RESEARCH

N. Merentes, Escuela de Matemáticas, Universidad Central de Venezuela, Caracas, Paseo Los Ilustres 1020 A, Venezuela. email: nmerucv@gmail.com

J. L. Sánchez, Escuela de Matemáticas, Universidad Central de Venezuela, Caracas, Paseo Los Ilustres 1020 A, Venezuela. email: casanay085@hotmail.com

BV_p-FUNCTIONS AND CHANGE OF VARIABLE

Abstract

In this note we discuss some interconnections between the space $BV_p[a, b]$ $(1 \le p < \infty)$ of functions of bounded *p*-variation (in Wiener's sense) and the space $Lip_{\alpha}[a, b]$ $(0 < \alpha \le 1)$ of Hölder continuous functions. In particular, we show that $f \in BV_p[a, b]$ if and only if $f = g \circ \tau$, with $g \in Lip_{1/p}[a, b]$ and τ being monotone, and that $f \in BV_p[a, b] \cap C[a, b]$ if and only if $f = g \circ \tau$, with $g \in Lip_{1/p}[a, b]$ and τ being a homeomorphism.

1 Introduction

In this note we will discuss some interconnections between functions of bounded p-variation for $p \in [1, \infty)$ (in Wiener's sense), on the one hand, and Hölder continuous functions with Hölder exponent $\alpha \in (0, 1]$, on the other. Roughly speaking, classical functions of bounded variation (i.e., p = 1) under these interconnections correspond to Lipschitz continuous functions (i.e., $\alpha = 1$). Passing from Lipschitz to Hölder continuity, however, is often highly nontrivial and by no means "automatic". For instance, a function $f \in Lip[a, b]$ is always differentiable a.e. on [a, b], but this is not true for $f \in Lip_{\alpha}[a, b]$ in case $\alpha < 1$. Similarly, every Lipschitz continuous function has bounded variation, but this fails for Hölder continuous functions of order $\alpha < 1$. Finally,

Mathematical Reviews subject classification: Primary: 26A45, 26A16; Secondary: 26A48 Key words: bounded *p*-variation, Hölder continuity, homeomorphism, change of variables Received by the editors January 31, 2011

Communicated by: Emma D'Aniello

every function in Lip[a, b] has the Luzin (N)-property of preserving Lebesgue nullsets, while this is not true for functions from $Lip_{\alpha}[a, b]$.

The main purpose of this note is to find out which results for functions $f \in BV[a, b]$ (respectively, $f \in Lip[a, b]$) carry over to $f \in BV_p[a, b]$ (respectively, $f \in Lip_{\alpha}[a, b]$), and which do not. Examples of the "asymmetry" between the cases p = 1 and p > 1 are given in Theorem 1 and Theorem 4 below.

2 Main Results

Before we begin our discussion, we briefly recall some definitions and notation. Throughout this note, by $\mathcal{P}[a, b]$ we denote the family of all partitions $P = \{t_0, t_1, \ldots, t_m\}$ $(m \in \mathbb{N})$ of the interval [a, b], and $p \geq 1$ is a real number. Given a function $f : [a, b] \to \mathbb{R}$ we put

$$\operatorname{Var}_{p}(f, P; [a, b]) := \sum_{j=1}^{m} |f(t_{j}) - f(t_{j-1})|^{p} \qquad (P = \{t_{0}, t_{1}, \dots, t_{m}\})$$

and

(1)
$$\operatorname{Var}_p(f;[a,b]) := \sup \left\{ \operatorname{Var}_p(f,P;[a,b]) : P \in \mathcal{P}[a,b] \right\}$$

where the supremum in (1) is taken over all partitions of [a, b], and call (1) the (total) *p*-variation of f over [a, b]. It is not hard to show that the linear space $BV_p[a, b]$ of all functions with finite *p*-variation over [a, b], equipped with the norm

