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OMEGA–LIMIT SETS AND
NON–CONTINUOUS FUNCTIONS

Abstract

We investigate the dense mapping property introduced by Keller in
connection with iteration in Newton’s method. Various kinds of func-
tions are shown to have the dense mapping property. We show that a
function has the dense mapping property iff it is bilaterally quasicon-
tinuous. We also present an invariance theorem and other results on
omega–limit sets.

Introduction and preliminaries

For a general background and notation, we refer the reader to [1], [4], [8]. We
will let f : R→ R represent a real-valued function on the real line. The iterates
of f are defined inductively such that f(fn(x)) = fn+1(x) , where fn is the
n-fold composition of f . The trajectory of x in X is the sequence {fn(x)}∞n=0,
where f0(x) = x. The orbit of x is the point set {fn(x) : n ≥ 0}. The
omega–limit set of f at x (denoted by ω(x, f)) is the limit set of the sequence
{fn(x)}∞n=0. Therefore

ω(x, f) =
⋂

m≥0Cl
(
∪n≥mfn(x)

)
where Cl( ) denotes the closure operator.

We investigate ω-limit sets of Darboux-Baire 1 functions and related func-
tions, because of the familiar application to Newton’s method of finding the
zeros of a function which is differentiable, but not C1.

A function f : X → Y , where X and Y are topological spaces, is quasi-
continuous at a point x in X if for any open set V containing f(x), and for
any open set U containing x, there exists an open nonempty set G ⊂ U such
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that f(G) ⊂ V [10]. Darboux-Baire 1 (D-B1) functions are not quasicontinu-
ous [10]. However, Darboux-Baire 1 functions which have Banach’s condition
T2, are quasicontinuous. See [3, p. 123] and [11, p. 277; chapters VII, IX]. A
function f : R → R is said to satisfy Banach’s condition T2 if almost every
value taken by f is taken at most a denumerable number of times. Functions
which are both Darboux and quasicontinuous are bilaterally quasicontinuous,
but bilaterally quasicontinuous functions are not necessarily Darboux [2]. A
function f : R→ R is bilaterally quasicontinuous if f is both right-hand-sided
quasicontinuous and left-hand-sided quasicontinuous; and f is left-hand-sided
(right-hand-sided) quasicontinuous at x if for every δ > 0 and for every open
neighborhood V of f(x) there exists an open nonempty set

W ⊂ (x− δ, x) ∩ f−1(V )
(
W ⊂ (x, x+ δ) ∩ f−1(V )

)
.

A subset S of a topological space X is called semi-open if there is an open
set G in X such that G ⊂ S ⊂ Cl(G). See [5] and [6]. A subset C of X
is called semi-closed if its complement is semi-open. For a set E ⊂ X, the
semi-closure of E, denoted by SCl(E), is defined to be the intersection of all
semi-closed sets containing E. For any set E, the set SCl(E) is semi-closed.
Arbitrary intersections of semi-closed sets are semi-closed, and a set C is semi-
closed iff Int(Cl(C)) ⊂ C. A function is quasicontinuous iff the inverse image
of every open (closed) set is semi-open (semi-closed). The function f : X → Y
is quasicontinuous iff, for any subset E of X, f(SCl(E)) ⊂ Cl(f(E)).

We recall that the boundary of a set S in a topological space X, denoted by
Bd(S), is defined as follows: Bd(S) = Cl(S)∩Cl(X \S). A function f : R→ R
has a perfect road if for each x ∈ R, there exists a perfect set P having x as a
bilateral limit point such that f|P is continuous at x.

Finally, a function f : R → R has the Young property if for each x ∈ R,
there exist sequences xn ↑ x and yn ↓ x such that

f(x) = lim
n→∞

f(xn) = lim
n→∞

f(yn) .

The dense mapping property and quasicontinuity

In [8] Keller introduced the concept of “dense mapping property” (DMP). A
function f : X → Y , where X and Y are topological spaces, has the dense
mapping property (DMP) if for every subset D of X, with Cl(D) connected,
f(Cl(D)) ⊂ Cl(f(D)). Keller shows that D-B1 functions do not have the
DMP. The DMP is more general than continuity, but any Darboux function
with the DMP, can have only those ω-limit sets which are possible for continu-
ous functions [8]. In particular, Keller proves (Theorem 2.5) that if f : R→ R



Omega–Limit Sets and Non–Continuous Functions 269

is Darboux and has the DMP, then for any x in R, the set ω(x, f) is either
nowhere dense, or is a finite union of nonsingleton connected closed sets.

Theorem 1. Let f : X → Y be a function, where X = Y = R. Then f is
bilaterally quasicontinuous iff f has the DMP.

