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PERTURBED TYPE RANDOM CANTOR
SET∗

Abstract

We define the perturbed type random Cantor set which is a variation
of Falconer’s random Cantor set, and calculate its Hausdorff dimension
by using game fairer with time. It is a generalization of a Falconer’s
result about random Cantor set.

1 Introduction

Recently many authors ([3], [5], [7]) investigated random fractals associated
with random Cantor sets and computed their Hausdorff dimensions. We gen-
eralize some of their results related to random Cantor sets. In this paper we
deal with only random Cantor sets.

First we introduce a probability space (Ω,F , P ) [4] such that the sample
space Ω is the class of all decreasing sequences of sets [0,1]=E0 ⊃ E1 ⊃ E2 ⊃
. . . satisfying the following conditions.

1) Each En consists 2n disjoint closed intervals Ij , where j ∈ {1, 2}n.

2) Each interval Ij of En contains the two intervals Ij,1 and Ij,2 of En+1

with the left endpoints of Ij and Ij,1 and the right endpoints of Ij and
Ij,2 coinciding.

3) For fixed numbers a and b such that 0 < a ≤ b < 1
2 , we write

Ci1,...,in = |Ii1,...,in |/|Ii1,...,in−1
|, C1 = |I1|, C2 = |I2|

and require a ≤ Ci1,...,in ≤ b for all i1, . . . , in, where |I| denotes the
diameter of the interval I, and a probability measure P is defined on a
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suitably large σ-field F of subsets of Ω such that the ratios Ci1,...,in are
random variables. (The number b is considered for a simpler calculation.)

We consider an increasing sequence of sub σ-fields of F , {Fn}∞n=1 such that

F0 = {∅,Ω},

Fn = σ(Fn−1;Cj , j ∈ {1, 2}n), n = 1, 2, . . . .

In fact, F contains ∪∞n=0Fn. We assume that P is a probability measure of
F such that Cj,1 has the same distribution as Ci,1 and Cj,2 has the same
distribution as Ci,2 respectively where j ∈ {1, 2}n and i is the element of
singleton {1}n, n = 0, 1, 2, . . . .

We note that Falconer [4] assumed that Cj,1 and Cj,2 have the same dis-
tribution as C1 and C2 respectively for all j.

From now on, we write Ci,1, Ci,2 as Ln, Rn respectively for each n =
0, 1, 2, . . . and i is the element of singleton {1}n. We assume that the Cj s are
independent random variables, except that for each j we do not require Cj,1
and Cj,2 to be independent.

If the above conditions are satisfied, the set F = ∩∞n=0En is called a per-
turbed type random Cantor set, where {En}∞n=1 ∈ Ω.

In this paper, we do not require the (Ln, Rn) to be identically distributed,
but we will impose a condition on these random variables to obtain some
results. Note that there is a unique solution sn ∈ [0,∞) of E(Lsnn +Rsnn ) = 1
for each n = 1, 2, . . . . It is not difficult to show if

∑∞
n=1 logE(Lsn + Rsn)

converges for some number s, then sn converges to s. We note that if {sn}∞n=1

converges to some number s, then E(Lsn +Rsn) converges to 1.
Now we attempt to find the Hausdorff dimension of the perturbed type ran-

dom Cantor set satisfying the condition that
∑∞
n=1 logE(Lsn +Rsn) converges

for some number s by studying the values of E(Lsn +Rsn).
We define a sequence of random variables Xn =

∑
I∈En |I|

s for each n =
1, 2, . . . . (Each En has 2n disjoint closed intervals Ij where j ∈ {1, 2}n. Thus
I ∈ En means that I is one of 2n such intervals.) Then {Xn}∞n=1 forms an
adapted sequence of random variables with respect to [Ω,F , P ; (Fn, n ∈ N)]
(cf. [6]).

Using the independence of the Cj s, we obtain the conditional expectation
of Xn with respect to Fm, E(Xn|Fm) =

∏n
k=m+1E(Lsk+Rsk)Xm for n ≥ m+1.

We recall that an adapted sequence {Xn}∞n=1 is a game fairer with time [2], if
given ε > 0, δ > 0, there exists M > 0 such that n > m ≥M ,

P (|E(Xn|Fm)−Xm| < δ) ≥ 1− ε.

