N. Merentes, Escuela de Matemáticas, Universidad Central de Venezuela, Caracas, Paseo Los Ilustres 1020 A, Venezuela. email: nmerucv@gmail.com
J. L. Sánchez, Escuela de Matemáticas, Universidad Central de Venezuela, Caracas, Paseo Los Ilustres 1020 A, Venezuela. email:
casanay085@hotmail.com

$B V_{p}$-FUNCTIONS AND CHANGE OF VARIABLE

Abstract

In this note we discuss some interconnections between the space $B V_{p}[a, b](1 \leq p<\infty)$ of functions of bounded p-variation (in Wiener's sense) and the space $\operatorname{Lip}_{\alpha}[a, b](0<\alpha \leq 1)$ of Hölder continuous functions. In particular, we show that $f \in B V_{p}[a, b]$ if and only if $f=g \circ \tau$, with $g \in \operatorname{Lip}_{1 / p}[a, b]$ and τ being monotone, and that $f \in B V_{p}[a, b] \cap C[a, b]$ if and only if $f=g \circ \tau$, with $g \in \operatorname{Lip}_{1 / p}[a, b]$ and τ being a homeomorphism.

1 Introduction

In this note we will discuss some interconnections between functions of bounded p-variation for $p \in[1, \infty)$ (in Wiener's sense), on the one hand, and Hölder continuous functions with Hölder exponent $\alpha \in(0,1]$, on the other. Roughly speaking, classical functions of bounded variation (i.e., $p=1$) under these interconnections correspond to Lipschitz continuous functions (i.e., $\alpha=1$). Passing from Lipschitz to Hölder continuity, however, is often highly nontrivial and by no means "automatic". For instance, a function $f \in \operatorname{Lip}[a, b]$ is always differentiable a.e. on $[a, b]$, but this is not true for $f \in \operatorname{Lip}[a, b]$ in case $\alpha<1$. Similarly, every Lipschitz continuous function has bounded variation, but this fails for Hölder continuous functions of order $\alpha<1$. Finally,

[^0]every function in $\operatorname{Lip}[a, b]$ has the Luzin (N)-property of preserving Lebesgue nullsets, while this is not true for functions from $\operatorname{Lip}_{\alpha}[a, b]$.

The main purpose of this note is to find out which results for functions $f \in$ $B V[a, b]$ (respectively, $f \in \operatorname{Lip}[a, b]$) carry over to $f \in B V_{p}[a, b]$ (respectively, $f \in \operatorname{Lip}_{\alpha}[a, b]$), and which do not. Examples of the "asymmetry" between the cases $p=1$ and $p>1$ are given in Theorem 1 and Theorem 4 below.

2 Main Results

Before we begin our discussion, we briefly recall some definitions and notation. Throughout this note, by $\mathcal{P}[a, b]$ we denote the family of all partitions $P=$ $\left\{t_{0}, t_{1}, \ldots, t_{m}\right\}(m \in \mathbb{N})$ of the interval $[a, b]$, and $p \geq 1$ is a real number. Given a function $f:[a, b] \rightarrow \mathbb{R}$ we put

$$
\operatorname{Var}_{p}(f, P ;[a, b]):=\sum_{j=1}^{m}\left|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right|^{p} \quad\left(P=\left\{t_{0}, t_{1}, \ldots, t_{m}\right\}\right)
$$

and

$$
\begin{equation*}
\operatorname{Var}_{p}(f ;[a, b]):=\sup \left\{\operatorname{Var}_{p}(f, P ;[a, b]): P \in \mathcal{P}[a, b]\right\} \tag{1}
\end{equation*}
$$

where the supremum in (1) is taken over all partitions of $[a, b]$, and call (1) the (total) p-variation of f over $[a, b]$. It is not hard to show that the linear space $B V_{p}[a, b]$ of all functions with finite p-variation over $[a, b]$, equipped with the norm

$$
\begin{equation*}
\|f\|_{B V_{p}}=|f(a)|+\operatorname{Var}_{p}(f ;[a, b])^{1 / p} \tag{2}
\end{equation*}
$$

is a Banach space. For $f \in B V_{p}[a, b]$ and $a \leq x \leq b$ we further put

$$
\begin{equation*}
V_{f, p}(x):=\operatorname{Var}_{p}(f ;[a, x]) \quad(a \leq x \leq b) \tag{3}
\end{equation*}
$$

