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CONVERGENCE AND APPROXIMATE
DIFFERENTIATION

Abstract

The main result of this paper is Theorem 1, which states the fol-
lowing: Let F,F, : [a,b] = R, n = 1,2,... be Lebesgue measurable
functions such that {F, }» converges pointwise to F on [a, b]. If each F),
is approximately derivable a.e. on [a,b], {F,}, is uniformly absolutely
continuous on a set P C [a,b], and {(Fn);p}n converges in measure to
a measurable function g, finite a.e. on [a,d], then F' is approximately
derivable a.e. on P and F;p(a:) = g(x) a.e. on P. An immediate con-
sequence of this result is the famous theorem of Dzvargeisvili on the
passage to the limit for the Denjoy and Denjoy™ integrals (see Theorem
47, p. 40 of [3]). As was pointed out by Bullen in [3] (p. 309), “the D*
integral case of Theorem 47 of [3] was rediscovered by Lee P. Y.” (see
also Theorem 7.6 of [7]).

1 Preliminaries

We shall denote the Lebesgue measure of the set A by m(A), whenever A C
R is Lebesgue measurable. If f : [a,0] — R and [a,f] C [a,b], then let
O(F; e, B] = sup{|F(y) — F(x)| : =,y € [a,f]}. Let C denote the class
of all continuous functions and C,;, the class of all approximately continuous
functions. A function f : P — R is said to satisfy Lusin’s condition (NV), if
m(F(Z)) =0, whenever m(Z) = 0. For the definitions of AC, AC*, VB and
V B* see [11].

Definition 1. ([11], p. 221). Let F : P — R, and @ € P. We denote by
V(F'; Q) the upper bound of the numbers ), [F(b;) — F(a;)|, where {[a;, b;]}s
is any sequence of nonoverlapping closed intervals with endpoints in Q. (We
may suppose without loss of generality that {[a;, b;]}; is a finite set.)
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Definition 2. Let E C [a,b]. A function F : [a,b] — R is said to be ACG
(respectively AC*G, VBG, VB*G, CG) on E if there exists a sequence of sets
{E,} with E = U, E,,, such that F is AC (respectively AC*, VB, VB*, C) on
each FE,. If in addition the sets F,, are supposed to be closed we obtain the
classes [ACG], [AC*G], [VBG], [VB*G], [CG]. Note that ACG and AC*G
used here differ from those of [11] (because in our definitions the continuity is
not assumed).

2 Main Theorem

Lemma 1. Let P be a subset of [a,b] and F : P = R an AC function. Then
there exists a function G : P = R, G € AC such that G|\p = F. Moreover, if
for € >0, 6c > 0 is given by the fact that F' € AC on P, then J< satisfies the
definition of G being AC on P for €. As a consequence, if F is measurable,
then F is approximately derivable a.e. on P.

PRrROOF. Let z, € P. For € > 0 let . > 0 be given by the fact that F € AC
on P. Then |F(x) — F(y)| < € whenever z,y € (z, — 0¢/2, 2, + 6./2) N P. By
the Cauchy criterion, the following limits exist and are finite:
lim  F(z), lim F(x), lim  F(z),
z ' xo,xEP TN\(Zo,xEP =T, xEP
whenever x, is a left, right or bilateral accumulation point of P respectively.

If z, € P any of the three limits equals F'(z,), provided they exist.
Let G : P — R be defined by

F(x) if = is an isolated point of P
Glz) = lim, »p, F'(z) if = is a right accumulation point of P
(LL') - reP
limg », F'(z) if z is a left accumulation point of P.
zeP
Let {[ai,bi]}, i = 1,2,...,n be a finite set of closed intervals with endpoints

in P,a; <by <ap <by<--- <ay < by, such that >0 (b —a;) < de. Let
Ay ={i : i=o0dd,i <n} and Ay = {i : i = even,i < n}. Then there exists
a finite set {[z;,y:]}ica, of nonoverlapping closed intervals with endpoints in
P such that

‘ F G(b ‘
e P - G0l <

Z(yzfx1)<5§

€Ay

|F'(2;) — G(a;)| <

and
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It follows that

D 1Gb) — Glan)l < ) 1G(ai) — Flai)| +

€A i€ AL

+ 3 F(@) ~ Fly)| + S |F() — Gl < 5 + =+ = = <.