(2)
$$||f||_{BV_p} = |f(a)| + \operatorname{Var}_p(f; [a, b])^{1/p},$$

is a Banach space. For $f \in BV_p[a, b]$ and $a \le x \le b$ we further put

(3)
$$V_{f,p}(x) := \operatorname{Var}_p(f; [a, x]) \qquad (a \le x \le b).$$

Thus, the map $x \mapsto V_{f,p}(x)$ is increasing with $V_{f,p}(a) = 0$ and $V_{f,p}(b) =$ Var_p(f; [a, b]). A detailed study of the properties of functions $f \in BV_p[a, b]$ may be found in [5]. Apart from the space $BV_p[a, b]$, in what follows we will also consider the Banach space $Lip_{\alpha}[a, b]$ ($0 < \alpha \leq 1$) of all Hölder continuous (or Lipschitz continuous, for $\alpha = 1$) functions $f : [a, b] \to \mathbb{R}$ endowed with the norm

$$||f||_{Lip_{\alpha}} := |f(a)| + lip_{\alpha}(f),$$

where

$$lip_{\alpha}(f) := \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

In case p = 1 or $\alpha = 1$ we will drop the subscript 1, so we write $\operatorname{Var}(f, P; [a, b])$, $\operatorname{Var}(f; [a, b]), BV[a, b], V_f(x), lip(f), \text{ and } Lip[a, b] \text{ instead of } \operatorname{Var}_1(f, P; [a, b]),$ $\operatorname{Var}_1(f; [a, b]), BV_1[a, b], V_{f,1}(x), lip_1(f), \text{ and } Lip_1[a, b], \text{ respectively. A straight-forward calculation shows that}$

(4)
$$Lip_{\alpha}[a,b] \subseteq BV_{1/\alpha}[a,b] \quad (0 < \alpha \le 1);$$

in particular, $Lip[a, b] \subseteq BV[a, b]$. The following example shows that the inclusion (4) is actually strict for any $\alpha \in (0, 1]$.

Example 1. For $\gamma > 0$, let $g_{\gamma} : [0,1] \to \mathbb{R}$ be the "zigzag function" defined by

(5)
$$g_{\gamma}(x) := \begin{cases} 0 & \text{for } x = 0, \\ \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k^{\gamma}} & \text{for } x = a_n, \\ \text{linear} & \text{otherwise,} \end{cases}$$

where $a_n := 1 - 2^{-n}$. Geometrically, the graph of g_{γ} starts at the origin and increases linearly by 1 on the interval [0, 1/2] so that $g_{\gamma}(1/2) = 1$. Then we let g_{γ} decrease linearly by $2^{-\gamma}$ on [1/2, 3/4], increase linearly by $3^{-\gamma}$ on [3/4, 7/8], decrease linearly by $4^{-\gamma}$ on [7/8, 15/16], and so on. It follows from the construction and continuity of this zigzag function that

(6)
$$g_{\gamma}(1) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{\gamma}}, \quad \operatorname{Var}_{p}(g_{\gamma}; [0, 1]) = \sum_{k=1}^{\infty} \frac{1}{k^{p\gamma}}$$

In particular, $g_{\gamma} \in BV_p([0, 1])$ if and only if $p\gamma > 1$. On the other hand, the function g_{γ} does not belong to any Hölder space $Lip_{\alpha}([0, 1])$. In fact, a simple geometric reasoning shows that

$$lip_{\alpha}(g_{\gamma}) \ge \sup \{2^{n\alpha}n^{-\gamma} : n = 1, 2, 3, \ldots\}$$

for $0 < \alpha \leq 1$ and $\gamma > 0$, and the exponential growth of $2^{n\alpha}$ always dominates the power type growth of n^{γ} .

Of course, the zigzag function (5) may also be used to show that the inclusion $BV_p[a, b] \subseteq BV_q[a, b]$ is strict for $1 \le p < q$.

We point out that the inclusion $Lip[a, b] \subseteq BV[a, b]$ is in a certain sense sharp, inasmuch as one may construct, for fixed $\alpha \in (0, 1)$, a function which belongs to $Lip_{\alpha}[0, 1]$ but not to BV[0, 1], see [2, Exercise 14.28], or even a function which belongs to $Lip_{\alpha}[0, 1]$ for every $\alpha \in (0, 1)$ but not to BV[0, 1], see [2, Exercise 14.29]. Such examples, however, are somewhat more complicated than our Example 1. Since the Russian reference [2] is not easily accessible, for the reader's ease we briefly recall these examples.