Thus, the map $x \mapsto V_{f, p}(x)$ is increasing with $V_{f, p}(a)=0$ and $V_{f, p}(b)=$ $\operatorname{Var}_{p}(f ;[a, b])$. A detailed study of the properties of functions $f \in B V_{p}[a, b]$ may be found in [5]. Apart from the space $B V_{p}[a, b]$, in what follows we will also consider the Banach space $\operatorname{Lip}_{\alpha}[a, b](0<\alpha \leq 1)$ of all Hölder continuous (or Lipschitz continuous, for $\alpha=1$) functions $f:[a, b] \rightarrow \mathbb{R}$ endowed with the norm

$$
\|f\|_{L^{i p_{\alpha}}}:=|f(a)|+l i p_{\alpha}(f)
$$

where

$$
\operatorname{lip}_{\alpha}(f):=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}
$$

In case $p=1$ or $\alpha=1$ we will drop the subscript 1 , so we write $\operatorname{Var}(f, P ;[a, b])$, $\operatorname{Var}(f ;[a, b]), B V[a, b], V_{f}(x), \operatorname{lip}(f)$, and $\operatorname{Lip}[a, b]$ instead of $\operatorname{Var}_{1}(f, P ;[a, b])$, $\operatorname{Var}_{1}(f ;[a, b]), B V_{1}[a, b], V_{f, 1}(x), l i p_{1}(f)$, and $L i p_{1}[a, b]$, respectively. A straightforward calculation shows that

$$
\begin{equation*}
\operatorname{Lip}_{\alpha}[a, b] \subseteq B V_{1 / \alpha}[a, b] \quad(0<\alpha \leq 1) \tag{4}
\end{equation*}
$$

in particular, $\operatorname{Lip}[a, b] \subseteq B V[a, b]$. The following example shows that the inclusion (4) is actually strict for any $\alpha \in(0,1]$.

Example 1. For $\gamma>0$, let $g_{\gamma}:[0,1] \rightarrow \mathbb{R}$ be the "zigzag function" defined by

$$
g_{\gamma}(x):= \begin{cases}0 & \text { for } x=0 \tag{5}\\ \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k^{\gamma}} & \text { for } x=a_{n} \\ \text { linear } & \text { otherwise }\end{cases}
$$

where $a_{n}:=1-2^{-n}$. Geometrically, the graph of g_{γ} starts at the origin and increases linearly by 1 on the interval $[0,1 / 2]$ so that $g_{\gamma}(1 / 2)=1$. Then we let g_{γ} decrease linearly by $2^{-\gamma}$ on $[1 / 2,3 / 4]$, increase linearly by $3^{-\gamma}$ on $[3 / 4,7 / 8]$, decrease linearly by $4^{-\gamma}$ on $[7 / 8,15 / 16]$, and so on. It follows from the construction and continuity of this zigzag function that

$$
\begin{equation*}
g_{\gamma}(1)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{\gamma}}, \quad \operatorname{Var}_{p}\left(g_{\gamma} ;[0,1]\right)=\sum_{k=1}^{\infty} \frac{1}{k^{p \gamma}} \tag{6}
\end{equation*}
$$

In particular, $g_{\gamma} \in B V_{p}([0,1])$ if and only if $p \gamma>1$. On the other hand, the function g_{γ} does not belong to any Hölder space $\operatorname{Lip}_{\alpha}([0,1])$. In fact, a simple geometric reasoning shows that

$$
\operatorname{lip}_{\alpha}\left(g_{\gamma}\right) \geq \sup \left\{2^{n \alpha} n^{-\gamma}: n=1,2,3, \ldots\right\}
$$

for $0<\alpha \leq 1$ and $\gamma>0$, and the exponential growth of $2^{n \alpha}$ always dominates the power type growth of n^{γ}.

Of course, the zigzag function (5) may also be used to show that the inclusion $B V_{p}[a, b] \subseteq B V_{q}[a, b]$ is strict for $1 \leq p<q$.

We point out that the inclusion $\operatorname{Lip}[a, b] \subseteq B V[a, b]$ is in a certain sense sharp, inasmuch as one may construct, for fixed $\alpha \in(0,1)$, a function which belongs to $\operatorname{Lip}_{\alpha}[0,1]$ but not to $B V[0,1]$, see [2, Exercise 14.28], or even a
function which belongs to $\operatorname{Lip}_{\alpha}[0,1]$ for every $\alpha \in(0,1)$ but not to $B V[0,1]$, see [2, Exercise 14.29]. Such examples, however, are somewhat more complicated than our Example 1. Since the Russian reference [2] is not easily accessible, for the reader's ease we briefly recall these examples.