€A i€ AL

Similarly it follows that

D 1G(bi) — Glai)| < €/2.

i€ A,

Therefore Y . | |G(b;) — G(a;)| < e. The last assertion follows from Theorem
4.2 of [11], p. 222 and by the fact that an AC function on a set is V' B on that
set. O

Definition 3. (/3/, p. 38). Let P be areal set and F,,: P >R, n=1,2,....

e The sequence {F,}, is said to be UAC on P if it has the following
property: for every € > 0 there is a dc > 0 such that > ;" |F,(Bk) —
Fo(ag)| < efor all n =1,2,..., whenever {[ax, Bk}, K =1,2,...,m is
a finite set of nonoverlapping closed intervals with endpoints in P and

Z;l(ﬁk - Oék) < 66'

e The sequence {F}, }, is said to be UACG on P, if P = UP,, and {F,,}, is
UAC on each Pj. If in addition each Py is supposed to be closed, then
{F,}n is said to be [UACG] on P.

Remark 1. If P is a closed set, then [UACG] is in fact Dzvarseisvili’s con-
dition “UACG” of [3], p. 38 (this follows using the technique of the proof of
Theorem 9.1 of [11], p. 233). This fact, for P = [a,b], was pointed out by
Bullen (see [3], p. 308).

Corollary 1. Let P be a subset of [a,b] and let F,, : P >R, n=1,2,.... If
{Fy}n is UAC on P, then there exist Gp, : P =R, n=1,2,..., (Gyn)/p = Iy,
such that {Gy}n, is UAC on P. Moreover, if for e >0, 6. > 0 is given by the
fact that {F,,},, is UAC on P, then 0.3 satisfies the definition of {Gp}n being
UAC on P fore.

Lemma 2. Let P be a closed subset of [a,b], a,b € P and let F : [a,b] = R
be a function which is linear on the closure of each interval contiguous to P.
Then V(F;[a,b]) = V(F; P).
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PRrROOF. Clearly V(F; P) < V(F}|a,b]). Therefore we only need to show that
V(F;la,b]) < V(F;P). Let

Ata=a,<a1<...<ap=2>

be a division of [a,b]. Let A; := A U {the endpoints of those intervals con-
tiguous to P which contain points of A}. Suppose that

Alia=a, <o <...<a,=hb.
Let Ay = Ay N P. Suppose that

Agta=p01<...<pfp=0b.

Then
Z |F'(a;) — F(a;i-1)| < Z |[F(ci) = Flai-1)| = Z |F(Bi) — F(Bi—1)]-

(The equality follows by the fact that F is linear on the closure of each interval
contiguous to P.) Therefore V(F;[a,b]) < V(F; P). O

Lemma 3. Let P be a subset of [a,b] and let F: P - R, F € AC. Fore>0
let ¢ > 0 be given by the fact that ' € AC on P. Then there exists a function
F:la,b] - R, F € AC such that F/p = F and

(c)/A|F’(t)|dt<e

whenever A is a measurable subset of P with m(A) < 6 6.

Proor. For ¢ > 0 let 6 > 0 be given by the fact that F' € AC on P.
Let ¢, = inf(P), d, = sup(P), and let (ck,dr), k = 1,2,... be the intervals
contiguous to P. By Lemma 1 there exists G : P — R such that G € AC on
P, G/p = F and for €, the number d¢ is the § given by the fact that G € AC

on P. Let F : [a,b] — R be defined by

G(co) if x € [a, c,)
_ if v € P
Fo) = G(a:) if v €
linearly on each [cg, di]

G(dy))  ifz € [do,b].

Then F € AC on [a,b]. (See for example Theorem 2.11.1 (xviii) of [4].)
Let A be a measurable subset of P with m(A) < d./6. Then there exists a
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sequence {(a;, ;) }i such that (a;, ;) N A # () for each i, A C U2, (v, f;) and
>re1(Bi — i) < dcs6. Let a; = inf(ay, B;) NP and b; = sup(as, 5;) N P. Then
a;,b; € P and

-~ e bi ~
@) [ 1F @< @) / NLCTE

(1)
= Z V(F;[as, b)) = Z V(G;[as, bi] N P).

