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BVp-FUNCTIONS AND CHANGE OF
VARIABLE

Abstract

In this note we discuss some interconnections between the space
BVp[a, b] (1 ≤ p <∞) of functions of bounded p-variation (in Wiener’s
sense) and the space Lipα[a, b] (0 < α ≤ 1) of Hölder continuous
functions. In particular, we show that f ∈ BVp[a, b] if and only if
f = g ◦ τ , with g ∈ Lip1/p[a, b] and τ being monotone, and that
f ∈ BVp[a, b] ∩ C[a, b] if and only if f = g ◦ τ , with g ∈ Lip1/p[a, b]
and τ being a homeomorphism.

1 Introduction

In this note we will discuss some interconnections between functions of bounded
p-variation for p ∈ [1,∞) (in Wiener’s sense), on the one hand, and Hölder
continuous functions with Hölder exponent α ∈ (0, 1], on the other. Roughly
speaking, classical functions of bounded variation (i.e., p = 1) under these
interconnections correspond to Lipschitz continuous functions (i.e., α = 1).
Passing from Lipschitz to Hölder continuity, however, is often highly nontriv-
ial and by no means “automatic”. For instance, a function f ∈ Lip[a, b] is
always differentiable a.e. on [a, b], but this is not true for f ∈ Lipα[a, b] in
case α < 1. Similarly, every Lipschitz continuous function has bounded vari-
ation, but this fails for Hölder continuous functions of order α < 1. Finally,
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every function in Lip[a, b] has the Luzin (N)-property of preserving Lebesgue
nullsets, while this is not true for functions from Lipα[a, b].

The main purpose of this note is to find out which results for functions f ∈
BV [a, b] (respectively, f ∈ Lip[a, b]) carry over to f ∈ BVp[a, b] (respectively,
f ∈ Lipα[a, b]), and which do not. Examples of the “asymmetry” between the
cases p = 1 and p > 1 are given in Theorem 1 and Theorem 4 below.

2 Main Results

Before we begin our discussion, we briefly recall some definitions and notation.
Throughout this note, by P[a, b] we denote the family of all partitions P =
{t0, t1, . . . , tm} (m ∈ N) of the interval [a, b], and p ≥ 1 is a real number.
Given a function f : [a, b]→ R we put

Varp(f, P ; [a, b]) :=

m∑
j=1

|f(tj)− f(tj−1)|p (P = {t0, t1, . . . , tm})

and

(1) Varp(f ; [a, b]) := sup {Varp(f, P ; [a, b]) : P ∈ P[a, b]},

where the supremum in (1) is taken over all partitions of [a, b], and call (1) the
(total) p-variation of f over [a, b]. It is not hard to show that the linear space
BVp[a, b] of all functions with finite p-variation over [a, b], equipped with the
norm

(2) ‖f‖BVp = |f(a)|+ Varp(f ; [a, b])1/p,

is a Banach space. For f ∈ BVp[a, b] and a ≤ x ≤ b we further put

(3) Vf,p(x) := Varp(f ; [a, x]) (a ≤ x ≤ b).

Thus, the map x 7→ Vf,p(x) is increasing with Vf,p(a) = 0 and Vf,p(b) =
Varp(f ; [a, b]). A detailed study of the properties of functions f ∈ BVp[a, b]
may be found in [5]. Apart from the space BVp[a, b], in what follows we will
also consider the Banach space Lipα[a, b] (0 < α ≤ 1) of all Hölder continuous
(or Lipschitz continuous, for α = 1) functions f : [a, b]→ R endowed with the
norm

‖f‖Lipα := |f(a)|+ lipα(f),

where

lipα(f) := sup
x6=y

|f(x)− f(y)|
|x− y|α

.
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In case p = 1 or α = 1 we will drop the subscript 1, so we write Var(f, P ; [a, b]),
Var(f ; [a, b]), BV [a, b], Vf (x), lip(f), and Lip[a, b] instead of Var1(f, P ; [a, b]),
Var1(f ; [a, b]), BV1[a, b], Vf,1(x), lip1(f), and Lip1[a, b], respectively. A straight-
forward calculation shows that

(4) Lipα[a, b] ⊆ BV1/α[a, b] (0 < α ≤ 1);

in particular, Lip[a, b] ⊆ BV [a, b]. The following example shows that the
inclusion (4) is actually strict for any α ∈ (0, 1].

