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ON THE MAXIMAL FAMILIES FOR SOME
SPECIAL CLASSES OF STRONGLY
QUASI-CONTINUOUS FUNCTIONS

Abstract

The maximal families (additive, multiplicative, lattice and with re-
spect to the composition) for some special classes of strongly quasicon-
tinuous functions are investigated.

Let R be the set of all reals and let p. (1) denote the outer Lebesgue
measure (the Lebesgue measure) in R. Denote by

dy(A,z) =limsup pe (AN (x — h,z + h))/2h

h—07+
(di(A,z) = liminf p. (AN (x — h,x + h))/2h
h—0+

the upper (lower) density of a set A C R at a point z. A point x € R is called
a density point of a set A C R if there exists a measurable (in the sense of
Lebesgue) set B C A such that d;(B,z) = 1. The family

Ta = {A C R; A is measurable and every point « € A is a density point of A}
is a topology called the density topology [1]. Denote by int(A) the interior
(Euclidean) of the set A. The family

Tae = {A € Tg; p(A — int(A)) = 0}

is also a topology [5].
A function f (from R into R) is called Tge— continuous (73— continuous
or approximately continuous) at a point z if it is continuous at x as the

application from (R, 7,.) (from (R, 7)) into (R,7.), where 7. denotes the
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Euclidean topology in R. A function f is 7,.— continuous (everywhere on
R) if and only if it is 74— continuous (everywhere) and almost everywhere
(relative to p) continuous [5]. A function f is said to be strongly quasi-
continuous (in short s.q.c.) at a point z if for every set A € Ty containing x
and for every positive real n there is an open interval I such that TN A # ()
and |f(t) — f(z)| <nforallt € ANI [2]. If a function f is s.q.c-continuous
at every point then we say that f is s.q.c-continuous.

In this paper the main results are some modifications of the results of
Z.Grande in [4].

Let P(z) be a property of a function f at a point = (we will write f € P(z))
such that:

if f is continuous at x then f € P(x);
if f € P(x) then —f € P(x);

if f € P(z) and g/I = f/I for some open interval I containing x then
g € P(x).

Denote by P the family of all functions f such that for every positive real
n and for every point x and for every set A € Ty containing x there is an open

interval I such that TN A # 0, |f(t)— f(z)] <nand f € P(t) for all t € INA.
Now, let:

— C = {f; f is continuous };

— Cque = {f; f is Tae— continuous };

- Qs ={f;fissqcl;

- Mazeqq(P) ={f; f +g € P for every g € P};

— Mazmu(P) ={f; fg € P; for every g € P};

= Mazpa.(P) = {f;max(f,g) € P for every g € P};
— Mazyin(P) = {f;min(f, g) € P for every g € P};
- Maxcomp(P) ={f;fog € P for every g € P}.

Remark 1. FEvidently
C CPUC, CQs.

So, every function f € P is almost everywhere continuous [2, 3].
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Remark 2. The inclusion
Mazqq44(P) U Mazmu(P) U Maz e (P) U Mazy,, (P) U Mazcomp(P) C P
s true.

PROOF. Since the functions ¢1(t) = 0, ¢g2(t) = 1 and g¢3(t) = ¢ for ¢t €
R belong to P, for all functions f; € Maxaqq(P), fo € Maxy:(P) and
fs € Maxcomp(P) we obtain have fi = fi +g1 € P, fa = fago € P and
J3=[30g3 € P. So,

Mazq44(P) U Mazu (P) U Mazeomp(P) C P.

If a function f is not in P then there are a positive real 7, a point = and a
set A € T containing x such for every open interval I with I N A # () there
is a point t € I N A such that |f(¢) — f(x)| > n or f is not in P(¢). Then the
functions max(f, f(x) —n) and min(f, f(x) +n) are not in P. So, f is not in
Maxmas(P) U Mazm,,(P) and the proof is completed. O

I. The family Max,qq(P).

In this part we suppose that the property P(x) is such that if f, g € P(z)
then f + g € P(z) (then we say that P() has the additive property).

Theorem 1. Assume P(z) has the additive property. Then
Cae NP = Maxadd(P)
holds.

PrOOF. Let f € Cye N P and g € P be functions. Fix a positive real 7, a
point z and a set A € Ty containing x. Since f € Cy, the point x is a density
point of the set B = int({t; |f(t) — f(z)] < n/2}). Consequently, z is a density
point of the set BN A. Since g € P, there is an open interval J C B such that
JNA#D, |gt) —g(x)] <n/2 and g € P(t) for every t € JN A. From the
relation f € P follows that there is an open interval I C J such that TN A # ()
and f € P(t) for all points t € I N A. Consequently, INA# D, f+g € P(t)
and |(f(t) +g(t)) — (f(x) + g(x))] < n/2+n/2 = n for all points t € I N A.
So, the function f € Maxqq4(P) and the inclusion Cye N P C Maxqqq(P) is
proved.

