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DESCRIPTIVE CHARACTER OF SETS OF
DENSITY AND I-DENSITY POINTS

Abstract

Let X = [a, b] and A ⊂ X2. We extend the theorem of Mauldin
stating the set of 〈x, y〉 ∈ X2 such that y is a density point of Ax,
provided that A is Borel is itself a Borel set. We prove the corresponding
result if A is analytic or coanalytic and show the analogous statements
in the category case.

1 Introduction

Let X = [a, b]. If E ⊂ X is a Lebesgue measurable set, ϕ(E) denotes the
set of all density points of E. If E ⊂ X possesses the Baire property, ϕI(E)
denotes the set of all I-density points, i.e., the density points in the sense of
category, introduced by Wilczyński in [W]. For A ⊂ X2 and x ∈ X, we put

Ax = {y ∈ X : 〈x, y〉 ∈ A};

the so-called x-section of A. By LMk (respectively, BPk) we denote the class
of Lebesgue measurable sets (sets with the Baire property) in Rk for k = 1, 2.
For A ⊂ X2 we put

D(A) = {〈x, y〉 ∈ X2 : Ax ∈ LM1 & y ∈ ϕ(Ax)};

DI(A) = {〈x, y〉 ∈ X2 : Ax ∈ BP1 & y ∈ ϕI(Ax)}.
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From [S, Chap.IX, Th.11.1] it follows that the symmetric difference A4D(A)
is of plane measure zero for each A ⊂ X2, A ∈ LM2. The analogous statement
for category is contained in [CW, Th.4]. Thus D(A) (respectively, DI(A))
forms a special kind of a kernel for A ∈ LM2 (A ∈ BP2).

We set ω = {0, 1, 2, . . . }. Let Λ be a pointclass in the sense of Moschovakis
[Mo, p.19]. If Y is a given Polish space, then Λ(Y ) denotes the collection of
all sets of Λ contained in Y .

We are interested in the following problem. If A ∈ Λ(X2), what is a
possibly simple pointclass where D(A) or DI(A) hits? In some cases we can
expect that D(A) (or DI(A)) also is in Λ(X2). For instance, Mauldin [Ma,
Th.1] proved that D(A) is Borel, provided that A ⊂ X2 is Borel. We consider
the cases where Λ is the pointclass of all Borel sets, or Λ is some of the
pointclasses Σ0

α (0 < α < ω1), or Λ is the pointclass of analytic sets, or Λ
consists of coanalytic sets.

If Y is a metric space, K(Y ) denotes the hyperspace of all compact subsets
of Y equipped with the Vietoris topology (or, equivalently with the Hausdorff
distance). For details concerning K(Y ) we refer the reader to [Ke, pp.24–28].

2 Measure Case

In this section X = [0, 1]. Lebesgue measure on R will be denoted by λ. As it
has been mentioned above, Mauldin in [Ma] proved the following theorem.

Theorem 2.1. If A ⊂ X2 is a Borel set, so is D(A).

Note that if A = X ×B, where B is Borel in X, then D(A) = X × ϕ(B),
which (by Theorem 2.1) easily implies that ϕ(B) is Borel. Hence one can derive
the well-known fact that ϕ(E) is Borel, provided that E ⊂ X is Lebesgue
measurable. Indeed, it suffices to consider a Gδ set B such that E ⊂ B,
λ(B \ E) = 0, and keep in mind that ϕ(E) = ϕ(B).

Now, we will recall the proof of Theorem 2.1 and, additionally, estimate
the Borel class of D(A) if the Borel class of A ⊂ X2 is assumed.

Let Q denote the set of all rationals.

Lemma 2.1. If A ⊂ X2 and all x-sections Ax are measurable, then

D(A) =
⋂
n∈ω

⋃
m∈ω

⋂
q∈(0, 1

m+1 )∩Q

T (n, q) (1)

where

T (n, q) = {〈x, y〉 ∈ X2 : λ(Ax ∩ (y − q, y + q)) ≥ 2q(1− 1

n+ 1
)}. (2)
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Furthermore, in the definition of T (n, q), the interval (y − q, y + q) can be
replaced by [y − q, y + q], and/or ≥ can be replaced by >. Statement (1)
remains true if T (n, q) is replaced by (X × [q, 1− q]) ∩ T (n, q).

The proof is straightforward. The last remark follows from the fact that
while considering y as a density point we may assume [y − q, y + q] ⊂ X.