Example 1. For γ > 0, let gγ : [0, 1] → R be the “zigzag function” defined
by

(5) gγ(x) :=



0 for x = 0,

n∑
k=1

(−1)k+1

kγ
for x = an,

linear otherwise,

where an := 1 − 2−n. Geometrically, the graph of gγ starts at the origin
and increases linearly by 1 on the interval [0, 1/2] so that gγ(1/2) = 1. Then
we let gγ decrease linearly by 2−γ on [1/2, 3/4], increase linearly by 3−γ on
[3/4, 7/8], decrease linearly by 4−γ on [7/8, 15/16], and so on. It follows from
the construction and continuity of this zigzag function that

(6) gγ(1) =

∞∑
k=1

(−1)k+1

kγ
, Varp(gγ ; [0, 1]) =

∞∑
k=1

1

kpγ
.

In particular, gγ ∈ BVp([0, 1]) if and only if pγ > 1. On the other hand,
the function gγ does not belong to any Hölder space Lipα([0, 1]). In fact, a
simple geometric reasoning shows that

lipα(gγ) ≥ sup {2nαn−γ : n = 1, 2, 3, . . .}

for 0 < α ≤ 1 and γ > 0, and the exponential growth of 2nα always dominates
the power type growth of nγ .

Of course, the zigzag function (5) may also be used to show that the
inclusion BVp[a, b] ⊆ BVq[a, b] is strict for 1 ≤ p < q.

We point out that the inclusion Lip[a, b] ⊆ BV [a, b] is in a certain sense
sharp, inasmuch as one may construct, for fixed α ∈ (0, 1), a function which
belongs to Lipα[0, 1] but not to BV [0, 1], see [2, Exercise 14.28], or even a



180 N. Merentes and J. L. Sánchez

function which belongs to Lipα[0, 1] for every α ∈ (0, 1) but not to BV [0, 1], see
[2, Exercise 14.29]. Such examples, however, are somewhat more complicated
than our Example 1. Since the Russian reference [2] is not easily accessible,
for the reader’s ease we briefly recall these examples.

Example 2. The first function constructed in [2, Exercise 14.28] looks very
much like a “mirror reversed version” of our zigzag function (5). Define a
constant γ and a sequence (tn)n in [0, 1] by

γ :=

∞∑
k=1

1

k1/α
, tn :=

1

γ

∞∑
k=n

1

k1/α
.

Then we define f : [0, 1]→ R by

f(x) :=


0 for x = 0,

(−1)n

n
for x = tn,

linear otherwise.

By choosing partitions containing t1, t2, . . . , tn and using the divergence of
the harmonic series, it is easy to see that f 6∈ BV [0, 1]. On the other hand,
distinguishing several cases for x and y, one may prove that |f(x) − f(y)| ≤
4|x− y|α, and so f ∈ Lipα[0, 1].

In [2, Exercise 14.29] the authors replace γ and (tn)n in this example by

γ :=

∞∑
k=1

1

k log2(k + 1)
, tn :=

1

γ

∞∑
k=n

1

k log2(k + 1)
,

and define f : [0, 1] → R precisely as before. Again, one may show, by
considering partitions containing t1, t2, . . . , tn, that f 6∈ BV [0, 1]. On the other
hand, a somewhat cumbersome calculation shows that f belongs to Lipα[0, 1]
for any α < 1.

Our first theorem is concerned with the “interaction” between the variation
function Vf,p given in (3) and its parent function f . A detailed discussion of
such interactions may be found in the survey paper [7]; for example, it is
well-known that Vf,p is (absolutely) continuous if f is (absolutely) continuous,
and vice versa. Here we prove a special result related to Hölder continuity (in
particular, Lipschitz continuity) of the function (3).

Theorem 1. For f ∈ BVp[a, b] and Vf,p as in (3), the following statements
are true. (a) The function f is Hölder continuous of order α = 1/p if and
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only if the function Vf,p is Lipschitz continuous; moreover, in this case we
have lip1/p(f) = lip(Vf,p)

1/p. (b) The function f is Hölder continuous of
order α/p ∈ (0, 1) if the function Vf,p is Hölder continuous order α; moreover,
in this case we have lipα/p(f) ≤ lipα(Vf,p)

1/p.