Example 2. The first function constructed in [2, Exercise 14.28] looks very much like a "mirror reversed version" of our zigzag function (5). Define a constant γ and a sequence $(t_n)_n$ in [0, 1] by

$$\gamma := \sum_{k=1}^\infty \frac{1}{k^{1/\alpha}}, \qquad t_n := \frac{1}{\gamma} \sum_{k=n}^\infty \frac{1}{k^{1/\alpha}}.$$

Then we define $f:[0,1] \to \mathbb{R}$ by

$$f(x) := \begin{cases} 0 & \text{for } x = 0, \\ \frac{(-1)^n}{n} & \text{for } x = t_n, \\ \text{linear} & \text{otherwise.} \end{cases}$$

By choosing partitions containing t_1, t_2, \ldots, t_n and using the divergence of the harmonic series, it is easy to see that $f \notin BV[0,1]$. On the other hand, distinguishing several cases for x and y, one may prove that $|f(x) - f(y)| \leq 4|x - y|^{\alpha}$, and so $f \in Lip_{\alpha}[0,1]$.

In [2, Exercise 14.29] the authors replace γ and $(t_n)_n$ in this example by

$$\gamma := \sum_{k=1}^{\infty} \frac{1}{k \log^2(k+1)}, \qquad t_n := \frac{1}{\gamma} \sum_{k=n}^{\infty} \frac{1}{k \log^2(k+1)}$$

and define $f : [0,1] \to \mathbb{R}$ precisely as before. Again, one may show, by considering partitions containing t_1, t_2, \ldots, t_n , that $f \notin BV[0,1]$. On the other hand, a somewhat cumbersome calculation shows that f belongs to $Lip_{\alpha}[0,1]$ for any $\alpha < 1$.

Our first theorem is concerned with the "interaction" between the variation function $V_{f,p}$ given in (3) and its parent function f. A detailed discussion of such interactions may be found in the survey paper [7]; for example, it is well-known that $V_{f,p}$ is (absolutely) continuous if f is (absolutely) continuous, and vice versa. Here we prove a special result related to Hölder continuity (in particular, Lipschitz continuity) of the function (3).

Theorem 1. For $f \in BV_p[a, b]$ and $V_{f,p}$ as in (3), the following statements are true. (a) The function f is Hölder continuous of order $\alpha = 1/p$ if and

BV_p -Functions and Change of Variable

only if the function $V_{f,p}$ is Lipschitz continuous; moreover, in this case we have $lip_{1/p}(f) = lip(V_{f,p})^{1/p}$. (b) The function f is Hölder continuous of order $\alpha/p \in (0,1)$ if the function $V_{f,p}$ is Hölder continuous order α ; moreover, in this case we have $lip_{\alpha/p}(f) \leq lip_{\alpha}(V_{f,p})^{1/p}$.

PROOF. Suppose that $f \in Lip_{1/p}[a, b]$, $L > lip_{1/p}(f)$, and $a \le x < y \le b$, and let $P = \{t_0, t_1, \ldots, t_m\} \in \mathcal{P}[x, y]$ be any partition of the interval [x, y]. Then

$$\sum_{j=1}^{m} |f(t_j) - f(t_{j-1})|^p \le L^p \sum_{j=1}^{m} (t_j - t_{j-1}) = L^p (y - x)$$

and so

$$V_{f,p}(y) - V_{f,p}(x) = \operatorname{Var}_p(f; [x, y]) \le L^p(y - x),$$

which shows that $V_{f,p} \in Lip[a,b]$ with $lip(V_{f,p}) \leq lip_{1/p}(f)^p$. Conversely, suppose that $V_{f,p} \in Lip[a,b]$ and $a \leq x < y \leq b$. Then

(7)
$$|f(x) - f(y)|^p \le \operatorname{Var}_p(f; [x, y]) = V_{f, p}(y) - V_{f, p}(x) \le lip(V_{f, p})|x - y|$$

which shows that $f \in Lip_{1/p}[a, b]$ with $lip_{1/p}(f) \leq lip(V_{f,p})^{1/p}$ and proves (a). To prove (b) observe that (7) in case $V_{f,p} \in Lip_{\alpha}[a, b]$ reads

$$|f(x) - f(y)|^{p} \le \operatorname{Var}_{p}(f; [x, y]) = V_{f, p}(y) - V_{f, p}(x) \le \operatorname{lip}_{\alpha}(V_{f, p})|x - y|^{\alpha}$$

which shows that $f \in Lip_{\alpha/p}[a,b]$ with $lip_{\alpha/p}(f) \leq lip_{\alpha}(V_{f,p})^{1/p}$.

