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A PAIR OF ADJOINT CLASSES OF
RIEMANN–STIELTJES INTEGRABLE

FUNCTIONS

Abstract

The purpose of this paper is to show that the classes of Riemann
integrable functions and absolutely continuous functions are adjoint with
respect to the (R-S) integral

∫ b

a
f dg .

Definition. Let A and B be two classes of functions defined on [a, b]. A and

B are said to be adjoint with respect to the (R-S)
∫ b

a
f dg , if the following

conditions are satisfied:

(i) If f ∈ A and g ∈ B, then the (R-S)
∫ b

a
f dg exists;

(ii) If the (R-S)
∫ b

a
f dg exists for all g ∈ B, then f ∈ A; and

(iii) If the (R-S)
∫ b

a
f dg exists for all f ∈ A, then g ∈ B.

If A and B are adjoint with respect to the (R-S)
∫ b

a
f dg , this means that

on condition that the (R-S)
∫ b

a
f dg exists, neither A nor B can be extended

at all. For convenience, we write (A ∗ B)
∫ b

a
f dg meaning that A and B are

adjoint with respect to the (R-S)
∫ b

a
f dg .

We introduce the following symbols for some classes of functions defined
on [a, b]:
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R[a, b] class of Riemann integrable functions on [a, b]
C[a, b] class of continuous functions on [a, b]

BV [a, b] class of functions of bounded variation on [a, b]
AC[a, b] class of absolutely continuous functions on [a, b].

It is known [1] that C[a, b] and BV [a, b] are adjoint with respect to the

(R-S)
∫ b

a
f dg . In this paper we would like to show that R[a, b] and AC[a, b]

are adjoint with respect to the (R-S)
∫ b

a
f dg . To do this, we should prove

that R[a, b] and AC[a, b] satisfy the three conditions in the definition.

(i) If f ∈ R[a, b] and g ∈ AC[a, b], then (R-S)
∫ b

a
f dg exists (cf. [3] for

proof);

(ii) If (R-S)
∫ b

a
f dg exists for all g ∈ AC[a, b], then f ∈ R[a, b]. As a

matter of fact, taking g(x) = x ∈ AC[a, b] gives that f ∈ R[a, b].

In order to prove statement (iii) “if the (R-S)
∫ b

a
f dg exists for all f ∈

R[a, b], then g ∈ AC[a, b]”, we need the following lemmas.

Lemma 1 (Vitali). [2] Let E be set of finite outer measure and J a collection
of intervals that cover E in the sense of Vitali. Then, given ε > 0, there is a
finite disjoint collection {I1, . . . , IN} of intervals in J such that

m∗
[
E ∼ ∪Nn=1In

]
< ε .

Lemma 2. Let f be a function on [a, b] such that f
′

= 0 a.e. Then, f has
the following property: (S) Given ε > 0, δ > 0, there is a finite collection
{[yk, xk]} of nonoverlapping intervals on [a, b] such that∑

|xk − yk| < δ

and ∑
|f(xk)− f(yk)| > |f(b)− f(a)| − ε .

Proof. Let E ⊂ (a, b) be the set of measure b−a in which f
′
(x) = 0, and ε and

δ be arbitrary positive numbers. To each x in E there is an arbitrarily small
interval [x, x+h] contained in (a, b) such that |f(x+h)− f(x)| < ε ·h/(b−a).
By Lemma 1, we can find a finite collection {[xk, yk+1]} of nonoverlapping
intervals of this sort which cover all of E except for a set of measure less than
δ. If we label the xk so that xk < xk+1, we have

a = yo < xo < y1 < x1 < y2 < · · · < yn−1 < xn−1 < yn < xn = b

and
n∑

k=0

|xk − yk| < δ .
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Now

|f(b)− f(a)| =
∣∣∣∣ n∑
k=0

[f(xk)− f(yk)] +

n−1∑
k=0

[f(yk+1)− f(xk)]

∣∣∣∣ <
<

n∑
k=0

|f(xk)− f(yk)|+ ε .

Thus
n∑

k=0

|f(xk)− f(yk)| > |f(b)− f(a)| − ε .