Proof. Suppose that f ∈ Lip1/p[a, b], L > lip1/p(f), and a ≤ x < y ≤ b, and
let P = {t0, t1, . . . , tm} ∈ P[x, y] be any partition of the interval [x, y]. Then

m∑
j=1

|f(tj)− f(tj−1)|p ≤ Lp
m∑
j=1

(tj − tj−1) = Lp(y − x)

and so
Vf,p(y)− Vf,p(x) = Varp(f ; [x, y]) ≤ Lp(y − x),

which shows that Vf,p ∈ Lip[a, b] with lip(Vf,p) ≤ lip1/p(f)p. Conversely,
suppose that Vf,p ∈ Lip[a, b] and a ≤ x < y ≤ b. Then

(7) |f(x)− f(y)|p ≤ Varp(f ; [x, y]) = Vf,p(y)− Vf,p(x) ≤ lip(Vf,p)|x− y|

which shows that f ∈ Lip1/p[a, b] with lip1/p(f) ≤ lip(Vf,p)1/p and proves (a).
To prove (b) observe that (7) in case Vf,p ∈ Lipα[a, b] reads

|f(x)− f(y)|p ≤ Varp(f ; [x, y]) = Vf,p(y)− Vf,p(x) ≤ lipα(Vf,p)|x− y|α

which shows that f ∈ Lipα/p[a, b] with lipα/p(f) ≤ lipα(Vf,p)
1/p.

The proof of (a) shows that ‖Vf,p‖Lip = ‖f‖pLip1/p (in particular, ‖Vf‖Lip =

‖f‖Lip) for all functions f ∈ Lip1/p[a, b] satisfying f(a) = 0. Observe that
there is an asymmetry in statement (b) of Theorem 1: we did not claim that
f ∈ Lipα/p (hence f ∈ BVp/α[a, b]) implies Vf,p ∈ Lipα. In fact, to the best of
our knowledge this is an open problem even in case p = 1, i.e., for functions
f ∈ BV [a, b] ∩ Lipα[a, b] for 0 < α < 1. Of course, if one merely requires
f ∈ Lipα[a, b], Example 2 shows that the answer is negative, because in this
case the function x 7→ Vf (x) jumps from 0 to ∞ as soon as x gets positive.

Our next theorem gives a simple sufficient condition under which a “change
of variables” preserves bounded p-variation.

Theorem 2. Let g : [c, d] → R a bounded map and τ : [a, b] → [c, d] strictly
increasing and onto. Then f := g ◦ τ ∈ BVp[a, b] if and only if g ∈ BVp[c, d].

Proof. First of all, note that τ is continuous, by the intermediate value
theorem, and so a homeomorphism. Moreover, our assumptions on τ imply
that

τ({t0, t1, . . . , tm}) = {τ(t0), τ(t1), . . . , τ(tm)}
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is a bijection between P[a, b] and P[c, d]. Therefore, for every function g ∈
BV [c, d] we have Varp(f, P ; [a, b]) = Varp(g, τ(P ); [c, d]), hence

Varp(f ; [a, b]) ≤ Varp(g; [c, d]).

Applying this reasoning to the function τ−1 we conclude that also

Varp(g; [c, d]) = Varp(f ◦ τ−1; [c, d]) ≤ Varp(f ; [a, b]).

This shows that g and f = g ◦ τ have the same total p-variation on their
domain of definition, and so the assertion follows.

Our proof shows even more: by definition of the norm (2), the map
g 7→ f = g ◦ τ is an isometry between the spaces (BVp[a, b], ‖ · ‖BVp) and
(BVp[c, d], ‖ · ‖BVp), since f(a) = g(τ(a)) = g(c) and f(b) = g(τ(b)) = g(d).
The following two examples show that we cannot drop the continuity or mono-
tonicity assumption on τ in Theorem 2.

Example 3. Define τ : [0, 4] → [0, 4] by τ(0) := 0 and τ(t) := 3 + t/4 for
0 < t ≤ 4. Then τ is strictly increasing with τ(0) = 0 and τ(4) = 4, but
discontinuous at t = 0. The function g : [0, 4]→ R defined by

g(x) :=


0 for 0 ≤ x ≤ 1,

tan π
2 (x− 1) for 1 < x < 2,

0 for 2 ≤ x ≤ 4,

does not belong to BVp[0, 4] for any p, since it is unbounded near x = 2. On
the other hand, the function f(t) = (g ◦ τ)(t) ≡ 0 trivially belongs to BVp[0, 4]
for all p.