Example 2. The first function constructed in [2, Exercise 14.28] looks very much like a "mirror reversed version" of our zigzag function (5). Define a constant γ and a sequence $\left(t_{n}\right)_{n}$ in $[0,1]$ by

$$
\gamma:=\sum_{k=1}^{\infty} \frac{1}{k^{1 / \alpha}}, \quad t_{n}:=\frac{1}{\gamma} \sum_{k=n}^{\infty} \frac{1}{k^{1 / \alpha}} .
$$

Then we define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x):= \begin{cases}0 & \text { for } x=0 \\ \frac{(-1)^{n}}{n} & \text { for } x=t_{n} \\ \text { linear } & \text { otherwise }\end{cases}
$$

By choosing partitions containing $t_{1}, t_{2}, \ldots, t_{n}$ and using the divergence of the harmonic series, it is easy to see that $f \notin B V[0,1]$. On the other hand, distinguishing several cases for x and y, one may prove that $|f(x)-f(y)| \leq$ $4|x-y|^{\alpha}$, and so $f \in \operatorname{Lip} p_{\alpha}[0,1]$.

In [2, Exercise 14.29] the authors replace γ and $\left(t_{n}\right)_{n}$ in this example by

$$
\gamma:=\sum_{k=1}^{\infty} \frac{1}{k \log ^{2}(k+1)}, \quad t_{n}:=\frac{1}{\gamma} \sum_{k=n}^{\infty} \frac{1}{k \log ^{2}(k+1)},
$$

and define $f:[0,1] \rightarrow \mathbb{R}$ precisely as before. Again, one may show, by considering partitions containing $t_{1}, t_{2}, \ldots, t_{n}$, that $f \notin B V[0,1]$. On the other hand, a somewhat cumbersome calculation shows that f belongs to $\operatorname{Lip}_{\alpha}[0,1]$ for any $\alpha<1$.

Our first theorem is concerned with the "interaction" between the variation function $V_{f, p}$ given in (3) and its parent function f. A detailed discussion of such interactions may be found in the survey paper [7]; for example, it is well-known that $V_{f, p}$ is (absolutely) continuous if f is (absolutely) continuous, and vice versa. Here we prove a special result related to Hölder continuity (in particular, Lipschitz continuity) of the function (3).
Theorem 1. For $f \in B V_{p}[a, b]$ and $V_{f, p}$ as in (3), the following statements are true. (a) The function f is Hölder continuous of order $\alpha=1 / p$ if and
only if the function $V_{f, p}$ is Lipschitz continuous; moreover, in this case we have $\operatorname{lip}_{1 / p}(f)=\operatorname{lip}\left(V_{f, p}\right)^{1 / p}$. (b) The function f is Hölder continuous of order $\alpha / p \in(0,1)$ if the function $V_{f, p}$ is Hölder continuous order α; moreover, in this case we have $\operatorname{lip}_{\alpha / p}(f) \leq \operatorname{lip} p_{\alpha}\left(V_{f, p}\right)^{1 / p}$.
Proof. Suppose that $f \in \operatorname{Lip}_{1 / p}[a, b], L>\operatorname{lip}_{1 / p}(f)$, and $a \leq x<y \leq b$, and let $P=\left\{t_{0}, t_{1}, \ldots, t_{m}\right\} \in \mathcal{P}[x, y]$ be any partition of the interval $[x, y]$. Then

$$
\sum_{j=1}^{m}\left|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right|^{p} \leq L^{p} \sum_{j=1}^{m}\left(t_{j}-t_{j-1}\right)=L^{p}(y-x)
$$

and so

$$
V_{f, p}(y)-V_{f, p}(x)=\operatorname{Var}_{p}(f ;[x, y]) \leq L^{p}(y-x)
$$

which shows that $V_{f, p} \in \operatorname{Lip}[a, b]$ with $\operatorname{lip}\left(V_{f, p}\right) \leq \operatorname{lip}_{1 / p}(f)^{p}$. Conversely, suppose that $V_{f, p} \in \operatorname{Lip}[a, b]$ and $a \leq x<y \leq b$. Then

$$
\begin{equation*}
|f(x)-f(y)|^{p} \leq \operatorname{Var}_{p}(f ;[x, y])=V_{f, p}(y)-V_{f, p}(x) \leq \operatorname{lip}\left(V_{f, p}\right)|x-y| \tag{7}
\end{equation*}
$$

which shows that $f \in \operatorname{Lip}_{1 / p}[a, b]$ with $\operatorname{lip}_{1 / p}(f) \leq \operatorname{lip}\left(V_{f, p}\right)^{1 / p}$ and proves (a). To prove (b) observe that (7) in case $V_{f, p} \in \operatorname{Lip}_{\alpha}[a, b]$ reads