The proof of (a) shows that $\|V_{f,p}\|_{Lip} = \|f\|_{Lip_{1/p}}^p$ (in particular, $\|V_f\|_{Lip} = \|f\|_{Lip}$) for all functions $f \in Lip_{1/p}[a, b]$ satisfying f(a) = 0. Observe that there is an asymmetry in statement (b) of Theorem 1: we did *not* claim that $f \in Lip_{\alpha/p}$ (hence $f \in BV_{p/\alpha}[a, b]$) implies $V_{f,p} \in Lip_{\alpha}$. In fact, to the best of our knowledge this is an open problem even in case p = 1, i.e., for functions $f \in BV[a, b] \cap Lip_{\alpha}[a, b]$ for $0 < \alpha < 1$. Of course, if one merely requires $f \in Lip_{\alpha}[a, b]$, Example 2 shows that the answer is negative, because in this case the function $x \mapsto V_f(x)$ jumps from 0 to ∞ as soon as x gets positive.

Our next theorem gives a simple sufficient condition under which a "change of variables" preserves bounded *p*-variation.

Theorem 2. Let $g : [c,d] \to \mathbb{R}$ a bounded map and $\tau : [a,b] \to [c,d]$ strictly increasing and onto. Then $f := g \circ \tau \in BV_p[a,b]$ if and only if $g \in BV_p[c,d]$.

PROOF. First of all, note that τ is continuous, by the intermediate value theorem, and so a homeomorphism. Moreover, our assumptions on τ imply that

$$\tau(\{t_0, t_1, \dots, t_m\}) = \{\tau(t_0), \tau(t_1), \dots, \tau(t_m)\}$$

is a bijection between $\mathcal{P}[a, b]$ and $\mathcal{P}[c, d]$. Therefore, for every function $g \in BV[c, d]$ we have $\operatorname{Var}_p(f, P; [a, b]) = \operatorname{Var}_p(g, \tau(P); [c, d])$, hence

$$\operatorname{Var}_p(f; [a, b]) \le \operatorname{Var}_p(g; [c, d])$$

Applying this reasoning to the function τ^{-1} we conclude that also

$$\operatorname{Var}_p(g; [c, d]) = \operatorname{Var}_p(f \circ \tau^{-1}; [c, d]) \le \operatorname{Var}_p(f; [a, b]).$$

This shows that g and $f = g \circ \tau$ have the same total p-variation on their domain of definition, and so the assertion follows.

Our proof shows even more: by definition of the norm (2), the map $g \mapsto f = g \circ \tau$ is an *isometry* between the spaces $(BV_p[a, b], \|\cdot\|_{BV_p})$ and $(BV_p[c, d], \|\cdot\|_{BV_p})$, since $f(a) = g(\tau(a)) = g(c)$ and $f(b) = g(\tau(b)) = g(d)$. The following two examples show that we cannot drop the continuity or monotonicity assumption on τ in Theorem 2.

Example 3. Define $\tau : [0,4] \to [0,4]$ by $\tau(0) := 0$ and $\tau(t) := 3 + t/4$ for $0 < t \le 4$. Then τ is strictly increasing with $\tau(0) = 0$ and $\tau(4) = 4$, but discontinuous at t = 0. The function $g : [0,4] \to \mathbb{R}$ defined by

$$g(x) := \begin{cases} 0 & \text{for } 0 \le x \le 1, \\ \tan \frac{\pi}{2}(x-1) & \text{for } 1 < x < 2, \\ 0 & \text{for } 2 \le x \le 4, \end{cases}$$

does not belong to $BV_p[0, 4]$ for any p, since it is unbounded near x = 2. On the other hand, the function $f(t) = (g \circ \tau)(t) \equiv 0$ trivially belongs to $BV_p[0, 4]$ for all p.