Example 4. For p ≥ 1, define τ : [0, 1]→ [0, 1] by

τ(t) :=

 t

∣∣∣∣sin 1

t

∣∣∣∣p for 0 < t ≤ 1,

0 for t = 0.

Then τ is continuous, but of course far from being monotone. The function
g : [0, 1] → R defined by g(x) := x1/p belongs to Lip1/p[0, 1], hence also to
BVp[0, 1], by (4). On the other hand, the function f = g ◦ τ does not belong
to BVp[0, 1], which can be seen as follows. For n ∈ N, consider the partition

Pn := {0, 1} ∪ {s1, . . . , sn} ∪ {t1, . . . , tn},
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where

sj :=
1

4jπ
, tj :=

1

(4j + 1)π
(j = 1, 2, . . . , n).

Since f(sj) = 0 and f(tj) = tj , the partition Pn gives the contribution

(8) Varp(f, Pn; [0, 1]) ≥
(

2

π

)1/p n∑
k=1

1

(4k + 1)1/p
,

and the sum in (8) is unbounded as n→∞, because p ≥ 1.

Theorem 2 shows that, roughly speaking, monotone surjective maps are
the only suitable changes of variables which preserve bounded p-variation (in
particular, bounded variation).

In the historical paper [8] in which Camille Jordan introduced the class
BV [a, b] he also proved that the function f −Vf is increasing for f ∈ BV [a, b],
and so every function of bounded variation may be represented as difference
of two increasing functions. Now we discuss another type of decomposition
of a function f ∈ BVp[a, b] (in particular, f ∈ BV [a, b]) into a Hölder (in
particular, Lipschitz) continuous function and a monotone change of variables.
The following result may be found in [4] without proof.

Theorem 3. A function f belongs to BVp[a, b] if and only if it may be rep-
resented as composition f = g ◦ τ , where τ : [a, b] → [c, d] is increasing and
g ∈ Lip1/p[c, d] with Hölder constant lip1/p(g) = 1.

Proof. Suppose that f = g◦τ , where g and τ have the mentioned properties.
Given any partition P = {t0, t1, . . . , tm} ∈ P[a, b], we get

Varp(f, P ; [a, b]) =

m∑
j=1

|g(τ(tj))− g(τ(tj−1))|p

≤
m∑
j=1

|τ(tj)− τ(tj−1)|

= |τ(b)− τ(a)|,

hence f ∈ BVp[a, b]. Conversely, let f ∈ BVp[a, b], and put τ(x) = Vf,p(x), see
(4). Then τ maps [a, b] into [c, d], where c = 0 and d = Varp(f ; [a, b]). If we
define the function g on the range τ([a, b]) ⊆ [c, d] by putting g(τ(x)) := f(x),
then the decomposition f = g ◦ τ holds trivially by construction and

|g(τ(s))− g(τ(t))| = |f(s)− f(t)| ≤ Varp(f ; [s, t])1/p ≤ |τ(s)− τ(t)|1/p
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for a ≤ s < t ≤ b. Consequently, g is in fact Hölder continuous with Hölder
exponent α = 1/p and Hölder constant 1, but only on τ([a, b]).

It remains to extend g as a Hölder continuous function with the same
Hölder exponent to the whole interval [c, d]. Here we may use a general result
by McShane [10] which reads as follows. If M ⊂ R and g : M → R is Hölder
continuous with Hölder exponent α ∈ (0, 1], then the map g : R → R defined
by

(9) g(x) := sup {f(z)− lipα(f)|x− z|α : z ∈M}

is Hölder continuous on R with lipα(g) = lipα(g) and satisfies g(x) = g(x) for
x ∈ M . Applying this to g as above on M = τ([a, b]) we obtain the desired
map.

We illustrate Theorem 3 by means of the following simple

Example 5. Let [a, b] = [0, 2] and f = χ{1} be the characteristic function of
the singleton {1}. The variation function τ : [0, 2] → [0, 2] from (1) in this
case has the form

τ(x) = 1 + sgn(x− 1) =


0 for 0 ≤ x < 1,

1 for x = 1,

2 for 1 < x ≤ 2.