$$
|f(x)-f(y)|^{p} \leq \operatorname{Var}_{p}(f ;[x, y])=V_{f, p}(y)-V_{f, p}(x) \leq l i p_{\alpha}\left(V_{f, p}\right)|x-y|^{\alpha}
$$

which shows that $f \in \operatorname{Lip}_{\alpha / p}[a, b]$ with $\operatorname{lip}_{\alpha / p}(f) \leq \operatorname{lip} p_{\alpha}\left(V_{f, p}\right)^{1 / p}$.
The proof of (a) shows that $\left\|V_{f, p}\right\|_{L i p}=\|f\|_{L i p_{1 / p}}^{p}$ (in particular, $\left\|V_{f}\right\|_{L i p}=$ $\|f\|_{L i p}$) for all functions $f \in \operatorname{Lip}_{1 / p}[a, b]$ satisfying $f(a)=0$. Observe that there is an asymmetry in statement (b) of Theorem 1: we did not claim that $f \in \operatorname{Lip} p_{\alpha / p}$ (hence $f \in B V_{p / \alpha}[a, b]$) implies $V_{f, p} \in L i p_{\alpha}$. In fact, to the best of our knowledge this is an open problem even in case $p=1$, i.e., for functions $f \in B V[a, b] \cap \operatorname{Lip}_{\alpha}[a, b]$ for $0<\alpha<1$. Of course, if one merely requires $f \in \operatorname{Lip}_{\alpha}[a, b]$, Example 2 shows that the answer is negative, because in this case the function $x \mapsto V_{f}(x)$ jumps from 0 to ∞ as soon as x gets positive.

Our next theorem gives a simple sufficient condition under which a "change of variables" preserves bounded p-variation.

Theorem 2. Let $g:[c, d] \rightarrow \mathbb{R}$ a bounded map and $\tau:[a, b] \rightarrow[c, d]$ strictly increasing and onto. Then $f:=g \circ \tau \in B V_{p}[a, b]$ if and only if $g \in B V_{p}[c, d]$.
Proof. First of all, note that τ is continuous, by the intermediate value theorem, and so a homeomorphism. Moreover, our assumptions on τ imply that

$$
\tau\left(\left\{t_{0}, t_{1}, \ldots, t_{m}\right\}\right)=\left\{\tau\left(t_{0}\right), \tau\left(t_{1}\right), \ldots, \tau\left(t_{m}\right)\right\}
$$

is a bijection between $\mathcal{P}[a, b]$ and $\mathcal{P}[c, d]$. Therefore, for every function $g \in$ $B V[c, d]$ we have $\operatorname{Var}_{p}(f, P ;[a, b])=\operatorname{Var}_{p}(g, \tau(P) ;[c, d])$, hence

$$
\operatorname{Var}_{p}(f ;[a, b]) \leq \operatorname{Var}_{p}(g ;[c, d])
$$

Applying this reasoning to the function τ^{-1} we conclude that also

$$
\operatorname{Var}_{p}(g ;[c, d])=\operatorname{Var}_{p}\left(f \circ \tau^{-1} ;[c, d]\right) \leq \operatorname{Var}_{p}(f ;[a, b])
$$

This shows that g and $f=g \circ \tau$ have the same total p-variation on their domain of definition, and so the assertion follows.

Our proof shows even more: by definition of the norm (2), the map $g \mapsto f=g \circ \tau$ is an isometry between the spaces $\left(B V_{p}[a, b],\|\cdot\|_{B V_{p}}\right)$ and $\left(B V_{p}[c, d],\|\cdot\|_{B V_{p}}\right)$, since $f(a)=g(\tau(a))=g(c)$ and $f(b)=g(\tau(b))=g(d)$. The following two examples show that we cannot drop the continuity or monotonicity assumption on τ in Theorem 2 .

Example 3. Define $\tau:[0,4] \rightarrow[0,4]$ by $\tau(0):=0$ and $\tau(t):=3+t / 4$ for $0<t \leq 4$. Then τ is strictly increasing with $\tau(0)=0$ and $\tau(4)=4$, but discontinuous at $t=0$. The function $g:[0,4] \rightarrow \mathbb{R}$ defined by

$$
g(x):= \begin{cases}0 & \text { for } \quad 0 \leq x \leq 1 \\ \tan \frac{\pi}{2}(x-1) & \text { for } \quad 1<x<2 \\ 0 & \text { for } \quad 2 \leq x \leq 4\end{cases}
$$

does not belong to $B V_{p}[0,4]$ for any p, since it is unbounded near $x=2$. On the other hand, the function $f(t)=(g \circ \tau)(t) \equiv 0$ trivially belongs to $B V_{p}[0,4]$ for all p.