Theorem 2.2. If A ⊂ X2 is in Σ0
α (0 < α < ω1), then D(A) is in Π0

α+3.

Proof. Observe that T (n, q) given by (2) is equal to

⋂
p∈ω

⋃
s∈Q

({
x ∈ X : λ(Ax ∩ (s− q, s+ q)) > 2q(1− 1

n+ 1
)− 1

p+ 1

}
(3)

×
{
y ∈ X : |y − s| < 1

p+ 1

})
which follows from the continuity of the function y 7→ λ(Ax ∩ (y − q, y + q)).
But

Ax ∩ (s− q, s+ q) = (A ∩ (X × (s− q, s+ q)))x

and it is known that

{x ∈ X : λ((A ∩ (X × (s− q, s+ q)))x) > c}

is in Σ0
α if c ∈ R and A is in Σ0

α [Ke, Exercise 22.25]. Now from (1) and (3)
we infer that D(A) is in Π0

α+3.
Next we observe that the analogue of Theorem 2.1 holds for analytic and

coanalytic sets.

Theorem 2.3. If A ⊂ X2 is analytic (coanalytic), so is D(A).

We will start with a lemma and a proposition. If E ⊂ Z × W , then
prZ(E) = {z ∈ Z : (∃w ∈W )〈z, w〉 ∈ E}.

Lemma 2.2. [Ke, Th.29.27] Let Z and W be Polish spaces and H ⊂ Z ×W
be closed. If µ is a Borel probability measure on Z and for some a ∈ R,
µ(prZ(H)) > a, then there is a compact set K ⊂ H such that µ(prZ(K)) > a.

Proposition 2.1. If A ⊂ X2 is analytic and h > 0, a ∈ R, then

T = {〈x, y〉 ∈ X2 : λ(Ax ∩ [y − h, y + h]) > a}

is analytic.
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Proof. Observe that

T =
⋃
p∈ω

⋃
s∈Q

(
T (p, s)× {y ∈ X : |y − s| < 1

p+ 1

)
where

T (p, s) =

{
x ∈ X : λ(Ax ∩ [s− h, s+ h]) > a+

1

p+ 1

}
.

It suffices to show that T (p, s) is analytic. So, fix p ∈ ω and s ∈ Q. Since A
is analytic, there exists a closed set E ⊂ X2 × ωω such that A = prX2(E). It
is easy to check that for a fixed x ∈ X we have

Ax ∩ [s− h, s+ h] = prX

(
Ex ∩ ([y − h, y + h]× ωω)

)
.

Obviously Ex ∩ ([s − h, s + h] × ωω) is closed. Then by Lemma 2.2 we infer
that

λ(Ax ∩ [s− h, s+ h]) > a+
1

p+ 1
⇔

λ(prX(Ex ∩ ([s− h, s+ h]× ωω))) > a+
1

p+ 1
⇔ (4)

(
∃K ∈ K(X × ωω)

)(
K ⊂ Ex ∩ ([s− h, s+ h]× ωω)

& λ(prX(K)) > a+
1

p+ 1

)
.

Consider the sets

M1 = {〈x,K〉 ∈ X ×K(X × ωω) : K ⊂ Ex × ([s− h, s+ h]× ωω)},

M2 = X × {K ∈ K(X × ωω) : λ(prX(K)) > a+
1

p+ 1
}.

The setM1 is closed since fromK ⊂ Ex ⇔ {x}×K ⊂ E∩(X×[s−h, s+h]×ωω)
it follows that M1 = f−1[W ] where:
• the mapping f : X × K(X × ωω) → K(X2 × ωω) given by f(x,K) =

{x} ×K is continuous [Ke, p.27];
• the set W = {F ∈ K(X2×ωω) : F ⊂ E∩(X×[s−h, s+h]×ωω)} is closed.

The set M2 is of type Fσ. Indeed, for each c ∈ R, the set S(c), given by
S(c) = {F ∈ K(X) : λ(F ) < c}, can be expressed as⋃

{V (G) : G open & λ(G) < c}
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where V (G) = {F ∈ K(X) : F ⊂ G} is a set from the subbasis of the Vietoris
topology. Hence S(c) is open, and therefore

{F ∈ K(X) : λ(F ) > a+
1

p+ 1
} =

⋃
n∈ω

(K(X) \ S(a+
1

p+ 1
+

1

n+ 1
))

is of type Fσ. Consequently, M2 is of type Fσ since prX : K(X×ωω)→ K(X)
is continuous.