(The first equality follows by Theorem 8 of [8], p. 259, and the second equality
follows by Lemma 2.)
For each ¢ there exists a division

Ai:ai:ai,o <a@iq... <@y :bi,
with each point in P such that

Ji
— €
V(G;lai bl N P) < oy + > 1G(aik) — Glaik-1)l- (2)
k=1

By (1) and (2), it follows that
~ > S € €
<> :[ai, b; — 4 - =e.
(E)/A |F" (t)|dt < 2 V(G;lai, b N P) < g tg=¢

O

Corollary 2. (An extension of Lemma 2 of [3], p. 38). Let P C [a,b] and let
{Fyu}n be a UAC sequence on P. For e >0 let 6. > 0 be given by the latter
fact. Then there exist F, : [a,b] — R such that I, € AC, (F,),p = F,, and

(c) /A FL(t)]dt < e,

forallm =1,2,..., whenever A is a measurable subset of P with m(A) < e/
PrOOF. Apply Lemma 3 to each F,. O

Corollary 3. Let {F,}, be an UAC sequence on [a,b], and let z, € [a,b] such
that limy, o0 Frn(2,) = ¢ € R. Let g : [a,b] — R be finite a.e. such that {F,},
converges to g in measure. Then g is Lebesque integrable on [a,b]. Moreover,
if G(x) =L+ (L) [T g(t)dt, then {F,}, converges uniformly to G on [a,b] and
G (z) = g(z) a.e. on [a,b].
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PRroOOF. By Corollary 2, the summable functions F,/L7 n =1,2,... have equi-
absolutely continuous integrals. (The functions of a family M of summable
functions defined on a set F, are said to have equi-absolutely continuoub in-
tegrals, if for every € > 0, there exists a § > 0 such that ‘fQ x)dz| < e,

(V) f € M, whenever @ is a measurable subset of E with m(Q) < §; [8],
p. 151.) By Vitali’s theorem ([8], p. 152), g is Lebesgue integrable on [a, ],
and by the proof of the same theorem it follows that

lim ( / \F (t)|dt =0.
n~>oo
For € > 0 there exists a positive integer n. such that
€
/ Folt) — g(0)ldt < 5 and [F(o) — €] <
whenever n > n.. Suppose that z > x,. Then

[Fn(z) — G(2)| =

Fo(z,) + (LI)/

Zo

< [Fu(wo) — € + (L) /w |F(t) — g(t)|dt < % + % -

whenever n > n.. Similarly, if x < z,, then we obtain |F,(z) — G(z)| < e,
whenever n > n.. Therefore {F,}, converges uniformly to G on [a, b].
That G (z) = g(z) a.e. on [a,b] is obvious. O

Definition 4. ([3], p. 38). Let P C [a,b] and F,, : [a,0] = R, n=1,2,....

e The sequence {F,}, is said to be UAC* on P if it has the following
property: for every e > 0 there exists a §. > 0 such that

ZO ny akaﬂk) €, ’Il:].,Q,...,

k=1

whenever {[ax, Sk}, & = 1,2,...,m is a set of nonoverlapping closed
intervals with endpoints in P and >"}" (Bk — o) < Oe.

e The sequence {F),},, is said to be UAC*G on P, if P = UP; and {F,},
is UAC™* on each Pg. If in addition each Py is supposed to be closed,
then {F,}, is said to be [UAC*G] on P.
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Remark 2. If P is a closed set, then [UAC*@] is in fact Dzvarseisvili’s con-
dition “UACG*” of [3], p. 38. (This follows using the technique of the proof
of Theorem 9.1 of [11], p. 233.) If P = [a,b] and each F, is supposed to
be continuous on [a,b], then [UAC*G] on [a,b] is identical with P. Y. Lee’s
Definition 7.4, (ii) of [7], p. 39.

Lemma 4. Let P C [a,b] and F, F,, : [a,b] > R, n=1,2,....

(i) If {F.}, is UAC on P and converges pointwise to F' on P, then F € AC
on P.

(i) If {Fp}n is UAC* on P and converges pointwise to F on [a,b], then
F e AC* on P.

PROOF. (i) For € > 0let §. > 0 be given by the fact that {F),}, is UAC on P.
Let {[a;,b;]}, i = 1,2,...,m be a set of nonoverlapping closed intervals with
endpoints in P such that Y, (b; — a;) < dcj2. Then for each n =1,2,... we
have

> IFab) — Fula) < 5.

Passing to the limit, we obtain that

Hence F € AC on P.