For the proof of the inclusion Maxaqq4(P) C Cye N P fix a function f €
Mazaq4(P). By Remark 1 the function f € P. If f is not in Cy. then there
are a point z € R and a positive number 7 such that the closure cl({¢;|f(t) —
f(x)] > n}) of the set {t;]f(t) — f(x)| > n} has positive upper density at a
point x. We can assume that the closure

cd({t; f(t) > f(x) +n})
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has positive upper density at a point 2. Since f belonging to P C @) is almost
everywhere continuous [2, 3], we obtain

u(el({E; f(8) > f(x) +n}) \{t; f(t) = f(x) +n}) =0
and consequently,
du (int({t; f(t) > f(x) +n/2}),2) > 0.

Thus there is a sequence of disjoint closed intervals I, = [an, b,] C {t; f(t) >
f(z)+n/2},n=1,2,..., such that:

(1) zisnot in I, forn =1,2,..;
(2) f is continuous at all points ay,b,,n=1,2,..;
(3) limy—yo0 G = limy, 00 by = x5
(4) du(U,, In,z) > 0.
Put
—flx)+n/2 if t=x)V(tel,,n=12...)
9(t) =1 —f(t) otherwise.

Fix a positive real 1, a point ¢ and a set A € Ty containing ¢. For a positive
integer n and a point t = a,, or t = b, the function g is unilaterally continuous
at t and g/I, is constant. So, there is an open interval I C I,, with TN A # (.
Evidently, g € P(u) and |g(u) — g(x)] = 0 < n for each point uw € TN A. If
t € int(I,) for some positive integer n we proceed the same as above. If t # x
and t is not in I, for n = 1,2, ... then there is an open interval I with INT, #
forn=1,2,..., IN A # () and such that |f(u) — f(t| < n and f € P(u) for
u € INA. Since g/I = —f/I, we obtain |g(u) — g(t)| = |f(u) — f(t)| < n and
g € P(u) for all points u € I N A. If ¢ = x then, by (4), there is a positive
integer n with A Nint(I,) # 0. Since g(u) = —f(x) +n/2 for u = x and for
u € int(I,), we have g € P(u) and |g(u) —g(t)] =0 < n for u € AN [(I,). So,
g € P. Moreover, f(z)+g(x) =n/2, f(t)+gt) >nfortel,, n=12...
and f(t) + g(t) = 0 otherwise on R. So, f + ¢ is not in P and consequently f
is not in Maz,qq(P). This contradiction finishes the proof. O

II.The families Maz 4, (P) and Max,,,(P).

In this part we suppose about the property P(z) that if f,g € P(x) then
also maz(f,g), min(f,g) € P(x) (then we say that P() has the lattice prop-
erty).
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Theorem 2. Let P(x) has the lattice property. Then
Maz e (P) = Maz,in(P) = Cee NP
holds.

PRroOF. For the proof of the inclusion
Coe NP C Max e (P) N Mazin(P).

we take a function f € Cye N P and a function g € P. Fix a positive real 7,
a point  and a set A € Ty containing x. Let h = max(f,g). Consider the
following cases:

(1) f(z) > g(x). Then let r = f(x) — g(x) and let s = min(r/2,7). Since
f € Cyqe, x is a density point of the set B = int({t;|f(t) — f(z)| < s}). From
the relation g € P follows that there is an open interval J C B such that
JNA#Q, g€ P(t)and |g(t) — g(z)| < s for all points t € JN A. Since f € P,
there is an open interval I C J with TN A # @ and f € P(t) for all points
t € INA. Observe that for u € I N A we have

f(u) > f(a) =5 > g(x) + 25 — 5 = g(x) + 5 > g(u),
whence h(u) = f(u). Moreover, h(z) = f(z), h € P(u) and

[h(u) = h(@)| = [f(u) = f(2)] < s <n

for all point u € I N A.
(2)f(z) < g(x). In this case the proof is analogous as above.

(3)f(z) = g(x). In this case we put s =7 and we find an open interval as
above. Then I N A # ) and for u € I N A we obtain h € P(u) and

[h(u) = h(z)| < max(|f(u) = f(2)], |lg(u) = g(2)]) < s =1n.

So, h = max(f,g) € P. The prof that min(f, g) € P is analogous.