Also we recall the s-dimensional Hausdorff outer measure Hs(F ) = limδ→0

Hsδ(F ), where Hsδ(F ) = inf{
∑∞
n=1 |Un|s|{Un} is a δ-cover of F} [4].
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2 The Hausdorff Dimension

Henceforth we write Xn =
∑
I∈En |I|

s for each n = 1, 2, . . . and {En}∞n=1 ∈ Ω.
We use the following lemma to find the Hausdorff dimension of the perturbed
type random Cantor set. The proof of the lemma is easy, so it is omitted.

Lemma 1. If
∑∞
n=1 logE(Lsn +Rsn) converges, then

(1)
∏∞
n=1E(Lsn +Rsn) converges in (0,∞),

(2)
∏m2

k=m1
E(Lsk + Rsk) have an upper bound U(< ∞) and a lower bound

L(> 0) for every m2 > m1, and

(3) supn>m |
∏n
k=m+1E(Lsk +Rsk)− 1| converges to 0 as m→∞.

Proposition 2. If
∑∞
n=1 logE(Lsn + Rsn) converges, then {Xn}∞n=1 is L2-

bounded. Hence {Xn}∞n=1 is uniformly integrable.

Proof. Fix n. Let vk be the variance of Lsk + Rsk, i.e. vk = E[(Lsk +
Rsk)2] − [E(Lsk + Rsk)]2 with v0 = 1, and αk = [E(Lsk + Rsk)]2 with αn+1 = 1,
βk = E(L2s

k +R2s
k ) with β0 = 1, β−1 = 1, where k = 1, 2, · · · , n. Then

E(X2
n|Fn−1) = E

( ∑
j,j′∈{1,2}n−1

(Csj,1 + Csj,2)(Csj′,1 + Csj′,2)|Ij |s|Ij′ |s | Fn−1
)

= E
( ∑
j∈{1,2}n−1

(Csj,1 + Csj,2)2|Ij |2s

+
∑
j 6=j′

j,j′∈{1,2}n−1

(Csj,1 + Csj,2)(Csj′,1 + Csj′,2)|Ij |s|Ij′ |s | Fn−1
)

=
∑

j∈{1,2}n−1

E[(Lsn +Rsn)2]|Ij |2s

+
∑
j 6=j′

j,j′∈{1,2}n−1

[E(Lsn +Rsn)]2|Ij |s|Ij′ |s

=
∑

j,j′∈{1,2}n−1

E[(Lsn +Rsn)]2|Ij |s|Ij′ |s + vn
∑

j∈{1,2}n−1

|Ij |2s

= αn
∑

j,j′∈{1,2}n−1

|Ij |s|Ij′ |s + vn
∑

j∈{1,2}n−1

|Ij |2s

= αnX
2
n−1 + vn

∑
j∈{1,2}n−1

|Ij |2s.
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Thus

E(X2
n|Fn−2) = αnE(X2

n−1|Fn−2) + vnE
( ∑
j∈{1,2}n−1

|Ij |2s|Fn−2
)

= αnE
( ∑
j,j′∈{1,2}n−2

(Csj,1 + Csj,2)(Csj′,1 + Csj′,2)|Ij |s|Ij′ |s | Fn−2
)

+ vnE(
∑

j∈{1,2}n−2

(C2s
j,1 + C2s

j,2)|Ij |2s|Fn−2)

= αn(αn−1X
2
n−2 + vn−1

∑
j∈{1,2}n−2

|Ij |2s)

+ vnE(L2s
n−1 +R2s

n−2)
∑

j∈{1,2}n−2

|Ij |2s

= αnαn−1X
2
n−2 + αnvn−1

∑
j∈{1,2}n−2

|Ij |2s

+ vnβn−1
∑

j∈{1,2}n−2

|Ij |2s.

From the above calculation, we easily obtain the following equality.

E(X2
n) = E(X2

n|F0) =

n−1∑
m=−1

(

n+1∏
i=m+2

αi)vm+1(

m∏
j=−1

βj)

(Note that αn+1 = 1 and β0 = β−1 = 1).