Note. If the function f in Lemma 2 is continuous, then we can find a finite
collection {[yk, xk]} of nonoverlapping intervals in (a, b) instead of [a, b] such
that the above two inequalities hold, too.

We are now in a position to prove the statement (iii):

Theorem. If the (R-S)
∫ b

a
f dg exists for all f ∈ R[a, b], then g ∈ AC[a, b].

Proof. First of all, the fact that

C[a, b] ⊂ R[a, b], BV [a, b] ⊂ R[a, b],

(C ∗BV )
∫ b

a
f dg and the (R-S)

∫ b

a
f dg exists for all f ∈ R[a, b],

implies that g ∈ C[a, b] ∩ BV [a, b]. So, it follows that g = G + F with G ∈
AC[a, b] and F ∈ C[a, b], F

′
= 0 a.e. on [a, b]. To show g ∈ AC[a, b], it

suffices to show F = const. on [a, b]. By hypothesis, the (R-S)
∫ b

a
f dg exists

for all f ∈ R[a, b] and so does the (R-S)
∫ b

a
f dF . Suppose that F (x) 6= const.

on [a, b]. Then, there is a point c ∈ (a, b] such that F (c) − F (a) 6= 0. For
convenience, let c = b. We shall now construct a function f ∈ R[a, b] such

that the (R-S)
∫ b

a
f dF does not exist.

Let ε be a number with 0 < ε < |F (b) − F (a)|, and {δn} be a sequence
satisfying δn ↓ 0 (n → ∞). Since F ∈ C[a, b] and F

′
= 0 a.e. on [a, b], by

the note of Lemma 2, the function F has property (S). That is, for ε > 0 and

δ1 > 0, there is a finite collection {[y(1)k , x
(1)
k ]} of nonoverlapping intervals in

(a, b) such that
n1∑
k=0

∣∣x(1)k − y
(1)
k

∣∣ < δ1
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and
n1∑
k=0

∣∣F (x
(1)
k )− F (y

(1)
k )
∣∣ > |F (b)− F (a)| − ε

2
.

We call {[y(1)k , x
(1)
k ]} the first level of the collection of nonoverlapping intervals.

Then, for every integer h > 1, we can inductively find the h-th level of it,
denoted by

Jh =
{[
y
(h)
k , x

(h)
k

]}
k=0,...,nh

,

such that

(1)
∑nh

k=0

∣∣x(h)k − y(h)k

∣∣ < δh ;

(2)
∑nh

k=0

∣∣F (x
(h)
k )− F (y

(h)
k )
∣∣ > |F (b)− F (a)| − ε · (2h − 1)/2h ;

(3) Ih ⊂ I∼h−1 , where define Ih = ∪k
[
y
(h)
k , x

(h)
k

]
and I∼h = ∪k

(
y
(h)
k , x

(h)
k

)
.

Assume Jh is found. We wish to find Jh+1. To do this, we shall make

use of Lemma 2 repeatedly. Applying Lemma 2 on each interval
[
y
(h)
i , x

(h)
i

]
in Jh (i = 0, 1, . . . , nh), we can find a finite collection

{[
y
(h+1)
k(i) , x

(h+1)
k(i)

]}
of

nonoverlapping intervals in
(
y
(h)
i , x

(h)
i

)
such that

∑
k(i)

∣∣x(h+1)
k(i) − y(h+1)

k(i)

∣∣ < δh+1

2i+1

and ∑
k(i)

∣∣F (x
(h+1)
k(i) )− F (y

(h+1)
k(i) )

∣∣ > ∣∣F (x
(h)
i )− F (y

(h)
i )
∣∣− ε

2h+i+2
.

Collecting all of {[
y
(h+1)
k(i) , x

(h+1)
k(i)

]}
(i = 0, 1, . . . , nh)

gives us a finite collection of nonoverlapping intervals in I∼h , denoted by

Jh+1 =
{[
y
(h+1)
k , x

(h+1)
k

]}
k=0,...,nh+1

.