(ii) For € > 0 let 0. > 0 be given by the fact that {F,}, is UAC* on P.
Let {[a;,b;]}, i = 1,2,...,m, be a set of nonoverlapping closed intervals with
endpoints in P, such that 1", (b; — a;) < d./3. Then for each n =1,2,...

m

3" O(Fy; [ai b)) < %

i=1

Since {F),}, converges pointwise to F on [a,b], it follows that for each i =
1,2,...,m we have O(F;a;,b;]) < € < +00. Thus, for each i = 1,2,...,m,
there exists [a;, 8;] C [as, b;] such that

O(Fsfai, bi]) < |F(8;) = Flew)] + 5

Let n be a positive integer such that
€

|F(ci) — Flag)| < 6im and By (8) ~ F(B)| < o~ i=12...,m.
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(This is possible because {F}, }, converges pointwise to F on [a,b].) Then

m

- O(Fslaibil) < 5+ DS IF(5) = Flon)| < 3 + 3T IF(8) ~ Fu(8)

i=1

U o € € € €
+ D Fa(Bi) = Fulai)| + Y [Fulew) — Flas)| < ststztg=¢
=1 =1

Hence F' € AC* on P. O

Lemma 5. Let P be a closed subset of [a,b], a,b € P, and let F, F,, : [a,b] —
R, n=1,2,..., be such that F' and each F, are linear on the closure of each
interval contiguous to P. If {F,}, is UAC on P and converges pointwise to
F on P, then {F,},, is UAC on [a,b] and F € AC on [a,b]. Consequently F'
and F,, are derivable a.e. on [a,b]. Moreover, if {F;}n converges in measure
to an a.e. finite function g on P, then F'(z) = g(z) a.e. on P.

PRrOOF. We consider for example the case when the set of all intervals contigu-
ous to P is infinite. Let {(ck,dk)}, k = 1,2,... be the intervals contiguous to
P. Since {F,,},, converges pointwise to F' on P, it follows that {F}, },, converges
pointwise to F on [a,b]. For € > 0 let 6. > 0 be given by the fact that {F),},
is UAC on P. Let k. be a positive integer such that Ziiprke (dg — cr) < 6.
Since {F,}, converges pointwise to F' on P, there exists a positive integer n.
such that

[F(di) — Fa(cr)| <14 |F'(dy) — F(ex)
di, — cx, di — cx

foreach k =1,2,... ke, (3)
whenever n > 1 + n.. Let

M, =1+ max
n=1,...,n¢

k=1,....ke

(4)

{IFn(dk) — Fuler)l [F(di) = F(Ck)l} ’

di, — cp ’ di, — ci

. €

ne—mln{Me,(Se} . (5)
Let {[a;, 8i]}, i =1,2,...,m be a finite set of nonoverlapping closed subinter-
vals of [a,b] with 37" (8; — i) < . If (o, Bi) NP # 0, let o = inf((ay, B;) N
P) and ; = sup((as, 8;) N P). Then [a;, 8;] = [ov, o;]U[es, B:]U[B;, Bi]. There-
fore U™, [cy, f;] can also be written as the union of a finite set {[a;,b;]},
i=1,2,...,p, p<3m, of nonoverlapping nondegenerate closed intervals such
that either [a;,b;] C [ck, di] for some k, or both a; and b; belong to P. Let
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Ar={j : a;,b; € P};
Az ={j : [az,b;] C U2,y ek, di]} s

Az ={j : la;,b] C UZ"zl[Ck,dk]}
By (5) we have

Z |F (b Fo(a;)| <€, foreachn. (6)
jeAL

Because F, is linear on each [c, dg] it follows that

o

D IEaby) = Fala)l < Y [Faldi) = Faler)| <e. (7)

JEA k=1+k.

Let i € A3 and k < k. such that [a;, b;] C [k, di].
If n > 1+ ne, then by (3) and (4) it follows that

Fulby) = Falap)] _ 1Fald) = Fale)] _, , [F(d) = Flen)] _
bjfaj dk—ck dkfck
If n < ne, then by (4) it follows that
Fulby) = Falap) _ |Falde) = Fulen)] _
bj —aj di — ¢k,
By (5), for each n we have
€
D 1Fu(by) = Fulay)] < M. - Z(bj—aj)<M£-M =ec. (8)
JEA; JEAs €
By (6), (7) and (8) it follows that
m p
> IEL(8:) - Z Fla)| < 3e,
i=1 j=1

for each n. Therefore {F,}, is UAC on [a,b]. That F' € AC on [a, b] follows
by Lemma 4, (i). Clearly F' and F;, are derivable a.e. on [a, b].
We prove the second part. Let x € (¢, di) for some k. Then

/ _ 71(dk) (Ck) . F(dk) - F(Ck)

F = if .
(z) pA— A if n = oo

n
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Let
g(x) ifxeP
go(z) = % if © € (ck,dg) for each k

0 if x € [a, co] U [do, D]