Since
∏∞
i=1[E(Lsi +Rsi )]

2 converges,
∏n+1
i=m+2 αi is bounded above by some

bound B(> 1) which is independent of the choice of m and n with n ≥ m+1(cf.
Lemma 1). Since

βj = E(L2s
j +R2s

j ) ≤ E(bs[Lsj +Rsj ]) = bsE(Lsj +Rsj),

we have
m∏

j=−1
βj ≤ (bs)m

m∏
j=1

E(Lsj +Rsj) ≤ (bs)mB
1
2 ,

where m ≥ 1. Now for m ≥ 1,

vm = E[(Lsm +Rsm)2]− [E(Lsm +Rsm)]2

≤ (2bs)2 − (2as)2 = 4(b2s − a2s).
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Hence

E(X2
n) ≤ B +

n−1∑
m=0

4(b2s − a2s)B 3
2 (bs)m

= B +
1− (bs)n

1− bs
4(b2s − a2s)B 3

2 .

Thus

sup
n
E(X2

n) ≤ B +
4(b2s − a2s)B 3

2

1− bs
.

(We note that the constants a, b are the numbers given in Introduction.)

Lemma 3. ([2]). If {Xn}∞n=1 is a uniformly integrable game fairer with time,
then {Xn} converges in L1.

From now on, we write

Xn(Ij) =
∑

I∈Ij∩En

|I|s for j ∈ {1, 2}k,

where an integer k ≥ 0 and n = k, k + 1, . . . .

Corollary 4. Assume that
∑∞
n=1 log E(Lsn +Rsn) converges. Then {Xn}∞n=1

is a uniformly integrable game fairer with time and hence converges in L1.
Further, the sequence of random variables {Xn(Ij)}∞n=k is also a uniformly
integrable game fairer with time for each j ∈ {1, 2}k and hence converges in
L1.

Proof. Fix an integer k ≥ 0 and j ∈ {1, 2}k. We note that X0(Iφ) = 1.
Now, [Xn(Ij)]

2 ≤ X2
n, so {Xn(Ij)}∞n=k is L2-bounded and hence, uniformly

integrable. Now, fix ε, δ > 0. Since {Xn(Ij)}∞n=k is uniformly integrable, we
can find α > 1 such that ∫

(Xm(Ij)>α)

Xm(Ij dP < ε

for all m ≥ k. Then P (Xm(Ij) > α) < ε/α < ε for all m ≥ k. By Lemma 1,
we can choose M ≥ k such that for all n > m > M ,

∣∣∣ n∏
i=m+1

E(Lsi +Rsi )− 1
∣∣∣ < δ/α.
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Hence in (Xm(Ij) ≤ α) for all n > m > M ,

|E(Xn(Ij)|Fm)−Xm(Ij)| =
∣∣∣ n∏
i=m+1

E(Lsi +Rsi )− 1)
∣∣∣Xm(Ij)

≤
∣∣∣ n∏
i=m+1

E(Lsi +Rsi )− 1)
∣∣∣α < δ.

Remark 5. Because
∑∞
n=1 logE(Lsn +Rsn) converges, {Xn(Ij)}∞n=k is a uni-

formly integrable game fairer with time whereas the condition of Falconer
that Ln = L and Rn = R for all n makes {Xn(Ij)}∞n=k a uniformly integrable
martingale.

Now we compute an upper bound for the Hausdorff dimension of a certain
perturbed type random Cantor set.

Theorem 6. Suppose that {Xn}∞n=1 is a uniformly integrable game fairer
with time and limn sn = s. Then the Hausdorff dimension of the perturbed
type random Cantor set F is equal to or less than s for almost all F (i.e., for
P-almost all {En}∞n=1 ∈ Ω).

Proof. By Lemma 3, {Xn} has an L1-limit X. Since E(X) <∞, X <∞ a.s.
on Ω. Since {Xn}∞n=1 converges to X in L1, there is a subsequence {Xnk}∞k=1

that converges to X a.s. In particular, there is a random variable M such that

Xnk =
∑
I∈Enk

|I|s ≤M <∞ for all k a.s..

ThenHsδ(F ) ≤
∑
I∈Enk

|I|s ≤M if nk ≥ − log δ/ log 2 a.s.. HenceHs(F ) ≤M
a.s..

Corollary 7. If
∑∞
n=1 logE(Lsn +Rsn) converges, then the Hausdorff dimen-

sion of the perturbed type random Cantor set F is equal to or less than s for
almost all F .