Now, from (4) it follows that the set T (p, s) is the projection of a Borel set
M = M1 ∩M2 on X. Thus T (p, s) is analytic.

Proof of Theorem 2.3. Let A be analytic. Using Lemma 2.1 we can
express D(A) by (1) where

T (n, q) = {〈x, y〉 ∈ X2 : λ(Ax ∩ [y − q, y + q]) > 2q(1− 1

n+ 1
)}.

Then the assertion follows from (1) and Proposition 2.1.
Let A be coanalytic. Using Lemma 2.1 we can express D(A) by (1) where

T (n, q) is the set

(X × [q, 1− q]) ∩ {〈x, y〉 ∈ X2 : λ(Ax ∩ [y − q, y + q]) ≥ 2q(1− 1

n+ 1
)}

and [y − q, y + q] ⊂ X. Thus

λ((X2 \A)x ∩ [y − q, y + q]) = 2q − λ(Ax ∩ [y − q, y + q])

and T (n, q) is equal to

(X × [q, 1− q]) \ {〈x, y〉 ∈ X2 : λ((X2 \A)x ∩ [y − q, y + q]) >
2q

n+ 1
}.

Now we apply Proposition 2.1 to the analytic set X2 \A and infer that T (n, q)
is coanalytic. Then the assertion follows from (1).

3 Category Case

In this section, for technical reasons, we assume that X = [−1, 1]. Let int and
cl denote the operators of interior and closure in X. Recall that a set G ⊂ X is
regular open if G = int(clF ), and a set F ⊂ X is regular closed if F = cl(intF ).
It is well known that for each set A ⊂ X with the Baire property there is a
unique regular open G such that the symmetric difference A4G is meager [O,
Th.4.6]. This regular open set associated with A will be denoted by A◦. It is
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not hard to check that (X \ A)◦ = int(X \ A◦). Let A? = cl(A◦). Then A?

is regular closed and A4A? is meager. From (X \ A)◦ = int(X \ A◦) we also
have A? = X \ (X \A)◦. Thus A? is a (unique) regular closed set F such that
A4F is meager.

The σ-ideal of meager subsets of X will be denoted by I. Let us recall
the original definition of an I-density point introduced by Wilczyński in [W].
A number y ∈ X is called an I-density point of a set A ⊂ X with the Baire
property iff for each increasing sequence {nm}m∈ω of positive integers there
exists a subsequence {nmp

}p∈ω with the property that the equality

lim
p→∞

χ
(nmp (A−y))∩X(x) = 1 (5)

holds I-almost everywhere on X. This last part means that the set of points
x ∈ X for which (5) does not hold is meager. Set

c(A− y) = {t ∈ R : (∃a ∈ A) t = c(a− y)}

and χ
E : X → {0, 1} stands for the characteristic function of a set E ⊂ X.

We say that y ∈ X is an I-dispersion point of A if it is an I-density point of
X \A.

For our purpose we will use a more convenient version of the definition
where the quantifiers (∀{nm}) (∃{nmp

}) do not appear and where we have
even a greater number of quantifiers but they can deal with countable sets.
That version derived from [CLO, Th.2.2.2(vii)] was inspired by a theorem of
 Lazarow [L, Th.1]. (We give it with small nonessential changes which are
caused by the fact that the authors in [CLO] consider subsets of R rather than
of X, and Th.2.2.2(vii) in [CLO] is formulated for an I-dispersion point.)
Namely, y ∈ X is an I-density point of A ⊂ X with the Baire property iff for
every nonempty interval (a, b) ⊂ X there exist ε > 0 and m ∈ ω such that for
every n ≥ m there is an interval (c, d) ⊂ (a, b) with the property that

|d− c| > ε and (c, d) ∩ n
(

(X \A)− y
)◦

= ∅. (6)

By the relationships between ( )◦ and ( )?, we easily deduce that (c, d) ∩
n((X \ A) − y)◦ = ∅ can be equivalently written as (c, d) ⊂ n(A? − y). Also,
the above statement will not be destroyed if we consider [c, d] ⊂ (a, b) and
[c, d] ⊂ n(A? − y). (Note here that n(A? − y) is closed.) Denote by M the
family of all nonempty open intervals with rational endpoints contained in X.
Observe that in the above statement we may assume (a, b), (c, d) ∈ M and
we may replace ε by 1

k+1 where k ∈ ω. After these modifications we get the
following assertion.
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Lemma 3.1. A number y ∈ X is an I-density point of a set A ⊂ X with the
Baire property iff for every (a, b) ∈M there exist numbers k,m ∈ ω such that
for every n ≥ m there is an interval (c, d) ∈M with the properties that

[c, d] ⊂ (a, b) & d− c > 1

k + 1
& [c, d] ⊂ n(A? − y).