Example 4. For $p \geq 1$, define $\tau:[0,1] \rightarrow[0,1]$ by

$$
\tau(t):= \begin{cases}t\left|\sin \frac{1}{t}\right|^{p} & \text { for } \quad 0<t \leq 1 \\ 0 & \text { for } t=0\end{cases}
$$

Then τ is continuous, but of course far from being monotone. The function $g:[0,1] \rightarrow \mathbb{R}$ defined by $g(x):=x^{1 / p}$ belongs to $\operatorname{Lip}_{1 / p}[0,1]$, hence also to $B V_{p}[0,1]$, by (4). On the other hand, the function $f=g \circ \tau$ does not belong to $B V_{p}[0,1]$, which can be seen as follows. For $n \in \mathbb{N}$, consider the partition

$$
P_{n}:=\{0,1\} \cup\left\{s_{1}, \ldots, s_{n}\right\} \cup\left\{t_{1}, \ldots, t_{n}\right\}
$$

where

$$
s_{j}:=\frac{1}{4 j \pi}, \quad t_{j}:=\frac{1}{(4 j+1) \pi} \quad(j=1,2, \ldots, n)
$$

Since $f\left(s_{j}\right)=0$ and $f\left(t_{j}\right)=t_{j}$, the partition P_{n} gives the contribution

$$
\begin{equation*}
\operatorname{Var}_{p}\left(f, P_{n} ;[0,1]\right) \geq\left(\frac{2}{\pi}\right)^{1 / p} \sum_{k=1}^{n} \frac{1}{(4 k+1)^{1 / p}} \tag{8}
\end{equation*}
$$

and the sum in (8) is unbounded as $n \rightarrow \infty$, because $p \geq 1$.
Theorem 2 shows that, roughly speaking, monotone surjective maps are the only suitable changes of variables which preserve bounded p-variation (in particular, bounded variation).

In the historical paper [8] in which Camille Jordan introduced the class $B V[a, b]$ he also proved that the function $f-V_{f}$ is increasing for $f \in B V[a, b]$, and so every function of bounded variation may be represented as difference of two increasing functions. Now we discuss another type of decomposition of a function $f \in B V_{p}[a, b]$ (in particular, $f \in B V[a, b]$) into a Hölder (in particular, Lipschitz) continuous function and a monotone change of variables. The following result may be found in [4] without proof.

Theorem 3. A function f belongs to $B V_{p}[a, b]$ if and only if it may be represented as composition $f=g \circ \tau$, where $\tau:[a, b] \rightarrow[c, d]$ is increasing and $g \in \operatorname{Lip}_{1 / p}[c, d]$ with Hölder constant $\operatorname{lip}_{1 / p}(g)=1$.

Proof. Suppose that $f=g \circ \tau$, where g and τ have the mentioned properties. Given any partition $P=\left\{t_{0}, t_{1}, \ldots, t_{m}\right\} \in \mathcal{P}[a, b]$, we get

$$
\begin{aligned}
\operatorname{Var}_{p}(f, P ;[a, b]) & =\sum_{j=1}^{m}\left|g\left(\tau\left(t_{j}\right)\right)-g\left(\tau\left(t_{j-1}\right)\right)\right|^{p} \\
& \leq \sum_{j=1}^{m}\left|\tau\left(t_{j}\right)-\tau\left(t_{j-1}\right)\right| \\
& =|\tau(b)-\tau(a)|
\end{aligned}
$$

hence $f \in B V_{p}[a, b]$. Conversely, let $f \in B V_{p}[a, b]$, and put $\tau(x)=V_{f, p}(x)$, see (4). Then τ maps $[a, b]$ into $[c, d]$, where $c=0$ and $d=\operatorname{Var}_{p}(f ;[a, b])$. If we define the function g on the range $\tau([a, b]) \subseteq[c, d]$ by putting $g(\tau(x)):=f(x)$, then the decomposition $f=g \circ \tau$ holds trivially by construction and

$$
|g(\tau(s))-g(\tau(t))|=|f(s)-f(t)| \leq \operatorname{Var}_{p}(f ;[s, t])^{1 / p} \leq|\tau(s)-\tau(t)|^{1 / p}
$$

for $a \leq s<t \leq b$. Consequently, g is in fact Hölder continuous with Hölder exponent $\alpha=1 / p$ and Hölder constant 1, but only on $\tau([a, b])$.