We will use the energy of some mass distribution([4]) µ on F to find a lower
bound for the Hausdorff dimension of the perturbed type random Cantor set
F . To attain the goal, we first generate a mass distribution µ on F by using
the L1-convergence of {Xn}∞n=1.

Lemma 8. Assume that
∑∞
n=1 logE(Lsn+Rsn) converges. If we define random

variables

µ(Ij) = Lim
n→∞

∑
I∈Ij∩En

|I|s, for j ∈ {1, 2}k and k = 0, 1, 2, . . . ,
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(Here, Lim denote the L1-limit) then µ extends to a mass distribution on the
perturbed type random Cantor set F for P-almost all F in Ω.

Proof. In fact, µ(Ij) = Limn→∞Xn(Ij) and its L1-limit exists by Corollary
4. Since

µ(Ij) = Lim
n→∞

Xn(Ij) = Lim
n→∞

(Xn(Ij,1) +Xn(Ij,2))

and

µ(Ij,1) = Lim
n→∞

Xn(Ij,1), µ(Ij,2) = Lim
n→∞

Xn(Ij,2),

we have

µ(Ij) = µ(Ij,1) + µ(Ij,2) a.s. on Ω.

Clearly µ([0, 1]) = Limn→∞Xn and

E( Lim
n→∞

Xn) = lim
n→∞

E(Xn) = lim
n→∞

E(Xn|F0)

= lim
n→∞

n∏
k=1

E(Lsk +Rsk) =

∞∏
n=1

E(Lsn +Rsn).

Thus µ([0, 1]) < ∞ a.s., and µ([0, 1]) > 0 with positive probability. Let
µ([0, 1]) = 0 with probability q < 1. Observing the construction of the per-
turbed type random Cantor set, we easily see that µ(Ij) = 0 with probability

q1/2
n

where j ∈ {1, 2}n and
µ(Ij)
|Ij |s = 0 with the same probability. Now we

show that q must be zero. For j ∈ {1, 2}n,

E
(µ(Ij)

|Ij |s
)

= E
(µ(Ij)

|Ij |s
|Fn
)

=
(

lim
k→∞

k∏
i=n+1

E(Lsi +Rsi )|Ij |s
)
/|Ij |s

=

∞∏
i=n+1

E(Lsi +Rsi ).

Using agruments similar to those in the proof of Proposition 2, we obtain for
fixed k ≥ n and j ∈ {1, 2}n,

E
[(Xk(Ij)

|Ij |s
)2]

=

k−1∑
m=n−1

( k+1∏
i=m+2

αi

)
vm+1

( m∏
l=n−1

βl

)
,
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where αi = [E(Lsi + Rsi )]
2 with αk+1 = 1, vn = 1, βl = E(L2s

l + R2s
l ) with

βn−1 = βn = 1. It is not difficult to show that

E[(
Xk(Ij)

|Ij |s
)2] ≤ B +

4(b2s − a2s)B 3
2

1− bs
for some B > 1.

By Fatou’s theorem, for all n and every j ∈ {1, 2}n,

E
[(µ(Ij)

|Ij |s
)2]
≤ limk→∞E

[
(
Xk(Ij)

|Ij |s
)2
]
≤ B +

4(b2s − a2s)B 3
2

1− bs

for some B > 1. This implies {µ(Ij)|Ij |s |j ∈ {1, 2}
n}∞n=1 is uniformly integrable.

Hence we find α > 0 such that
∫
(
µ(Ij)

|Ij |s
>α)

µ(Ij)
|Ij |s dP ≤

1
3 for all j ∈ {1, 2}n

and all n. Assume that 0 < q < 1. Then there is an integer N such that
(1− q1/2n)α ≤ 1

3 for all n ≥ N . Thus for all n ≥ N and every j ∈ {1, 2}n,

E
(µ(Ij)

|Ij |s
)

=

∫
(
µ(Ij)

|Ij |s
>α)

µ(Ij)

|Ij |s
dP +

∫
(0<

µ(Ij)

|Ij |s
≤α)

µ(Ij)

|Ij |s
dP

≤ 1

3
+

1

3
=

2

3
.