Observe that τ([0, 2]) = {0, 1, 2}, g(0) = g(2) = 0, and g(1) = 1, hence
lipα(g) = 1 in this example. Applying the McShane extension (9) to g we end
up with the function

g(x) = max {−|x|α, 1− |x− 1|α,−|x− 2|α} = 1− |x− 1|α (0 ≤ x ≤ 2)

which is easily seen to be Hölder continuous with Hölder exponent α on the
whole interval [0, 2].

The following result may be considered as a refinement of Theorem 2: it
shows that a continuous functions of bounded p variation may be “made”
Hölder continuous with Hölder exponent 1/p, and even differentiable with
bounded derivative, after a suitable homeomorphic change of variables. In
case p = 1 this result has been proved in [3].

Theorem 4. For a function g : [a, b]→ R, the following are equivalent.
(a) The function g is continuous and has bounded p-variation.
(b) There exists a homeomorphism τ : [a, b] → [a, b] such that f = g ◦ τ :

[a, b]→ R is Hölder continuous on [a, b] with Hölder exponent 1/p.
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Proof. Without loss of generality we take [a, b] = [0, 1]. Suppose first that
g ∈ C[0, 1] ∩ BVp[0, 1] and put Vg,p(1) =: ω, see (1). To prove (b) we define
σ : [0, 1]→ [0, 1 + ω] by

(10) σ(x) := x+ Vg,p(x) (0 ≤ x ≤ 1).

Clearly, σ is strictly increasing and surjective and satisfies
(11)
|g(x)−g(y)|p ≤ |Vg,p(x)−Vg,p(y)| ≤ |Vg,p(x) +x−Vg,p(y)−y| = |σ(x)−σ(y)|

for all x, y ∈ [0, 1]. So the map τ : [0, 1]→ [0, 1] defined by

(12) τ(t) := σ−1(t+ ωt) (0 ≤ t ≤ 1)

is strictly increasing with τ(0) = 0 and τ(1) = 1, hence an homeomorphism.
Moreover, from (11) it follows that the map f = g ◦ τ satisfies

|f(s)−f(t)| ≤ |g(τ(s))−g(τ(t))| ≤ |σ(τ(s))−σ(τ(t))|1/p ≤ (1+ω)1/p|s− t|1/p

for all s, t ∈ [0, 1]. This shows that f ∈ Lip1/p[0, 1] with lip1/p(f) ≤ (1+ω)1/p,
and so we have proved (b).

The fact that (b) implies (a) follows from Theorem 2. Indeed, g ◦ τ ∈
Lip1/p[a, b] ⊂ BVp[a, b] implies g = g ◦ τ ◦ τ−1 ∈ BVp[a, b], since every homeo-
morphism of an interval onto itself is strictly monotone.

Observe the subtle difference between Theorems 2 and 4: While a generic
function g ∈ BVp[a, b] in general remains in BVp[a, b] (hence discontinuous)
after a homeomorphic change of variables, a function g ∈ BVp[a, b] ∩ C[a, b]
becomes even Hölder continuous of order 1/p. So adding continuity bridges
the gap (which is essential, as Example 1 shows) between Lip1/p[a, b] and
BVp[a, b].

We illustrate Theorem 4 by means of two examples. The function f in the
first example belongs to BVp[0, 1], but does not belong to Lipα[0, 1] for any
α ∈ (0, 1].

Example 6. For γ > 0, let gγ : [0, 1] → R be defined as in Example 1.
Theorem 4 gives a constructive recipe how to transform the function gγ into a
function f = gγ ◦ τ ∈ Lipα([0, 1]) with arbitrary α < γ. Putting an = 1− 2−n

as in Example 1, we have

Pn := {0, 1

2
,

3

4
, . . . , 1− 2−n} ∈ P[0, an], V arp(gγ , Pn; [0, an]) =

n∑
k=1

1

kpγ
.
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Therefore, in case pγ > 1 the function (10) has the form

σ(x) =


x+

n(x)∑
k=1

1

kpγ
for 0 ≤ x < 1,

1 + Varp(gγ ; [0, 1]) for x = 1,

where n(x) denotes the largest natural number n such that x ≥ an, i.e.,
2−n ≥ 1− x. Since ω is given by the value of the second series in (6), we may
use (12), at least theoretically, to calculate the homeomorphism τ piecewise
in this example.