Example 4. For $p \ge 1$, define $\tau : [0, 1] \rightarrow [0, 1]$ by

$$\tau(t) := \begin{cases} t \left| \sin \frac{1}{t} \right|^p & \text{for } 0 < t \le 1, \\ 0 & \text{for } t = 0. \end{cases}$$

Then τ is continuous, but of course far from being monotone. The function $g: [0,1] \to \mathbb{R}$ defined by $g(x) := x^{1/p}$ belongs to $Lip_{1/p}[0,1]$, hence also to $BV_p[0,1]$, by (4). On the other hand, the function $f = g \circ \tau$ does not belong to $BV_p[0,1]$, which can be seen as follows. For $n \in \mathbb{N}$, consider the partition

$$P_n := \{0, 1\} \cup \{s_1, \dots, s_n\} \cup \{t_1, \dots, t_n\},\$$

where

$$s_j := \frac{1}{4j\pi}, \quad t_j := \frac{1}{(4j+1)\pi} \qquad (j = 1, 2, \dots, n).$$

Since $f(s_j) = 0$ and $f(t_j) = t_j$, the partition P_n gives the contribution

(8)
$$\operatorname{Var}_{p}(f, P_{n}; [0, 1]) \ge \left(\frac{2}{\pi}\right)^{1/p} \sum_{k=1}^{n} \frac{1}{(4k+1)^{1/p}}$$

and the sum in (8) is unbounded as $n \to \infty$, because $p \ge 1$.

Theorem 2 shows that, roughly speaking, monotone surjective maps are the only suitable changes of variables which preserve bounded *p*-variation (in particular, bounded variation).

In the historical paper [8] in which Camille Jordan introduced the class BV[a, b] he also proved that the function $f - V_f$ is increasing for $f \in BV[a, b]$, and so every function of bounded variation may be represented as difference of two increasing functions. Now we discuss another type of decomposition of a function $f \in BV_p[a, b]$ (in particular, $f \in BV[a, b]$) into a Hölder (in particular, Lipschitz) continuous function and a monotone change of variables. The following result may be found in [4] without proof.

Theorem 3. A function f belongs to $BV_p[a, b]$ if and only if it may be represented as composition $f = g \circ \tau$, where $\tau : [a, b] \to [c, d]$ is increasing and $g \in Lip_{1/p}[c, d]$ with Hölder constant $lip_{1/p}(g) = 1$.

PROOF. Suppose that $f = g \circ \tau$, where g and τ have the mentioned properties. Given any partition $P = \{t_0, t_1, \ldots, t_m\} \in \mathcal{P}[a, b]$, we get

$$\operatorname{Var}_{p}(f, P; [a, b]) = \sum_{j=1}^{m} |g(\tau(t_{j})) - g(\tau(t_{j-1}))|^{p}$$
$$\leq \sum_{j=1}^{m} |\tau(t_{j}) - \tau(t_{j-1})|$$
$$= |\tau(b) - \tau(a)|,$$

hence $f \in BV_p[a, b]$. Conversely, let $f \in BV_p[a, b]$, and put $\tau(x) = V_{f,p}(x)$, see (4). Then τ maps [a, b] into [c, d], where c = 0 and $d = \operatorname{Var}_p(f; [a, b])$. If we define the function g on the range $\tau([a, b]) \subseteq [c, d]$ by putting $g(\tau(x)) := f(x)$, then the decomposition $f = g \circ \tau$ holds trivially by construction and

$$|g(\tau(s)) - g(\tau(t))| = |f(s) - f(t)| \le \operatorname{Var}_p(f; [s, t])^{1/p} \le |\tau(s) - \tau(t)|^{1/p}$$

for $a \leq s < t \leq b$. Consequently, g is in fact Hölder continuous with Hölder exponent $\alpha = 1/p$ and Hölder constant 1, but only on $\tau([a, b])$.