Proof. For the sufficiency, assume that f is not left-hand-sided quasicontin-
uous at some point xo in X. Then there is an open set V containing f(xo) and
there exists δ > 0 such that there is no open nonempty set G ⊂ (xo − δ, xo)
such that f(G) ⊂ V . Evidently, the set

D =
{
x ∈ (xo − δ, xo) : f(x) /∈ V

}
is dense in (xo−δ, xo). By the DMP, f(Cl(D)) ⊂ Cl(f(D)). Since xo ∈ Cl(D),
V ∩ f(D) 6= ∅, a contradiction. Similarly, we can show that f is right-hand-
sided quasicontinuous. Hence, f is bilaterally quasicontinuous.

For the necessity, let D be a subset of X such that Cl(D) is connected.
We may suppose that Cl(D) is an interval. Therefore, SCl(D) is also an
interval, since Int(Cl(D)) ⊂ SCl(D) ⊂ Cl(D). Since f is quasicontinuous
f(SCl(D)) ⊂ Cl(f(D)). The claim now is that

f(Cl(D)) ⊂ Cl(f(D)) .

Assume, to the contrary, that there exists x in Cl(D) such that f(x) /∈
Cl(f(D)). Therefore, there exists an open set H containing f(x) such that
H ∩ f(D) = ∅. Now, by bilateral quasicontinuity, for any open set U contain-
ing x, f−1(H) ∩ U contains an open nonempty set G such that f(G) ⊂ H.
If x is an endpoint, the set G can be chosen on the left side or right side of
x, so that G meets the set D. Hence H ∩ f(D) is not empty, and we have a
contradiction.

Corollary 2. Suppose that f : R → R is a D-B1 function. Then if f has
Banach’s condition T2, f has the DMP.

Proof. Since f is Darboux and quasicontinuous, f is bilaterally quasicontin-
uous, and hence has the DMP.

Corollary 3. Let f : R→ R be a D-B1 function satisfying Banach’s condition
T2. Then for any x in R, ω(x, f) is either nowhere dense, or is a finite union
of nonsingleton connected closed sets.

Corollary 4. Let f : [a, b]→ R be a Riemann integrable derivative. Then for
any x in R, ω(x, f) is either nowhere dense, or is a finite union of nonsingleton
connected closed sets.
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Proof. Riemann integrable derivatives are quasicontinuous [10]. Since we
also have the Darboux property, the result follows.

In [10] Marcus proves the more general result that a derivative which is
continuous almost everywhere, is quasicontinuous. Therefore, Corollary 4 is
also true for this class of functions.

Corollary 5. Suppose that f : R→ R is Darboux and has the DMP. Then f
has a perfect road. Moreover, f has the Young property.

Proof. Since f is Darboux and quasicontinuous, f has a perfect road [7] and
also has the Young property [2].

Of course, fixed points are one kind of omega-limit set. Since Darboux
quasicontinuous functions of the form f : R → R are not necessarily connec-
tivity functions [7], we cannot necessarily conclude that DMP functions with
reasonable properties are connectivity or have a fixed point, although either
is a possibility. On the other hand, it is well known that D-B1 functions of
the form f : I → I have a fixed point. We can prove a slight variation of this
result:

Theorem 6. Let f : I → I be a D-B1 function, where I is a closed bounded
interval. If J = [a, b] is a compact subinterval of I such that f(J) ⊃ J , then
f has a fixed point in J .

Proof. Define g(x) = f(x)− x. Then g is Darboux, because the continuous
functions form the maximum additive family for the set of D-B1 functions.
Since f(J) ⊃ J , there are points x1 and x2 in J such that f(x1) = a and
f(x2) = b. It is easy to show that g(x1) ≤ 0 and g(x2) ≥ 0. Hence, by the
intermediate value property, g(y) = 0 for some y in J .

Invariance of the ω-limit set

It is well known that ω-limit sets for continuous functions are invariant. That
is, for a continuous function f : R → R, f(ω(x, f)) ⊂ ω(x, f). This can be
shown as follows:

f
(
ω(x, f)

)
= f

(⋂
m≥0Cl

(
∪n≥mfn(x)

))
⊂
⋂

m≥0f
(

Cl
(
∪n≥mfn(x)

))
⊂

⊂
⋂

m≥0Cl
(
f
(
∪n≥mfn(x)

))
⊂
⋂

m≥0Cl
(
∪n≥mfn(x)

)
= ω(x, f) .

Corollary 2.6 of [8], applied to a real-valued function f : R→ R, states that
if f is Darboux and has the DMP, then for any component K of ω(x, f), with
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nonempty interior, fn(K) is also a component of ω(x, f) for any nonnegative
integer n.