Then, we have that

nh+1∑
k=0

∣∣x(h+1)
k − y(h+1)

k

∣∣ < δh+1

(
1

2
+ · · ·+ 1

2nh+1

)
< δh+1
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and
nh+1∑
k=0

∣∣F (x
(h+1)
k )− F (y

(h+1)
k )

∣∣ >
>

nh∑
k=0

∣∣F (x
(h)
k )− F (y

(h)
k )
∣∣− ε( 1

2h+2
+ · · ·+ 1

2nh+h+2

)

> |F (b)− F (a)| − ε(2h − 1)

2h
− ε

2h+1

= |F (b)− F (a)| − ε(2h+1 − 1)

2h+1
.

It is clearly true that Ih+1 ⊂ I∼h .
Therefore, the above Jh+1 is indeed the (h + 1)-th level of the finite col-

lection of nonoverlapping intervals with properties (1), (2) and (3).
We now define a function f1 on [a, b] by

f1(x) =

sign
[
F (x

(h)
k )− F (y

(h)
k )
]

if x = y
(h)
k for h≥1 and k=0, 1, . . . , nh

0 if x ∈ [a, b] ∼ ∪k,h
{
y
(h)
k

}
.

Since Ih+1 ⊂ I∼h and Jh is the collection of nonoverlapping intervals for h ≥ 1,

and so y
(h)
k 6= y

(i)
j if (h, k) 6= (i, j). Whence, the function f1 is well defined

on [a, b]. We must show f1 ∈ R[a, b]. If xo ∈ I∼h ∼ Ih+1 for an integer
h ≥ 0 (denote I0 = [a, b]), then in view of the definition of f1, there is an
open interval O(x0, η) = (x0 − η, x0 + η) ⊂ I∼h ∼ Ih+1 such that f1(x) = 0 if
x ∈ O(x0, η). Thus f1 is continuous at x0. Let E be the set of this sort of
points x0. It is not hard to see that

E = (a, b) ∼ ∩∞h=0Ih ∼ ∪k,h
{
y
(h)
k

}
∼ ∪k,h

{
x
(h)
k

}
,

where the last two terms are countable sets.
Also, from

m(Ih) =

nh∑
k=0

∣∣x(h)k − y(h)k

∣∣ < δh → 0 (h→∞)

and
Ih+1 ⊂ Ih (h ≥ 0)

we have
m
(
∩∞h=0Ih

)
= 0

and so m(E) = b− a .
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Hence, the bounded function f1 is continuous almost everywhere on [a, b],

that is, f1 ∈ R[a, b]. We shall now show that the (R-S)
∫ b

a
f1 dF does not exist.

Given λ > 0. There is a positive integer h such that 0 < δh < λ. Let P
be a subdivision, a = x0 < x1 < · · · < xn = b, of [a, b] with maxi{∆xi} < λ

such that each interval
[
y
(h)
k , x

(h)
k

]
of Jh is one of the subintervals of P . Let σ

be a Stieltjes sum, corresponding to P . Then, σ =
∑n−1

i=0 f1(ξi)[F (xi+1) −
F (xi)] , where ξi ∈ [xi, xi+1] . If [xi, xi+1] =

[
y
(h)
k , x

(h)
k

]
, then we choose

ξi = y
(h)
k . Otherwise, there is a point ξi ∈ [xi, xi+1] such that f1(ξi) = 0.

Thus, we have that

σ =

nh∑
k=0

sign
[
F (x

(h)
k )− F (y

(h)
k )
]
·
[
F (x

(h)
k )− F (y

(h)
k )
]

=

nh∑
k=0

∣∣F (x
(h)
k )− F (y

(h)
k )
∣∣

> |F (b)− F (a)| − ε(2h − 1)

2h

> |F (b)− F (a)| − ε > 0 .

On the other hand, however, if we choose ξi ∈ [xi, xi+1] such that f1(ξi) = 0
for i = 0, 1, . . . , n−1, then, this leads to another Stieltjes sum σ1 = 0. The fact

that when λ→ 0, σ−σ1 ≥ |F (b)−F (a)|−ε > 0 implies the (R-S)
∫ b

a
f1 dF does

not exist. This contradicts that the (R-S)
∫ b

a
f dF exists for all f ∈ R[a, b].

Hence, F = const. on [a, b], and so g = G + F is absolutely continuous on
[a, b]. Thus the theorem is proved.

Consequently, we see that R[a, b] and AC[a, b] are adjoint with respect to

the (R-S)
∫ b

a
f dg .
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