Since { F,/L}n converges in measure to g on P, it follows that it also converges in
measure to g, on [a,b]. By Corollary 3, g, is Lebesgue integrable on [a, b] and
{F,}n converges uniformly to G on [a,b], where G(z) = F(a)+ (L) [ go(t)dt.
Since {F,}, converges to F on [a,b] it follows that F = G on [a,b]. Hence

’

F'(z) = G (z) = go(x) a.e. on [a,b]. Therefore F'(x) = g(x) a.e. on P. O

Remark 3. In Lemma 5, the condition “{F,}, converges pointwise to F' :
P — Ron P” is essential. Indeed, let P = [0,1/3]U[2/3,1] and let F}, : P — R,

Fo(z) = {n if z €[2/3,1]

For € > 0 and d, < 1/3 we see easily that {F,}, is UAC on P, but {F,}, is
not UAC on [0, 1].

Corollary 4. Let P be a closed subset of [a,b]. Let F,F, : [a,b] - R, n =
1,2,....

(I) Suppose that {F,}n is UAC on P and converges pointwise to F' on P.
We have:

(i) F € AC on P. Consequently F' and F,, are approzimately deriv-
able a.e. on P;
(i) If {(Fn);p}n converges in measure to an almost everywhere finite

function g on P, then Ft;p(x) = g(x) a.e. on P.

(II) Suppose that {F,}, is UAC* on P and converges pointwise to F on
[a,b]. We have:

(i) F € AC* on P. Consequently F and F,, are derivable a.e. on P.

(ii) If{F.}, converges in measure to an almost everywhere finite func-
tion g on P, then F (x) = g(x) a.e. on P.

PRrROOF. (I) (i) This follows by Lemma 4, (i).
(i) We may suppose without loss of generality that a,b € P and that the
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set of all intervals contiguous to P is infinite. Let {(cx,dx)}# be the intervals
contiguous to P. Let F, F), : [a,b] = R be defined by

Fla) = F(a:) iftreP and iy () = Fn(x) ifxeP
linear on each [ck, dj] linear on each [cy, dj]

Clearly F,, converges pointwise to F on [a,b]. By Lemma 5 it follows that
{Fu}n is UAC on [a,b] and F' € AC on [a,b]. Clearly F),(z) = (F},),,(r) and

/

Fl(z) = F,,(x) a.e. on P. By hypothesis {F}, converges in measure to an

almost everywhere finite function g on P, so, by Lemma 5, F’ (2) = g(z) a.e.
on P. Hence F,,(z) = g(z) a.e. on P.
(IT) (i) follows by Lemma 4, (ii); (ii) follows by (II) (i) and (I) (ii). O

Remark 4. The condition “{F, }, is UAC on P” in Corollary 4, (I) is essential
(see Example 2). The condition “{F,}, is UAC* on P” in Corollary 4, (II) is
essential. It cannot be replaced by “{f,}n is UAC on P” (see Example 1).

Theorem 1. Let P C [a,b] and let F,F, : [a,b] = R, n = 1,2,..., be
measurable functions such that {F,}, converges pointwise to F on [a,b].

(i) Suppose that F,, is approximately derivable a.e. on [a,b], {Fp}n is UACG
on P, and {(Fn);p}n converges in measure to a measurable function g,
finite a.e. on [a,b]. Then F is approzimately derivable a.e. on P and

F/p(:c) = g(z) a.e. on P.

a,

(ii) Suppose that F, is derivable a.e. on [a,b], {F,}, is UAC*G on P, and
{F,,}n converges in measure to a measurable function g, finite a.e. on
[a,b]. Then F is derivable a.e. on P and F (x) = g(x) a.e. on P.

PROOF. (i) We may suppose without loss of generality that {F,}, is UAC
on P. By Corollary 1 there exists G,, : P — R such that {G,},, is UAC on P
and (G,),p = F, for each n. Let P, = {x € P : F,(z) = Gyn(z)}. Then each
P, is a Lebesgue measurable set which contains P. Let Q@ = N2 ; P,. Then Q
is a Lebesgue measurable subset of [a,b] which contains P. It follows that Q
can be written as the union of an ascending sequence of closed sets {Q;}; and
anull set Z. For each i, {F,},, is UAC on Q;. By hypothesis and Corollary 4,
(I), it follows that F' is approximately derivable a.e. on @; and F(;p(x) =g(x)
a.e. on Q;, for each i. Hence F;p(m) = g(x) a.e. on P.

