is indeed a Lipschitz function.

That Q ∪ C is an ω-limit set of f follows from the observation that the
orbit of a0 is {an|k : n ∈N , k ∈ N}, so that ω(a0, f) = Q ∪ C. It is worth
noting that while taking Q to be the middle thirds Cantor set, and choosing
C to be the midpoints of its complementary intervals, somewhat simplified
our construction, we clearly did not minimize the Lipschitz constant of the
resulting function. In fact, for any d > 1 we can take a Cantor set Q and an
appropriate countable set of points C so that Q ∪ C is an ω -limit set for a
Lipschitz function f with zero topological entropy and Lipschitz constant less
than d.
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