In this section, we investigate the question of invariance for certain kinds
of noncontinuous functions, including quasicontinuous functions. We remark
that, although bilaterally quasicontinuous functions of the form f : R → R
have the DMP, quasicontinuous functions do not, as shown by the following
simple example:

f(x) =

x if x < 1

x+ 1 if x ≥ 1

The next result presents a kind of invariance theorem for quasicontinuous
functions.

Theorem 7. Let f : R → R be quasicontinuous on R. Let x ∈ R. Suppose
that there is a nonempty open set G ⊂ ω(x, f). Then f(G) ⊂ ω(x, f).

Proof. Let I = (a, b) be any component of G. Let K = Cl(I). Then

f(K) = f
(⋂

m≥0Cl
(
I∩ ∪n≥m fn(x)

))
⊂

⊂
⋂

m≥0f
(

Cl
(
I∩ ∪n≥m fn(x)

))
=
⋂

m≥0f
(

SCl
(
I∩ ∪n≥m fn(x)

)
∪A

)
,

where

A = Cl
(
I∩ ∪n≥m fn(x)

)
\ SCl

(
I∩ ∪n≥m fn(x)

)
.

The claim now is that A ⊂
{
{a}, {b}

}
; that is, that A is contained in the

boundary of K. In order to see this, we recall that, by the definition of
an omega-limit set, the orbit of x is evidently dense in I. Therefore since
Cl(I) \ SCl(I) is contained in

{
{a}, {b}

}
, then

A = Cl
(
I∩ ∪n≥m fn(x)

)
\ SCl

(
I∩ ∪n≥m fn(x)

)
is also contained in

{
{a}, {b}

}
. Since f(K) = f(I) ∪ f(a) ∪ f(b) , and since

f(K) ⊂
⋂

m≥0f
(

SCl
(
I∩ ∪n≥m fn(x)

)
∪
{
{a}, {b}

})
⊂

⊂
⋂

m≥0f
(

SCl
(
I∩ ∪n≥m fn(x)

)
∪ f(a) ∪ f(b)

)
⊂

⊂
⋂

m≥0f
(

SCl
(
I∩ ∪n≥m fn(x)

))
∪ f(a) ∪ f(b) ,
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then

f(I) ∪ f(a) ∪ f(b) ⊂
⋂

m≥0f
(

SCl
(
I∩ ∪n≥m fn(x)

))
∪ f(a) ∪ f(b) .

It follows that

f(I) ⊂
⋂

m≥0f
(

SCl
(
I∩ ∪n≥m fn(x)

))
.

Since f is quasicontinuous, then⋂
m≥0f

(
SCl
(
I∩ ∪n≥m fn(x)

))
⊂
⋂

m≥0Cl
(
f
(
I∩ ∪n≥m fn(x)

))
.

Hence

f(I) ⊂
⋂

m≥0Cl
(
f
(
I∩ ∪n≥m fn(x)

))
⊂
⋂

m≥0Cl
(
∪n≥mfn(x)

)
= ω(x, f) .

Since I was an arbitrary component of G, then f(G) ⊂ ω(x, f).

Corollary 8. Let f : R → R be quasicontinuous on R. Let x ∈ R. Then
f(Int(ω(x, f))) ⊂ ω(x, f).

As indicated above, for continuous real-valued functions, invariance can be
proved using the property that

f
(
Cl(E)

)
⊂ Cl

(
f(E)

)
for any subset E .

Of course, for noncontinuous functions, such is not possible. In fact, as the
next result shows, for a nowhere dense set N , if f(Cl(N)) ⊂ Cl(f(N)), then
f is continuous.

Theorem 9. Let f : X → Y be a function, where X = Y = R. Suppose
that for any nowhere dense subset N of X, f(Cl(N)) ⊂ Cl(f(N)). Then f is
continuous.

Proof. Assume f is not continuous at some point x in X, and let V be
an open set containing f(x). Let U be any open set containing x. Then U
contains a point x1 such that f(x1) /∈ V . Choose a positive integer n such that
1/n < |x−x1|. Choose δ > 0 such that δ < 1/n. Then the interval (x−δ, x+δ)
contains a point x2 such that f(x2) /∈ V . Continuing in this way, we construct
a sequence {xn}∞n=1 converging to x, such that the set N = {xn : n ≥ 1} is
nowhere dense in X. Since there is no subsequence {xnk

}∞k=1 of {xn}∞n=1 such
that {f(xnk

}∞k=1 converges to f(x), then

f
(
Cl(N)

)
6⊂ Cl

(
f(N)

)
,

a contradiction.
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