(ii) We may suppose without loss of generality that {F),}, is UAC* on P.
By Lemma 4, (ii) it follows that F' € AC* on P. Therefore F is derivable a.e.
on P. Now the proof follows by (i). O
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Remark 5. The condition “{F,}, is UACG on P” in Theorem 1, (i) is
essential (see Example 2). The condition “{F,}, is UAC*G on P” in Theorem
1, (ii) is also essential. It cannot be replaced by “{F,}, is UAC on P” (see
Example 1).

Remark 6. In Corollary 3, Lemma 5, Corollary 4 and Theorem 1 the con-
dition “converges in measure” may be replaced by “converges a.e.” (see for
example Lebesgue’s theorem of [8], p. 95).

3 Applications of the Main Theorem to Some Integrals,
More General Than D and D*

Definition 5. Let M([a,b]) = {F : [a,b] — R : F is a Lebesgue measurable
function on [a,b]}. Let Ly, Lo, Ly and L4 be linear subspaces of M(]a,b])
with the following properties:

1) If F € ACGN Ly on [a,b] and Fl;p =0 a.e. on [a,b], then F' is a constant
function on [a, b].

2) If F € [ACG]N Ly on [a,b] and F;p =0 a.e. on [a,b], then F' is a constant
function on [a, b].

3) If F € AC*GN Ly on [a,b] and F' = 0 a.e. on [a,b], then F is a constant
function on [a, b].

4) If F € [AC*G] N Ly on [a,b] and F' =0 a.e. on [a,b], then F is a constant
function on [a, b].

Remark 7. Clearly there are more subspaces of type Lo than of type Lp, and
there are more subspaces of type L4 than of type Ls.

Definition 6. Let f: [a,b] — R

e fissaid to be LD (respectively [LoD]) integrable on [a, b], if there exists
F : [a,b] — R such that F € ACG N L; (respectively F' € [ACG] N Lo)
on [a, b], and F(;p(:n) = f(z) a.e. on [a,b].

e f is said to be L3D* (respectively [L4D*]) integrable on [a,b], if there
exists F' : [a,b] — R such that F € AC*G N L3 (respectively F €
[AC*G] N Ly) on [a,b], and F' (z) = f(z) a.e. on [a,b].

We shall say that the function F is an indefinite L1 D (respectively [LoD],
L3D*, [LyD*]) integral of f(x). Its increment F'(b) — F'(a) is called the definite
LD (respectively [LoD], L3D*, [L4D*]) integral of f(x), and we denote it by
LD [? f(t)dt (respectively [LoD)] [ f(t)dt, LyD* [* f(t)dt, [LaD*] [} f(t)dt).
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Remark 8.

o If Ll = Lg = L3 = L4 = C, then CD = [CD] =D (the wide Denjoy
integral), and CD* = [CD*] = D* (the Denjoy* integral).

o If L = Ly = Ly = Ly = Cqp, then [C,pD] is the S-Ridder integral
(see Definition 7 of [9], p. 148), which is also called the AD-integral of
Kubota (see [5], p. 715).

e We have
AC*"GNCyp CVB*GNCapN(N)=[VB*GINCyup N[CG]N(N) =
= [VB*GIN[ACG]NCyp C [AC*G]NCqyp on [a,b].

For the first equality see Theorem 2.10.3, (vi) of [4] and use the fact that
a Cqyp function is a Darboux function on an interval. The second equality
follows by the Banach-Zarecki Theorem ([11], p. 227). The last inclusion
follows by Theorem 2.12.1, (ii) of [4]. Therefore

AC*G N Cap = [AC*G) N Cap ,

S0
CapD* = [CepD*] = o — Ridder integral

(for the a-Ridder integral see Definition 2 of [9], p. 138).
e The LDG integrals, introduced by C. M. Lee [6] are [LoD]-type integrals.
o (Question) Does the C,,D integral strictly extend the [C,,D] integral?
Theorem 2. Let {fn}n C L1D (respectively [LaD]) on [a,b] such that

lim f, = f, ae. on |[a,b].
n— oo

For each positive integer n, let F,, be the indefinite LD (respectively [L2D])
integral of f,. Suppose that {F,}, converges pointwise to F on [a,b], F € Ly
(respectively Ls). If {F,}n € UACG (respectively [UACG]) on [a,b], then
f € LD (respectively [L2D]) on [a,b] and
b b
lim LD [ fu(t)dt = LD / f(t)dt
a

n—oo a

(respectively

n—roo

b b
lim [L,D] / Fu(#)dt = [LoD] / f(t)dt).
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PROOF. See Lemma 4, (i) and Theorem 1, (i). O