It remains to extend g as a Hölder continuous function with the same Hölder exponent to the whole interval $[c, d]$. Here we may use a general result by McShane [10] which reads as follows. If $M \subset \mathbb{R}$ and $g: M \rightarrow \mathbb{R}$ is Hölder continuous with Hölder exponent $\alpha \in(0,1]$, then the map $\bar{g}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\bar{g}(x):=\sup \left\{f(z)-\operatorname{lip} p_{\alpha}(f)|x-z|^{\alpha}: z \in M\right\} \tag{9}
\end{equation*}
$$

is Hölder continuous on \mathbb{R} with $\operatorname{lip}_{\alpha}(\bar{g})=\operatorname{lip} p_{\alpha}(g)$ and satisfies $\bar{g}(x)=g(x)$ for $x \in M$. Applying this to g as above on $M=\tau([a, b])$ we obtain the desired map.

We illustrate Theorem 3 by means of the following simple
Example 5. Let $[a, b]=[0,2]$ and $f=\chi_{\{1\}}$ be the characteristic function of the singleton $\{1\}$. The variation function $\tau:[0,2] \rightarrow[0,2]$ from (1) in this case has the form

$$
\tau(x)=1+\operatorname{sgn}(x-1)=\left\{\begin{array}{lll}
0 & \text { for } & 0 \leq x<1 \\
1 & \text { for } & x=1 \\
2 & \text { for } & 1<x \leq 2
\end{array}\right.
$$

Observe that $\tau([0,2])=\{0,1,2\}, g(0)=g(2)=0$, and $g(1)=1$, hence $\operatorname{lip}_{\alpha}(g)=1$ in this example. Applying the McShane extension (9) to g we end up with the function

$$
\bar{g}(x)=\max \left\{-|x|^{\alpha}, 1-|x-1|^{\alpha},-|x-2|^{\alpha}\right\}=1-|x-1|^{\alpha} \quad(0 \leq x \leq 2)
$$

which is easily seen to be Hölder continuous with Hölder exponent α on the whole interval $[0,2]$.

The following result may be considered as a refinement of Theorem 2: it shows that a continuous functions of bounded p variation may be "made" Hölder continuous with Hölder exponent $1 / p$, and even differentiable with bounded derivative, after a suitable homeomorphic change of variables. In case $p=1$ this result has been proved in [3].

Theorem 4. For a function $g:[a, b] \rightarrow \mathbb{R}$, the following are equivalent.
(a) The function g is continuous and has bounded p-variation.
(b) There exists a homeomorphism $\tau:[a, b] \rightarrow[a, b]$ such that $f=g \circ \tau:$ $[a, b] \rightarrow \mathbb{R}$ is Hölder continuous on $[a, b]$ with Hölder exponent $1 / p$.

Proof. Without loss of generality we take $[a, b]=[0,1]$. Suppose first that $g \in C[0,1] \cap B V_{p}[0,1]$ and put $V_{g, p}(1)=: \omega$, see (1). To prove (b) we define $\sigma:[0,1] \rightarrow[0,1+\omega]$ by

$$
\begin{equation*}
\sigma(x):=x+V_{g, p}(x) \quad(0 \leq x \leq 1) \tag{10}
\end{equation*}
$$

Clearly, σ is strictly increasing and surjective and satisfies
$|g(x)-g(y)|^{p} \leq\left|V_{g, p}(x)-V_{g, p}(y)\right| \leq\left|V_{g, p}(x)+x-V_{g, p}(y)-y\right|=|\sigma(x)-\sigma(y)|$
for all $x, y \in[0,1]$. So the map $\tau:[0,1] \rightarrow[0,1]$ defined by

$$
\begin{equation*}
\tau(t):=\sigma^{-1}(t+\omega t) \quad(0 \leq t \leq 1) \tag{12}
\end{equation*}
$$

is strictly increasing with $\tau(0)=0$ and $\tau(1)=1$, hence an homeomorphism. Moreover, from (11) it follows that the map $f=g \circ \tau$ satisfies
$|f(s)-f(t)| \leq|g(\tau(s))-g(\tau(t))| \leq|\sigma(\tau(s))-\sigma(\tau(t))|^{1 / p} \leq(1+\omega)^{1 / p}|s-t|^{1 / p}$
for all $s, t \in[0,1]$. This shows that $f \in \operatorname{Lip}_{1 / p}[0,1]$ with $\operatorname{lip}_{1 / p}(f) \leq(1+\omega)^{1 / p}$, and so we have proved (b).