It remains to extend g as a Hölder continuous function with the same Hölder exponent to the whole interval [c, d]. Here we may use a general result by McShane [10] which reads as follows. If $M \subset \mathbb{R}$ and $g : M \to \mathbb{R}$ is Hölder continuous with Hölder exponent $\alpha \in (0, 1]$, then the map $\overline{g} : \mathbb{R} \to \mathbb{R}$ defined by

(9)
$$\overline{g}(x) := \sup \left\{ f(z) - lip_{\alpha}(f) | x - z|^{\alpha} : z \in M \right\}$$

is Hölder continuous on \mathbb{R} with $lip_{\alpha}(\overline{g}) = lip_{\alpha}(g)$ and satisfies $\overline{g}(x) = g(x)$ for $x \in M$. Applying this to g as above on $M = \tau([a, b])$ we obtain the desired map.

We illustrate Theorem 3 by means of the following simple

Example 5. Let [a, b] = [0, 2] and $f = \chi_{\{1\}}$ be the characteristic function of the singleton $\{1\}$. The variation function $\tau : [0, 2] \to [0, 2]$ from (1) in this case has the form

$$\tau(x) = 1 + \operatorname{sgn}(x - 1) = \begin{cases} 0 & \text{for } 0 \le x < 1, \\ 1 & \text{for } x = 1, \\ 2 & \text{for } 1 < x \le 2. \end{cases}$$

Observe that $\tau([0,2]) = \{0,1,2\}, g(0) = g(2) = 0$, and g(1) = 1, hence $lip_{\alpha}(g) = 1$ in this example. Applying the McShane extension (9) to g we end up with the function

$$\overline{g}(x) = \max\left\{-|x|^{\alpha}, 1 - |x - 1|^{\alpha}, -|x - 2|^{\alpha}\right\} = 1 - |x - 1|^{\alpha} \quad (0 \le x \le 2)$$

which is easily seen to be Hölder continuous with Hölder exponent α on the whole interval [0, 2].

The following result may be considered as a refinement of Theorem 2: it shows that a *continuous* functions of bounded p variation may be "made" Hölder continuous with Hölder exponent 1/p, and even differentiable with bounded derivative, after a suitable homeomorphic change of variables. In case p = 1 this result has been proved in [3].

Theorem 4. For a function $g : [a, b] \to \mathbb{R}$, the following are equivalent.

(a) The function g is continuous and has bounded p-variation.

(b) There exists a homeomorphism $\tau : [a, b] \to [a, b]$ such that $f = g \circ \tau : [a, b] \to \mathbb{R}$ is Hölder continuous on [a, b] with Hölder exponent 1/p.

184

PROOF. Without loss of generality we take [a, b] = [0, 1]. Suppose first that $g \in C[0,1] \cap BV_p[0,1]$ and put $V_{q,p}(1) =: \omega$, see (1). To prove (b) we define $\sigma: [0,1] \to [0,1+\omega]$ by

(10)
$$\sigma(x) := x + V_{g,p}(x) \quad (0 \le x \le 1).$$

Clearly, σ is strictly increasing and surjective and satisfies (11)

 $|g(x) - g(y)|^p \le |V_{g,p}(x) - V_{g,p}(y)| \le |V_{g,p}(x) + x - V_{g,p}(y) - y| = |\sigma(x) - \sigma(y)|$

for all $x, y \in [0, 1]$. So the map $\tau : [0, 1] \to [0, 1]$ defined by

(12)
$$\tau(t) := \sigma^{-1}(t + \omega t) \quad (0 \le t \le 1)$$

is strictly increasing with $\tau(0) = 0$ and $\tau(1) = 1$, hence an homeomorphism. Moreover, from (11) it follows that the map $f = g \circ \tau$ satisfies

$$|f(s) - f(t)| \le |g(\tau(s)) - g(\tau(t))| \le |\sigma(\tau(s)) - \sigma(\tau(t))|^{1/p} \le (1 + \omega)^{1/p} |s - t|^{1/p} |s -$$

for all $s, t \in [0, 1]$. This shows that $f \in Lip_{1/p}[0, 1]$ with $lip_{1/p}(f) \leq (1+\omega)^{1/p}$, and so we have proved (b).