Since by Remark 1 the inclusion M az 4. (P)UM aZpmin(P) C P is true, we
will show the inclusion Max 4, (P) U Mazpin(P) C Che. We will show only
that Max,,qq.(P) C Cye, because the proof of the inclusion Max i, (P) C Coe
is similar. Let f € Maxma.(P) be a function. By Remark 1 the function
f € P. If fisnot in C,e then there are a point « and a positive number 7
such that

du(cl({t; |f () = f(2)| > n}),2) > 0.
If
du(cl({t; f(t) > f(z) +n}),2) >0
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then the same as in the proof of Theorem 1 there are disjoint closed intervals

L, = [an, by] C{t; f(t) > f(x) +n/2},

such that conditions (1) — (4) from the proof of Theorem 1 are satisfied. Let

_y fl@)—n if (t=z)V(tel,,n=1,2,...,)
9(t) = { f(z)+n otherwise.

Analogously as in the proof of Theorem 1 we can show that g € P. Moreover,
max(f(z),g(z)) = f(r) and max(f(t),g(t)) > f(a) +n/2 for ¢t # x. So,
max(f, g) is not in P and consequently, f is not in MaZq.(P). Now consider
the case where

du(cl({t; f(t) < fz) —n}),x) >0

. Then there are disjoint closed intervals I,, = [an,b,] C {t; f(t) < f(z) —
n/2}, n = 1,2,..., which satisfy conditions (1)—(4) from the proof of The-
orem 1. Let the function g be defined the same as above. Then g € P,
max(f(z), g(x)) = f(z), max(f(t), g(t) < f(a) —n/2 for t € Lun = 1,2,...,
and max(f(t),g(t)) > f(x)+ n otherwise on R. So,in this case also max(f, g)
is not in P, and consequently f is not in MaZpq,(P). This contradiction
finishes the proof. O

II1. The family Mazcomp(P).

In this part we suppose that for every continuous function g and for every
function f € P(x) we have go f € P(x); P() is invariant with respect to
composition with continuous function.

Theorem 3. Assume P(x) is invariant with respect to composition with con-
tinuous function. Then
Mazcomp(P) =C

holds.

PROOF. Let g be a continuous function and let f € P be a function. Fix a
positive real 7, a point x and a set A € Ty containing z. Since g is continuous at
f(x), there is a positive real r such that if |[u— f(z)| < r then |g(u)—g(f(z))] <
7. From the relation f € P follows that there is an open interval I such that
INA#0, feP(t)and |f(t)— f(z)|] < r for all points t € TN A. Observe that
for every point t € I N A we obtain go f € P(t) and |g(f(¥)) — g(f(z))] < 7.
So, go f € P and consequently C' C Mazcomp(P).

Suppose that a function f is not continuous at a point y. Then there
is a sequence of points y, # y,n = 1,2,..., such that lim, ,. vy, = y and
lim, oo f(yn) # f(y). Let I, = [an,bn],n = 1,2,..., be disjoint closed
intervals such that
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= limp 00 G = limy, 00 by = 0;
—apb, >0forn=1,2,...;
- dy(U,, In,0) > 0.

Put
Yn if rel,,n=12,...,
gl@)={y if z=0
y1 otherwise.

Fix a positive real n, a point « and a set A € T; containing z. If x # 0
then ¢ is unilaterally continuous and consequently, there is an open interval
T such that TN A # (, g is continuous at every point ¢ € I and g(t) = g(x)
for each point t € I. If x = 0 then there is a positive integer n such that
lyn —y| < n and I, N A # (. Consequently, there is an open interval I C I,
with TN A # (. Observe that the reduced function g/I is continuous and
lg(uw) — g(z)| = |yn —y| < n for w € I. This shows that g € P. But fog is not
in P, since f o g is not s.q.c. at x = 0. So, Maxcomp(P) C C, and the proof
is completed. O

IV. The family Max,,,;1(P).

In this part we suppose about the property P(x) that:

— if f,g € P(x) then fg € P(x);
— if f € P(x) and I is an open interval such that 0 is not in f(I) then the
function 176) ;
1/f(t or tel
g(t) ={ 0 otherwise.
belongs to P.

Remark 3. If a function f € P is not Tae— continuous at a point x € R at
which f(x) # 0 then there is a function g € P such that the product fg is not
in P.

PROOF. The same as in the proof of Theorem 1 we prove that there exist a

positive real  and disjoint closed intervals I, = [an, b,] C {t;]f(t) — f(z)| >
n/2} which satisfy conditions (1)—(4) from the proof of Theorem 1. Put

_g 1 if (t=x)vV({tel,,n=12...,)
9(t) =1 0 otherwise.

Observe that g € P. Since f(z)g(x) = f(x) # 0 and for every point ¢t # x we

have f(t)g(t) = 0 or [f()g(t) — f(x)g(x)| = [f(#) — f(2)| > n, the function fg
is not s.q.c. at x, so fg is not in P. This completes the proof. O
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Remark 4. Let f € P be a function and let x € R be a point such that
f(z) =0. If d,({t; f(t) = 0},2) > 0 then for every function g € P, for every
positive real n and for every set A € Tq containing  there is an open interval
I such that IN A # 0, the product fg € P(t) and |f(t)g(t)| < n for each point
teINA.