The fact that (b) implies (a) follows from Theorem 2. Indeed, $g \circ \tau \in$ $L i p_{1 / p}[a, b] \subset B V_{p}[a, b]$ implies $g=g \circ \tau \circ \tau^{-1} \in B V_{p}[a, b]$, since every homeomorphism of an interval onto itself is strictly monotone.

Observe the subtle difference between Theorems 2 and 4: While a generic function $g \in B V_{p}[a, b]$ in general remains in $B V_{p}[a, b]$ (hence discontinuous) after a homeomorphic change of variables, a function $g \in B V_{p}[a, b] \cap C[a, b]$ becomes even Hölder continuous of order $1 / p$. So adding continuity bridges the gap (which is essential, as Example 1 shows) between $\operatorname{Lip}_{1 / p}[a, b]$ and $B V_{p}[a, b]$.

We illustrate Theorem 4 by means of two examples. The function f in the first example belongs to $B V_{p}[0,1]$, but does not belong to $\operatorname{Lip}_{\alpha}[0,1]$ for any $\alpha \in(0,1]$.

Example 6. For $\gamma>0$, let $g_{\gamma}:[0,1] \rightarrow \mathbb{R}$ be defined as in Example 1. Theorem 4 gives a constructive recipe how to transform the function g_{γ} into a function $f=g_{\gamma} \circ \tau \in \operatorname{Lip}_{\alpha}([0,1])$ with arbitrary $\alpha<\gamma$. Putting $a_{n}=1-2^{-n}$ as in Example 1, we have

$$
P_{n}:=\left\{0, \frac{1}{2}, \frac{3}{4}, \ldots, 1-2^{-n}\right\} \in \mathcal{P}\left[0, a_{n}\right], \quad \operatorname{Var}_{p}\left(g_{\gamma}, P_{n} ;\left[0, a_{n}\right]\right)=\sum_{k=1}^{n} \frac{1}{k^{p \gamma}}
$$

Therefore, in case $p \gamma>1$ the function (10) has the form

$$
\sigma(x)= \begin{cases}x+\sum_{k=1}^{n(x)} \frac{1}{k^{p \gamma}} & \text { for } \quad 0 \leq x<1 \\ 1+\operatorname{Var}_{p}\left(g_{\gamma} ;[0,1]\right) & \text { for } \quad x=1\end{cases}
$$

where $n(x)$ denotes the largest natural number n such that $x \geq a_{n}$, i.e., $2^{-n} \geq 1-x$. Since ω is given by the value of the second series in (6), we may use (12), at least theoretically, to calculate the homeomorphism τ piecewise in this example.
Example 7. Let $g:[0,1] \rightarrow[0,1]$ be the Cantor function associated to the classical perfect Cantor nullset $C \subset[0,1]$. It is well known [6] that g is a continuous increasing surjective map from $[0,1]$ onto itself. Moreover, g cannot be absolutely continuous, by the Vitali-Banach-Zaretskij theorem [9], since the image $g(C)$ of the nullset C has positive measure, and so g does not have the Luzin property. However, one may show [1] that g is Hölder continuous with best possible Hölder exponent $\alpha=\log 2 / \log 3$ which precisely coincides with the Hausdorff dimension of the Cantor set C. By (4), we conclude that $g \in B V_{p}[0,1]$ for $p=\log 3 / \log 2$.

However, we can do better. Indeed, since the Cantor function is monotone, it belongs to $B V[0,1]$, so we may choose $p=1$ in Theorem 4 and find a homeomorphism $\tau:[0,1] \rightarrow[0,1]$ such that $f=g \circ \tau$ is even Lipschitz continuous on $[0,1]$. Moreover, the proof of Theorem 4 shows how to do this. Since $V_{g}=g$, we see that $\sigma(x)=x+g(x)$ and therefore

$$
\begin{equation*}
f(t)=g\left(\sigma^{-1}(2 t)\right) \quad(0 \leq t \leq 1) \tag{13}
\end{equation*}
$$

To make this more explicit, we consider this function at the endpoints of the deleted intervals in the construction of the Cantor set C. Clearly.

$$
\begin{gathered}
g\left(1 \cdot 3^{-n}\right)=g\left(2 \cdot 3^{-n}\right)=1 \cdot 2^{-n}, \quad g\left(7 \cdot 3^{-n}\right)=g\left(8 \cdot 3^{-n}\right)=3 \cdot 2^{-n} \\
g\left(19 \cdot 3^{-n}\right)=g\left(20 \cdot 3^{-n}\right)=5 \cdot 2^{-n}, \ldots
\end{gathered}
$$

and, more generally,

$$
g\left(1-2 \cdot 3^{-n}\right)=g\left(1-1 \cdot 3^{-n}\right)=1-1 \cdot 2^{-n} \quad(n=1,2,3, \ldots)
$$

A straightforward, but somewhat cumbersome calculation gives then the values of the function f in (13) at the points $a_{n}:=2-\left(2 \cdot 3^{-n}+1 \cdot 2^{-n}\right) \in[0,1]$, and we only have to extend f linearly to a Lipschitz continuous function on the whole interval $[0,1]$.