But noting that E
(µ(Ij)
|Ij |s

)
=
∏∞
i=n+1E(Lsi +Rsi ) for every j ∈ {1, 2}n and that

limn→∞
∏∞
i=n+1E(Lsi +Rsi ) = 1, we have a contradiction. Hence µ([0, 1]) = 0

with probability q = 0. By Proposition 1.7[4], µ is uniquely extendable to the
Borel sets in [0, 1] and the support of µ is contained in F = ∩∞n=0En ⊂ [0, 1],
for P -almost all F in Ω.

Lemma 9. For n ≥ k + 2 and 0 < t < s,

E(|Ij |−t
∑

I∈Ij,1∩En

∑
I′∈Ij,2∩En

|I|s|I ′|s|Fk+1)

=
[ n∏
i=k+2

E(Lsi +Rsi )
]2
|Ij |−t|Ij,1|s|Ij,2|s

for j ∈ {1, 2}k.
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Proof. Let j ∈ {1, 2}k.

E(|Ij |−t
∑

I∈Ij,1∩En

∑
I′∈Ij,2∩En

|I|s|I ′|s|Fn−1)

= E(|Ij |−t
∑

Ii∈Ij,1∩En−1

∑
Ii′∈Ij,2∩En−1

(Csi,1 + Csi,2)|Ii|s(Csi′,1

+ Csi′,2)|Ii′ |s|Fn−1)

= |Ij |−t
∑

Ii∈Ij,1∩En−1

∑
I′i∈Ij,2∩En−1

[E(Lsn +Rsn)]2|Ii|s|Ii′ |s.

By the independence of (Ci,1, Ci′,1), (Ci,1, Ci′,2) (Ci,2, Ci′,1) and (Ci,2, Ci′,2).

E(|Ij |−t
∑

I∈Ij,1∩En

∑
I′∈Ij,2∩En

|I|s|I ′|s|Fn−2)

= |Ij |−t[E(Lsn +Rsn)]2E
( ∑
Ii∈Ij,1∩En−2∑

Ii′∈Ij,2∩En−2

(Csi,1 + Csi,2)|Ii|s

(Csi′,1 + Csi′,2)|Ii′ |s|Fn−2
)

= |Ij |−t[E(Lsn +Rsn)]2[E(Lsn−1 +Rsn−1)]2∑
Ii∈Ij,1∩En−2

∑
Ii′∈Ij,2∩En−2

|Ii|s|Ii′ |s.

Continuing in this fashion, we obtain the conclusion.

Theorem 10. If
∑∞
n=1 logE(Lsn +Rsn) converges, then the Hausdorff dimen-

sion of the perturbed type random Cantor set F is equal to or greater than s
for almost all F .

Proof. Let x, y ∈ F . Let x ∧ y denote the interval in En contining x and y
with the greatest possible integer n. We note that the gap of Ij,1 and Ij,2 is
equal to or greater than d|Ij |, where d = 1− 2b. Let 0 < t < s, fix j ∈ {1, 2}k
and consider the mass distribution µ in Lemma 8. Then

E
(∫∫

x∧y=Ij
|x− y|−t dµ(x) dµ(y)

)
≤ 2d−tE(|Ij |−tµ(Ij,1)µ(Ij,2))
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= 2d−tE(|Ij |−t Lim
n→∞

Xn(Ij,1) Lim
n→∞

Xn(Ij,2))

Since Xn(Ij,1)
L1

−−→ µ(Ij,1) and Xn(Ij,2)
L1

−−→ µ(Ij,2), there exists {nk}∞k=1 such

that Xnk(Ij,1)
a.s−−→ µ(Ij,1) and there exists {nk`}∞`=1, a subsequence of {nk}∞k=1

such that Xnk`
(Ij,2)

a.s−−→ µ(Ij,2). Clearly Xnk`
(Ij,1)

a.s−−→ µ(Ij,1). Hence

E
(∫∫

x∧y=Ij
|x− y|−t dµ(x) dµ(y)

)
≤ 2d−tE(|Ij |−t lim

`→∞
Xnk`

(Ij,1) lim
`→∞

Xnk`
(Ij,2))

= 2d−tE(|Ij |−t lim
`→∞

∑
I∈Ij,1∩Enk`

|I|s lim
`→∞

∑
I′∈Ij,2∩Enk`

|I ′|s)

= 2d−tE(|Ij |−t lim
`→∞

∑
I∈Ij,1∩Enk`
I′∈Ij,2∩Enk`

|I|s|I ′|s)

≤ 2d−tlim`→∞E(|Ij |−t
∑

I∈Ij,1∩Enk`
I′∈Ij,2∩Enk`

|I|s|I ′|s) [Fatou’s Lemma]

= 2d−tlim`→∞

[ nk∏̀
i=k+2

E(Lsi +Rsi )
]2
E(|Ij |−t|Ij,1|s|Ij,2|s) [Lemma 9]

≤ 2d−tBE(|Ij |2s−t)

for some B <∞ [Lemma 1(2)]. We note that B is independent of k.