The fact that (b) implies (a) follows from Theorem 2. Indeed, $g \circ \tau \in$ $Lip_{1/p}[a,b] \subset BV_p[a,b]$ implies $g = g \circ \tau \circ \tau^{-1} \in BV_p[a,b]$, since every homeomorphism of an interval onto itself is strictly monotone.

Observe the subtle difference between Theorems 2 and 4: While a generic function $g \in BV_p[a, b]$ in general remains in $BV_p[a, b]$ (hence discontinuous) after a homeomorphic change of variables, a function $g \in BV_p[a,b] \cap C[a,b]$ becomes even Hölder continuous of order 1/p. So adding continuity bridges the gap (which is essential, as Example 1 shows) between $Lip_{1/p}[a, b]$ and $BV_p[a,b].$

We illustrate Theorem 4 by means of two examples. The function f in the first example belongs to $BV_p[0,1]$, but does not belong to $Lip_{\alpha}[0,1]$ for any $\alpha \in (0,1].$

Example 6. For $\gamma > 0$, let $g_{\gamma} : [0,1] \to \mathbb{R}$ be defined as in Example 1. Theorem 4 gives a constructive recipe how to transform the function g_{γ} into a function $f = g_{\gamma} \circ \tau \in Lip_{\alpha}([0,1])$ with arbitrary $\alpha < \gamma$. Putting $a_n = 1 - 2^{-n}$ as in Example 1, we have

$$P_n := \{0, \frac{1}{2}, \frac{3}{4}, \dots, 1 - 2^{-n}\} \in \mathcal{P}[0, a_n], \quad Var_p(g_\gamma, P_n; [0, a_n]) = \sum_{k=1}^n \frac{1}{k^{p\gamma}}.$$

Therefore, in case $p\gamma > 1$ the function (10) has the form

$$\sigma(x) = \begin{cases} x + \sum_{k=1}^{n(x)} \frac{1}{k^{p\gamma}} & \text{for } 0 \le x < 1, \\ 1 + \operatorname{Var}_p(g_{\gamma}; [0, 1]) & \text{for } x = 1, \end{cases}$$

where n(x) denotes the largest natural number n such that $x \ge a_n$, i.e., $2^{-n} \ge 1-x$. Since ω is given by the value of the second series in (6), we may use (12), at least theoretically, to calculate the homeomorphism τ piecewise in this example.

Example 7. Let $g : [0,1] \to [0,1]$ be the Cantor function associated to the classical perfect Cantor nullset $C \subset [0,1]$. It is well known [6] that g is a continuous increasing surjective map from [0,1] onto itself. Moreover, g cannot be absolutely continuous, by the Vitali-Banach-Zaretskij theorem [9], since the image g(C) of the nullset C has positive measure, and so g does not have the Luzin property. However, one may show [1] that g is Hölder continuous with best possible Hölder exponent $\alpha = \log 2/\log 3$ which precisely coincides with the Hausdorff dimension of the Cantor set C. By (4), we conclude that $g \in BV_p[0,1]$ for $p = \log 3/\log 2$.

However, we can do better. Indeed, since the Cantor function is monotone, it belongs to BV[0, 1], so we may choose p = 1 in Theorem 4 and find a homeomorphism $\tau : [0, 1] \to [0, 1]$ such that $f = g \circ \tau$ is even *Lipschitz continuous* on [0, 1]. Moreover, the proof of Theorem 4 shows how to do this. Since $V_g = g$, we see that $\sigma(x) = x + g(x)$ and therefore

(13)
$$f(t) = g(\sigma^{-1}(2t)) \quad (0 \le t \le 1).$$

To make this more explicit, we consider this function at the endpoints of the deleted intervals in the construction of the Cantor set C. Clearly.

$$g(1 \cdot 3^{-n}) = g(2 \cdot 3^{-n}) = 1 \cdot 2^{-n}, \quad g(7 \cdot 3^{-n}) = g(8 \cdot 3^{-n}) = 3 \cdot 2^{-n},$$
$$g(19 \cdot 3^{-n}) = g(20 \cdot 3^{-n}) = 5 \cdot 2^{-n}, \dots$$

and, more generally,

 $g(1-2\cdot 3^{-n}) = g(1-1\cdot 3^{-n}) = 1-1\cdot 2^{-n} \quad (n=1,2,3,\ldots).$

A straightforward, but somewhat cumbersome calculation gives then the values of the function f in (13) at the points $a_n := 2 - (2 \cdot 3^{-n} + 1 \cdot 2^{-n}) \in [0, 1]$, and we only have to extend f linearly to a Lipschitz continuous function on the whole interval [0, 1].