Theorem 3. Let {f,}n C L3D* (respectively [L4D*]) on [a,b] such that
lim f, = f, ae. on |[a,b].
n—oo

For each n, let F,, be the indefinite LoD* (respectively [L4D*]) integral of f,.
Suppose that {F,}, converges pointwise to F on [a,b], F € L3 (respectively
Ly). If {F,}» € UAC*G (respectively [UAC*G]) on [a,b], then f € L3D*
(respectively [LyD*]) on [a,b] and

b b
lim LsD* / Fo(t)dt = LyD* / F(t)dt

n—roo

(respectively
b b
lim [LyD"] / Fu(t)dt = [L4D"] / F(t)dt ) .
PROOF. See Lemma 4, (ii) and Theorem 1, (ii). O

Remark 9. Suppose that Ly, Lo, Ls and Ly are closed under uniform conver-
gence. Then the condition “{F,},, converges pointwise to F on [a,b], F € L;
(respectively Ls)” in Theorem 2 may be replaced with the condition “{F,},
converges uniformly to F on [a,b]”. Similarly the condition “{F},},, converges
pointwise to F on [a,b], F € L3 (respectively L4)” in Theorem 3 may be
replaced with the condition “{F,}, converges uniformly to F on [a,b]”.

Note that Theorem 2 contains Theorem 47, a) of [3] and Theorem 3 con-
tains Theorem 47, b) of [3] (in fact Theorem 47, b) is identical with L. P. Yee’s
Theorem 7.6 of [7]). Theorem 3 also contains L. P. Yee’s Corollary 7.7 of [7].

4 Sequences of Approximately Derivable Functions on
an Interval

We recall the following classical theorems.

Theorem A. ([10], p. 140). Let {fn}n be a sequence of differentiable func-
tions on [a,b], such that {fn(z,)}n converges for some point x, on [a,b]. If
{f;}n converges uniformly on [a,b] to g,, then {fn}n converges uniformly on
[a,b] to a function f, and f (z) = g(z) on [a, b].
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Remark 10. If in Theorem A, the condition “{f,}, converges uniformly on
[a,b] to ¢” is replaced by “{f, }, converges pointwise on [a,b] to g7, then, even
if {f,}n converges uniformly to f on [a,b], it may happen that f (2) does not
exist (finite or infinite) on a perfect set of positive measure as close as we want
to b—a. It follows that f () # g(z) on a set of positive measure (see Example

1).

Theorem B. (/2], p. 44). Let {fn}n be a sequence of approximately differ-
entiable functions on [a,b], such that {fn(x,)}n converges for some point x,
on [a,b]. If {(fn)ap}n converges uniformly on la,b] to g, then { fr}n converges

uniformly on [a,b] to a function f, and f;p(ac) = g(z) on [a,b].

PrOOF. We follow the proof of [2], p. 44. Since

(fa)ap — g [unif] on [a,b].

it follows that there exists a positive integer n, such that

|(fa)up(@) = (fa)ap(@)| <1, (V)0 >mny.

By Tolstoft’s Theorem ([1], p. 175) it follows that f, — fn, is a Lipschitz
function, and by the Khintchine-Misik Theorem ([12], p. 139 or [1], Theorem
2.4, p. 155) we have

(Fa)up(@) = (fnn)ap(@) = (fa = fur) (&) on [a,b], ()0 >n.
Hence , )
(.f’ﬂ_fnl) — g_(fnl)ap [U?’Llf] on [a’>b]'
By Theorem A

fo—fn, — [ = fn, [unif] on [a,b] for some f
and ) )
(f = far) (&) = g(@) = (far)ap(®) on [a,b].
Therefore
(F)ap(®@) = (Fan)ap(@) + (f = ) () = g(x) on [a,b].
O

Remark 11. If in Theorem A the condition “{f;}n converges uniformly on
[a,b] to g” is replaced by “{f, }. converges pointwise on [a,b] to g”, then, even
if {f.}n converges uniformly to f on [a,b], it may happen that f exists and
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is continuous on [a, b], but f/ # g on a perfect set of positive measure as close
as we want to b — a (see Example 2). /

If in Theorem B the condition “{(fy),}n converges uniformly on [a,b] to
g” is replaced by “{( fn);p}n converges pointwise on [a, b] to ¢g”, then, even if
{fn}n converges uniformly to f on [a, b], it may happen that f(;p exists and is

continuous on [a, b], but f(;p = g on a perfect set of positive measure as close
as we want to b — a (see Example 2).