Now we choose ε > 0 such that bs−t < 1− 2ε
1+ε . Then there exists a large

number N such that E(Lsk + Rsk) < 1 + ε for all k ≥ N . Therefore for all
k ≥ N ,

E
(∑
I∈Ek

|I|2s−t) ≤ E(bs−t(Ls1 +Rs1)) · · ·E(bs−t(Lsk +Rsk)
)

=

N−1∏
i=1

bs−tE(Lsi +Rsi )

k∏
i=N

bs−tE(Lsi +Rsi )

≤
N−1∏
i=1

bs−tE(Lsi +Rsi )(1− ε)k−N .



Perturbed Type Random Cantor Set 233

Let
∏N−1
i=1 bs−tE(Lsi +Rsi ) = α. Then

∞∑
k=N

E
(∑
I∈Ek

|I|2s−t
)
≤
∞∑
k=N

α(1− ε)k−N = α/ε <∞.

Hence for k ≥ N ,

∞∑
k=N

E
(∑
I∈Ek

∫∫
x∧y=I

|x− y|−t dµ(x) dµ(y)
)

≤ 2d−tB

∞∑
k=N

E(
∑
I∈Ek

|I|2s−t)

≤ 2d−tBα/ε.

Now

E
(∫

F

∫
F

|x− y|−t dµ(x)dµ(y)
)

= E
( ∞∑
k=0

∑
j∈{1,2}k

∫∫
x∧y=Ij

|x− y|−t dµ(x) dµ(y)
)

= E
(N−1∑
k=0

∑
j∈{1,2}k

∫∫
x∧y=Ij

|x− y|−t dµ(x), dµ(y)
)

+ E
( ∞∑
k=N

∑
j∈{1,2}k

∫∫
x∧y=Ij

|x− y|−t dµ(x) dµ(y)
)

≤ 2d−tBE
(N−1∑
k=0

∑
j∈{1,2}k

|Ij |2s−t
)

+ 2d−tBε/α

≤ 2d−tB
(N−1∑
k=0

2kb2s−t +
ε

α

)
<∞.

We note that µ is a mass distribution on F for almost all F (cf. Lemma 8).
Thus the Hausdorff dimension of F = ∩∞n=0En is greater than or equal to t
for almost all F since the F has finite t-energy of µ (cf. Theorem 4.13 (a)[4]).

Corollary 11. If
∑∞
n=1 logE(Lsn+Rsn) converges, then the Hausdorff dimen-

sion of the perturbed type random Cantor set F is s for almost all F .
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Corollary 12. ([4]) If Ln = L and Rn = R for all n, then the Hausdorff
dimension of the perturbed type random Cantor set F is s for almost all F ,
where s is the solution of the expectation equation E(Ls +Rs) = 1.

Remark 13. We see that there is a close connection between the Hausdorff
dimension s of the perturbed type random Cantor set and the values of E(Lsn+
Rsn). We note that its Hausdorff dimension does not depend on the similarities
of the distribution functions (Ln, Rn), but on their expectation values E(Lsn+
Rsn). For there are many examples such that L2n−1 = L, L2n = L′, R2n−1 = R,
R2n = R′ with E(Lsn +Rsn) = 1 for each n for some number s and (L,R) and
(L′, R′) are not identically distributed.

In particular, if we consider a specific Ω consisting of only one member, the
perturbed type random Cantor set is in fact a perturbed Cantor set([1]). Then
we see that the Hausdorff dimension of the perturbed type random Cantor set
(in fact, a perturbed Cantor set) is s, where logE(Lsn +Rsn) converges to 0 as
n increases to ∞ without the condition that

∑∞
n=1 logE(Lsn +Rsn) converges

(Corollary 8 [1]).
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