Example 7. Let g : [0, 1] → [0, 1] be the Cantor function associated to the
classical perfect Cantor nullset C ⊂ [0, 1]. It is well known [6] that g is a
continuous increasing surjective map from [0, 1] onto itself. Moreover, g cannot
be absolutely continuous, by the Vitali-Banach-Zaretskij theorem [9], since
the image g(C) of the nullset C has positive measure, and so g does not have
the Luzin property. However, one may show [1] that g is Hölder continuous
with best possible Hölder exponent α = log 2/ log 3 which precisely coincides
with the Hausdorff dimension of the Cantor set C. By (4), we conclude that
g ∈ BVp[0, 1] for p = log 3/ log 2.

However, we can do better. Indeed, since the Cantor function is monotone,
it belongs to BV [0, 1], so we may choose p = 1 in Theorem 4 and find a home-
omorphism τ : [0, 1]→ [0, 1] such that f = g◦τ is even Lipschitz continuous on
[0, 1]. Moreover, the proof of Theorem 4 shows how to do this. Since Vg = g,
we see that σ(x) = x+ g(x) and therefore

(13) f(t) = g(σ−1(2t)) (0 ≤ t ≤ 1).

To make this more explicit, we consider this function at the endpoints of
the deleted intervals in the construction of the Cantor set C. Clearly.

g(1 · 3−n) = g(2 · 3−n) = 1 · 2−n, g(7 · 3−n) = g(8 · 3−n) = 3 · 2−n,

g(19 · 3−n) = g(20 · 3−n) = 5 · 2−n, . . .

and, more generally,

g(1− 2 · 3−n) = g(1− 1 · 3−n) = 1− 1 · 2−n (n = 1, 2, 3, . . .).

A straightforward, but somewhat cumbersome calculation gives then the
values of the function f in (13) at the points an := 2−(2·3−n+1·2−n) ∈ [0, 1],
and we only have to extend f linearly to a Lipschitz continuous function on
the whole interval [0, 1].
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Although the explicit computation of the function f = g ◦ τ in Example 7
is rather messy, this example has a certain theoretical interest. In [3, Theorem
1] it was shown that, in case of a function g ∈ C[a, b]∩BV [a, b] one may even
find a homeomorphism τ : [a, b] → [a, b] such that f = g ◦ τ : [a, b] → R
is differentiable with bounded derivative on [a, b]. The proof is based on the
fact that in this case we may assume that g is Lipschitz continuous, and
so differentiable a.e. on [a, b]. By Zahorski’s theorem [11,12] one may then
find a homeomorphism τ : [0, 1] → [0, 1] which is differentiable with bounded
derivative τ ′ on [0, 1] and satisfies τ ′(t) = 0 precisely for t ∈ τ−1(G), where G
is an appropriate Gδ nullset which contains all points of non-differentiability
of g. This homeomorphism has then the desired properties. Unfortunately, a
Hölder continuous function need not be differentiable a.e., and so this proof
does not work for g ∈ BVp[a, b] in case p > 1.

The question arises whether or not one may choose, in case p = 1, the
homeomorphism τ in such a way that f = g ◦ τ is even differentiable with
continuous derivative. Example 7 shows that the answer is negative. In fact,
suppose that f = g ◦ τ ∈ C1[0, 1] for some homeomorphism τ : [0, 1] →
[0, 1]. The derivative f ′ of f is equal to 0 at each point of [0, 1] \ τ−1(C).
But τ−1(C) cannot be a nullset, since f , being Lipschitz continuous, has the
Luzin property, and so g(C) = (f ◦ τ−1)(C) would be a nullset as well, a
contradiction. Therefore the derivative of f = g ◦ τ cannot be 0 a.e. on
[0, 1]. So Theorem 1 in [3] is in a certain sense optimal in case p = 1. To
show that our Theorem 4 is optimal in case p > 1, one should find a function
g ∈ BVp[a, b] ∩ C[a, b] such that no homeomorphism τ : [a, b] → [a, b] makes
f = g ◦ τ differentiable; this seems to be an open problem.
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