Although the explicit computation of the function $f=g \circ \tau$ in Example 7 is rather messy, this example has a certain theoretical interest. In [3, Theorem 1] it was shown that, in case of a function $g \in C[a, b] \cap B V[a, b]$ one may even find a homeomorphism $\tau:[a, b] \rightarrow[a, b]$ such that $f=g \circ \tau:[a, b] \rightarrow \mathbb{R}$ is differentiable with bounded derivative on $[a, b]$. The proof is based on the fact that in this case we may assume that g is Lipschitz continuous, and so differentiable a.e. on $[a, b]$. By Zahorski's theorem $[11,12]$ one may then find a homeomorphism $\tau:[0,1] \rightarrow[0,1]$ which is differentiable with bounded derivative τ^{\prime} on $[0,1]$ and satisfies $\tau^{\prime}(t)=0$ precisely for $t \in \tau^{-1}(G)$, where G is an appropriate G_{δ} nullset which contains all points of non-differentiability of g. This homeomorphism has then the desired properties. Unfortunately, a Hölder continuous function need not be differentiable a.e., and so this proof does not work for $g \in B V_{p}[a, b]$ in case $p>1$.

The question arises whether or not one may choose, in case $p=1$, the homeomorphism τ in such a way that $f=g \circ \tau$ is even differentiable with continuous derivative. Example 7 shows that the answer is negative. In fact, suppose that $f=g \circ \tau \in C^{1}[0,1]$ for some homeomorphism $\tau:[0,1] \rightarrow$ $[0,1]$. The derivative f^{\prime} of f is equal to 0 at each point of $[0,1] \backslash \tau^{-1}(C)$. But $\tau^{-1}(C)$ cannot be a nullset, since f, being Lipschitz continuous, has the Luzin property, and so $g(C)=\left(f \circ \tau^{-1}\right)(C)$ would be a nullset as well, a contradiction. Therefore the derivative of $f=g \circ \tau$ cannot be 0 a.e. on $[0,1]$. So Theorem 1 in [3] is in a certain sense optimal in case $p=1$. To show that our Theorem 4 is optimal in case $p>1$, one should find a function $g \in B V_{p}[a, b] \cap C[a, b]$ such that no homeomorphism $\tau:[a, b] \rightarrow[a, b]$ makes $f=g \circ \tau$ differentiable; this seems to be an open problem.

References

[1] J. Appell, E. D'Aniello, M. Väth, Some remarks on small sets, Ric. Mat. 50 (2001), 255-274.
[2] A. N. Bakhvalov, M. I. Dyachenko, K. S. Kazaryan, P. Sifuentes, P. L. Ul'yanov, Real Analysis in Exercises, Fizmatlit, Moskva 2005. (Russian).
[3] A. M. Bruckner, C. Goffman, Differentiability through change of variables, Proc. Amer. Math. Soc., 61 (1976), 235-241.
[4] M. Bruneau, Variation Totale d'une Fonction, Lecture Notes in Math. 413, Springer, Berlin 1974.
[5] F. W. Gehring, A study of α-variation, Trans. Amer. Math. Soc., 76 (1954), 420-443.
[6] B. R. Gelbaum, J. M. H. Olmstedt, Counterexamples in Analysis, HoldenDay, San Francisco, 1964.
[7] F. N. Huggins, Some interesting properties of the variation function, Amer. Math. Monthly, 83 (1976), 538-546.
[8] C. Jordan, Sur les séries de Fourier, C. R. Math. Acad. Sci. Paris 2 (1881), 228-230.
[9] R. Kannan, C. K. Krueger, Advanced Analysis on the Real Line, Springer, Berlin 1996.
[10] E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc., 40 (1934), 837-842.
[11] Z. Zahorski, Über die Menge der Punkte, in welchen die Ableitung unendlich ist, Tohoku Math. J. 48 (1941), 321-330.
[12] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc., 69 (1950), 1-54.

[^0]: Mathematical Reviews subject classification: Primary: 26A45, 26A16; Secondary: 26A48
 Key words: bounded p-variation, Hölder continuity, homeomorphism, change of variables
 Received by the editors January 31, 2011
 Communicated by: Emma D'Aniello