5 Examples

Example 1. First we construct a Cantor type perfect set, contained in [0, 1].
Let 8 € (0,1] and let {8,}, be a sequence of positive numbers such that
Sooo 2" 1B, = B. We extract from [0,1] the open interval Gy = (ay,by),
centered in 1/2 with length 3;.
Let
P, =[0,1]\ Gy .

Clearly P; consists of two disjoint closed intervals, each of length

1-p
5

From each of the two intervals of P; we extract from the left to the right the
centered open intervals (ag,b2) and (as, bs), with length S5. Let

Gy =G U (ag,bg) U (ag,bg) and P, = [O, 1] \GQ .
Clearly P, consists of 22 nonoverlapping closed intervals, each of length

1— (81 +252)
52

Suppose we have already defined the sets G,,_1 and P,,_1, n > 2. Then P, _;
consists of 2”1 nonoverlapping closed intervals, each of length

1—(B1+28+-4+2"18,_1)
2n—1

From each interval of P,_; we extract from the left to the right the centered
open intervals

(agn-1,ban-1), (agn-141,ban-141), ..., (@2n—1,b2n 1)
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with length (,. Let
Gp =Gy U (Ufi;nl,l(ai, bi)) and P, = [0,1]\ Gy

Then P, consists of 2" nonoverlapping closed intervals, each of length

1—=(B1+262+---+2"6y)
2n '

Let
G=U;2,G, and P=nN_,PF,.

Then m(G) = g and m(P) =1—§.
Let f:[0,1] — R,
0 ifxeP
f@) = ﬁ (1+COS ((bijﬁai)(x_ai) —7T)) if x € (a4, b;),
i=2n"l o=l .. 2n—1
n=12...

flz) ifzxeG,

Let f, :[0,1] = R (for f5 see Figure 1), f,(x) = {0 ifrep,.

4

Figure 1: The graph of f3 in Example 1
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Then we have

, {0 ifexe P, hence {fn}n € C*([0,1]);

L Jalw) = f/(a:) fzxeG,,n=12,....
2) fo — [ lunif] on [0,1];

3) Let g: [0,1] = R, g(z) = {;'(w) zig

Then f,(x) = g(x), (V)= € [0, 1].
4) f'(x) does not exist (finite or infinite) if # € P, but f;p =g a.e. on [0, 1].

5) {fnu}n is UAC on P, but {f,}n is not UAC* (and neither UAC*G) on P
(see Corollary 4, (IT) and Theorem 1, (ii)).

Example 2. We consider all the notations of Example 1. Let {a,} be a
strictly increasing sequence of positive numbers, converging to 1. From each
(ai,b;), i =1,2,...,2" — 1, we extract the centered closed interval [¢}", d}] of
length v, (b; — a;). Let

K, =U2 e dy).

1"

Then m(K,) = a,-m(Gy) and G = U2 K,,. Let f,, 1 [0,1] > R, n=1,2,....
First we define f, on P, U K,, by

fn(z) = {a m(Py) s € o, ]

T — Sy ifx € Ky,

where [o, 0] is any of the 2" closed intervals of P,. Clearly f, is increasing
on P, UK,. On each [a;,c}],i=1,2,...,2" — 1, we define f, such that f, is
strictly increasing, f, has a continuous derivative on [a;, ], f, (a;) = 0 and
fo(c)y =1. On each [d?,b;], i =1,2,...,2" — 1, we define f, such that f, is
strictly increasing, f, has a continuous derivative on [d?, b;], f (d?) = 1 and
fi(bi) =0 (for f3 and f see Figure 2).

Then we have

1) fa € C'([0,1]);
2) fn — flunif] on [0,1], where f:[0,1] — [0,1], f(x) =z, f € C1[0,1];

3) fo(x) =0 on P,. Hence f,(x) =0 on P.
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4) limy, o0 fo(x) = 1 for each # € G. (Indeed, for z € G = U2, K,,, there
exists a positive integer m such that = € int(K,), (V)n > m, because
KicKy,C..CKycC..CK,C..;itfollows that f,(z) = 1,
(V) n > m, 50 lim, o0 f,,(x) = 1).

5) limp oo f,(2) = g(z), z € [0,1], where g : [0,1] = [0, 1],

() 0 ifzeP
xr) =
g 1 ifred

6) {fn}n is UAC (or UACG) neither on [0,1] nor on P (see Corollary 4, (I)
and Theorem 1, (i)).

Figure 2: The graph of f3 and f in Example 2
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