BV_p -Functions and Change of Variable

Although the explicit computation of the function $f = g \circ \tau$ in Example 7 is rather messy, this example has a certain theoretical interest. In [3, Theorem 1] it was shown that, in case of a function $g \in C[a, b] \cap BV[a, b]$ one may even find a homeomorphism $\tau : [a, b] \to [a, b]$ such that $f = g \circ \tau : [a, b] \to \mathbb{R}$ is differentiable with bounded derivative on [a, b]. The proof is based on the fact that in this case we may assume that g is Lipschitz continuous, and so differentiable a.e. on [a, b]. By Zahorski's theorem [11,12] one may then find a homeomorphism $\tau : [0, 1] \to [0, 1]$ which is differentiable with bounded derivative τ' on [0, 1] and satisfies $\tau'(t) = 0$ precisely for $t \in \tau^{-1}(G)$, where Gis an appropriate G_{δ} nullset which contains all points of non-differentiability of g. This homeomorphism has then the desired properties. Unfortunately, a Hölder continuous function need not be differentiable a.e., and so this proof does not work for $g \in BV_p[a, b]$ in case p > 1.

The question arises whether or not one may choose, in case p = 1, the homeomorphism τ in such a way that $f = g \circ \tau$ is even differentiable with *continuous* derivative. Example 7 shows that the answer is negative. In fact, suppose that $f = g \circ \tau \in C^1[0,1]$ for some homeomorphism $\tau : [0,1] \rightarrow$ [0,1]. The derivative f' of f is equal to 0 at each point of $[0,1] \setminus \tau^{-1}(C)$. But $\tau^{-1}(C)$ cannot be a nullset, since f, being Lipschitz continuous, has the Luzin property, and so $g(C) = (f \circ \tau^{-1})(C)$ would be a nullset as well, a contradiction. Therefore the derivative of $f = g \circ \tau$ cannot be 0 a.e. on [0,1]. So Theorem 1 in [3] is in a certain sense optimal in case p = 1. To show that our Theorem 4 is optimal in case p > 1, one should find a function $g \in BV_p[a,b] \cap C[a,b]$ such that no homeomorphism $\tau : [a,b] \rightarrow [a,b]$ makes $f = g \circ \tau$ differentiable; this seems to be an open problem.

References

- J. Appell, E. D'Aniello, M. Väth, Some remarks on small sets, Ric. Mat. 50 (2001), 255–274.
- [2] A. N. Bakhvalov, M. I. Dyachenko, K. S. Kazaryan, P. Sifuentes, P. L. Ul'yanov, *Real Analysis in Exercises*, Fizmatlit, Moskva 2005. (Russian).
- [3] A. M. Bruckner, C. Goffman, Differentiability through change of variables, Proc. Amer. Math. Soc., 61 (1976), 235–241.
- [4] M. Bruneau, Variation Totale d'une Fonction, Lecture Notes in Math. 413, Springer, Berlin 1974.

- [5] F. W. Gehring, A study of α-variation, Trans. Amer. Math. Soc., 76 (1954), 420–443.
- [6] B. R. Gelbaum, J. M. H. Olmstedt, *Counterexamples in Analysis*, Holden-Day, San Francisco, 1964.
- [7] F. N. Huggins, Some interesting properties of the variation function, Amer. Math. Monthly, 83 (1976), 538-546.
- [8] C. Jordan, Sur les séries de Fourier, C. R. Math. Acad. Sci. Paris 2 (1881), 228–230.
- [9] R. Kannan, C. K. Krueger, Advanced Analysis on the Real Line, Springer, Berlin 1996.
- [10] E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc., 40 (1934), 837–842.
- [11] Z. Zahorski, Über die Menge der Punkte, in welchen die Ableitung unendlich ist, Tohoku Math. J. 48 (1941), 321–330.
- [12] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc., 69 (1950), 1–54.