PRrROOF. Fix a function g € P, a positive real  and a set A € T; containing x.
The functions f,g € P, so they are almost everywhere continuous. Observe
that the set B = {t;t € A, f(t) = 0 and f is continuous at t} is of positive
measure. There are a nonempty set D C B belonging to 73 and a point u € D
such that f(u) = 0 and the function g is continuous at u. Let J be an open
interval containing u such that there is a positive real K with |g(¢)| < K for all
points t € J. Evidently, u € JNA € T;. Since f € P and f(u) = 0, there is an
open interval Iy C J such that Ty N A # 0, f € P(t), and |f(t)] < n/K for all
points t € 1 NA. But g € P and ) # I, N A € Ty, so there is an open interval
I C I such that INA # () and g € P(t) for each point t € INA. Fort € INA
we have fg € P(t) and | f()g(t) — f(x)g(x)| = | F(B)g()] < (n/K)K = 1. This
completes the proof. O

In the proof next Remark 4 we will apply the following Lemma which is
proved in [4] :

Lemma 1. Let A C R be a closed set and let x € A be a point such that
dy(A,x) = 0. Then there is a sequence of disjoint closed intervals I, =
[an,bn] C (x—2,2+2), n=1,2,..., such that:

= limy, o0 @ = limy, 00 by, = 5
N du(Un In,l‘) =0;
- (A\{z})n[z -1,z +1] C U, int(l,).

Remark 5. Suppose that a function f € P is not Tee— continuous at a point
x at which f(x) =0. If

du({t; f(t) = 0}, 2) =0
then there is a function g € P such that the product fg is not in P.
PROOF. Since f is almost everywhere continuous, we obtain
(el ({E; f(£) = 0 \{t; f(t) =0}) =0
and
du(cl({t; f(t) = 0}),2) = 0.

By Lemma 1 there are disjoint closed intervals I,, = [an,b,] C (x — 2,2z +
)\ {z},n=1,2,..., such that
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= limp 00 G = limy, 00 by = xZ;
- L+ Nt £(1) = 0D\ {2} € U int(L,);
du(U, In,x) = 0.

Since the function f is not 7,.— continuous at x, there are a positive real
n and disjoint closed intervals J,, = [cp,dn] C ({&;|f()] > n/2}Nn(x — 1,z +
1)) \ Uy Ix such that lim, o0 ¢, = lim, oo dn = @ and dy(U,, Jn,z) > 0.
Moreover, we can assume that f is continuous at all points a,, by, cp, dn, n =
1,2,....

Put

7 if (t=x)V(teJy,n>1)
gty={ 1 if t<z—-1)vV(t>z+1)V(tel,,n>1)
1/f(t) otherwise.

By the methods used above we can show that the function ¢ € P. But
the product fg is not s.q.c. at z, since f(z)g(z) = 0, f(t)g(t) = 1 for t €
(=22 +2)\ U, I, U )\ {z}, | f)g(t)| > n*/2 for t € J,, n > 1 and
dy(U,, In,x) = 0. So, the product fg is not in P and the proof is finished. [

Remark 6. If a function f € P is Tae— continuous at a point x then for all
functions g € P, for every set A € Ty containing x and for every positive real
7 there is an open interval I such that INA # 0, fg € P(t) and |f(t)g(t) —
f(x)g(x)| <n for all pointst € I N A.

PRrOOF. Fix a positive real n, and a set A € Ty such that x € A.Since f is
Tae-continuous at x, so x is a density point of the set

B =int({t; |f(t) — f(2)| < (n/2)(1/|c[+1)}),

where ¢ = g(x). Consequently, x is a density point of the set B N A. Since
f € P, there is an open interval I C B such that IN A # 0 and f € P(t) for
all points t € IN A. Let g € P be any function. Since g € P, there is an open
interval J C I such that JNA # 0, |g(t) — g(x)| < (n/2)(1/|f(t)| + 1) and
g € P(t) for all t € JN A. Consequently we obtain fg € P(t) and

[f()g(t) = f(@)g(@)] < [f(D)llg(t) — g(2)] + lg(@)[[f(£) — g(2)]

< [fOIm/2)A/1f O] + 1) + lg()|(n/2)(1/g(x)] + 1) <n

for all t € JN A. So, fg € P and the proof is completed. O
From Remarks 1 — 6 it follows immediately:
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Theorem 4. A function f € Maz,:(P) if and only if it is in P and satisfies
the following condition:

(F) if f is not Tae— continuous at a point x then f(x) =0 and d,,({t; f(t) =
0},z) > 0.

Remark 7. If the property P(x) denotes that f(x) € R then all above results
are true for P = Q (see [4]).
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