If A ⊂ X, then let ∆(A) denote the set of all points x ∈ X such that U ∩A
is nonmeager for each open neighborhood U of x. Following [Ku, p.83], ∆(A)
is called the set of points where A is of the second category.

Lemma 3.2. If A ⊂ X2 is Borel of class Σ0
α, where 0 < α < ω1, (is analytic,

coanalytic), then the set

{〈x, y〉 ∈ X2 : y ∈ ∆(Ax)}

is Borel of the class Π0
α+1 (is analytic, coanalytic).

Proof. Let {Un}n∈ω be a fixed base of open sets in X. For 〈x, y〉 ∈ X2 we
have, y ∈ ∆(Ax) iff(

∀n ∈ ω
) (
y /∈ Un ∨

(
(X × Un) ∩A

)
x
/∈ I
)
.

Since (see [Ke, Exercises 22.22 and 32.4, Th. 29.22]) the set

{x ∈ X :
(
(X × Un) ∩A

)
x
/∈ I}

is of class Σ0
α (is analytic, coanalytic), provided that A is of class Σ0

α (is
analytic, coanalytic). Therefore we get the assertion.

We are now in a position to prove the following category analogue of The-
orems 2.2 and 2.3.

Theorem 3.1. If A ⊂ X2 is in Σ0
α, 0 < α < ω1, (is analytic, coanalytic),

then DI(A) is in Π0
α+5 (is analytic, coanalytic).

Proof. From the definition of B? = cl(B◦), for a set B ⊂ X with the Baire
property, it easily follows that B? = ∆(B). Thus we may write ∆(A) instead
of A? in Lemma 3.1. Consequently, for our set A, the condition 〈x, y〉 ∈ DI(A)
is equivalent to

(
∀(a, b) ∈M

)(
∃k,m ∈ ω

)(
∀n ≥ m

)(
∃(c, d) ∈M

)
(7)

a<c<d<b & d−c> 1

k + 1
& [c, d] ⊂ n(∆(Ax)− y).
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It suffices to study the nature of the set

F = {〈x, y〉 ∈ X2 : [c, d] ⊂ n(∆(Ax)− y)}

if c, d and n are fixed. Note that

[c, d] ⊂ n(∆(Ax)− y)

is equivalent to (
∀t ∈ Q

)(
t /∈ [y +

c

n
, y +

d

n
] ∨ t ∈ ∆(Ax)

)
.

From Lemma 3.2 it follows that the set

H =
{
〈x, y, t〉 ∈ X3 : t /∈ [y +

c

n
, y +

d

n
] ∨ t ∈ ∆(Ax)

}
is Borel of class Π0

α+1 (respectively, is analytic, coanalytic). Since

F =
⋂

t∈Q∩X
Ht, where Ht = {〈x, y〉 ∈ X2 : 〈x, y, t〉 ∈ H},

F is also of class Π0
α+1 (respectively, is analytic, coanalytic). Finally we con-

sider the quantifiers in (7) to get the assertion.

As in the remark following Theorem 2.1 we can deduce from the “Borel
part” of Theorem 3.1 that ϕI(E) is Borel, provided that E ⊂ X possesses the
Baire property. This was first proved in [JLW].

Remarks. 1. We leave open the question whether our evaluation of a Borel
class for D(A) and DI(A) is sharp, i.e. we do not know for which α < ω1

there exists A ∈ Σ0
α such that D(A) is not in Σ0

α+3 (DI(A) is not in Σ0
α+5).

Observe that if A is open, then D(A) and DI(A) are open.
2. Note that there exists an analytic set A ⊂ X2 for which D(A) and DI(A)
are not coanalytic (thus not Borel). It is enough to put A = B ×X where B
is analytic and not coanalytic in X.
3. Two facts concerning section properties of Σ0

α-sets for measure and category
that we use in the proofs of Theorem 2.2 and Lemma 3.2 [Ke, Exercises 22.25,
22.22] are attributed to Montgomery (Amer. J. Math., 56 (1934)) and Novikov
(J. Math. Tokyo, (1), (1951)). We were so informed by one of the referees. A
nice proof of the both facts can easily be reconstructed from an abstract idea
given in [G, Th.2.2].
Acknowledgments. The main results of the paper were announced by the
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