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SOME ESTIMATES OF COMMUTATORS

Abstract

By using the boundedness of the maximal and sharp operators on
Morrey spaces, we have proved that the commutators [Mp, b] and [M#, b]
are bounded on Morrey spaces Lq,λ if and only if b is in BMO and the
negative part of b is in L∞.

1 Introduction

In [4], Coifman, Rochberg, and Weiss proved that a locally integrable function
b in Rn is in BMO if and only if the commutator [H, b],

[H, b](f) = H(bf)− bH(f)

is bounded in Lp, for some p (for all), p ∈ (1,∞).
Also in the Lp space setting, Bastero, Milman, and Ruiz in [2] showed that

a locally integrable function b is in BMO and the negative part of b is in L∞

if and only if the commutator [Mp, b], defined by

[Mp, b] = Mp(bf)− bMp(f)

is bounded in Lq for some q (for all), q ∈ (p,∞). In fact here, Mp can be
replaced by a more generalized positive quasilinear operator.

The purpose of this work is devoted to the study of the relationship between
the boundedness of [Mp, b]([M

#, b]) on Morrey spaces and the function b.
To the best of my knowledge, the setting of Lq,λ for these problems is new,
independent, and of particular interest.

Morrey space plays an important role in the study of regularity questions
in PDE. And also in modern analysis, Morrey spaces can be a part of a family
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that includes Lp, BMO(the space of Bounded Mean Oscillations), and Hölder
function spaces. Many people have studied this family of function spaces. For
more details, we refer the interested readers to [3], [10], [11], [12], [14], [15]
and references therein.

Let Q be a cube on Rn, λ ∈ R, and f ∈ Lqloc. Then f is said to be in the
function space Lq,λ provided

‖f‖Lq,λ = sup
Q

(
1

|Q|λ

∫
Q

|f(x)|qdx
)1/q

<∞, (1)

where the supremum is taken over all cubes on Rn and |Q| is the volume of Q.
It is well known that if 1 ≤ q <∞, then we have Lq,0 = Lq and Lq,1 = L∞, if

λ < 0, Lq,λ = {0} and if λ > 1, Lq,λ is the space of (λ−1)
q −Hölder continuous

functions. The Morrey space is defined to be Lq,λ when 0 < λ < 1.
In the present work propositions 1-4 are basic facts about the Hardy-

Littlewood maximal operators multiplied by a nonnegative function. From
these propositions we know that the cancellation implied in the commutator
[b,Mp] is crucial. All these propositions and proofs are in section 2 along
with some necessary background materials. Also main results of this note,
Theorems 5-8, and their proofs are given in the section 3.

Throughout the whole paper all constants are denoted by C which may be
different from each occurrence.

2 Preliminaries

For the sake of completeness, we recall the definitions and some properties we
are going to use in our proofs. For a set E ∈ Rn we denote the characteristic
function of E by χE and |E| the Lebesgue measure of E.

For a locally integrable function f(t) and 1 ≤ p <∞, the Hardy-Littlewood
maximal function is given by

Mp(f)(x) = sup
x∈Q

(
1

|Q|

∫
Q

|f(t)|pdt
)1/p

,

for all x ∈ Rn, where Q represents a cube with sides parallel to the coordinate
axes. Note that for p = 1, Mp = M is the classical Hardy-Littlewood maximal
operator.

The Sharp operator is defined by

M#(f)(x) = f#(x) = sup
x∈Q

1

|Q|

∫
Q

|f(t)− fQ|dt,
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for all x ∈ Rn, where fQ = 1
|Q|
∫
Q
f(t)dt, the mean of f on Q.

If Q0 is a fixed cube, then the Hardy-Littlewood maximal function relative
to Q0 is defined as

Mp,Q0(f)(x) = sup
x∈Q⊂Q0

(
1

|Q|

∫
Q

|f(t)|pdt
)1/p

,

for all x ∈ Q0.

Remark As is well known, the sharp functions or operators were introduced
by C. Fefferman and E.M. Stein.

Proposition 1. Let b > 0, φ ≥ 0, and 1 < p < q <∞. Then

φMp′(b) ∈ L∞ =⇒ φM(bf) ∈ Lq,∀f ∈ Lq

where 1
p + 1

p′ = 1.

Proof. Consider

|φM(bf)| = φ sup
x∈Q

1

|Q|

∫
Q

b(t)|f(t)|dt

≤ φ
(

sup
x∈Q

1

|Q|

∫
Q

|b(t)|p
′
dt

)1/p′ (
sup
x∈Q

1

|Q|

∫
Q

|f(t)|pdt
)1/p

= φMp′(b)(x)Mp(f)(x).

With Mp(f) = (M(|f |p)1/p, the desired result follows from the Lp bound-
edness of M in [5].

We can extend this result in Lp,λ to have the following proposition.

Proposition 2. Let b > 0, φ ≥ 0, and 1 < p < q <∞. Then

φMp′(b) ∈ L∞ =⇒ φM(bf) ∈ Lq,λ,∀f ∈ Lq,λ

where 1
p + 1

p′ = 1.

Proof. By the proof of Proposition 1 and [3], we conclude the proof.

Conversely we are not able to get φMp′(b) ∈ L∞ but instead we get φb ∈
L∞ which is a little bit weaker than φMp′(b) ∈ L∞ since φb ≤ φMp′(b), a.e.

Proposition 3. Let b > 0, φ ≥ 0, and 1 < p <∞. Then

φM(bf) ∈ Lp,∀f ∈ Lp =⇒ φb ∈ L∞.
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Proof. For any cube Q0, let f = χQ0 . Then

‖f‖p = |Q0|1/p.

And by the assumption

‖φM(bχQ0‖p ≤ C|Q0|1/p,

that is, ∫
φ(x)p(M(bχQ0)(x))pdx ≤ C|Q0|

1

|Q0|

∫
Q0

φ(x)p(M(bχQ0
)(x))pdx ≤ C

1

|Q0|

∫
Q0

φp(M1,Q0
(b)(x))pdx ≤ C

1

|Q0|

∫
Q0

(φb)pdx ≤ C.

Since Q0 is arbitrary, Lebesgue’s differentiation theorem implies

(φb)p ∈ L∞ i.e. φb ∈ L∞.

Here we have used the facts M(bχQ0
) = M1,Q0

(b) and |b| ≤ M1,Q0
(b),∀x ∈

Q0.

In the same manner, this result can be extended to Lp,λ.

Proposition 4. Let b > 0, φ ≥ 0, and 1 < p <∞. Then

φM(bf) ∈ Lp,λ,∀f ∈ Lp,λ =⇒ φb ∈ L∞.

Proof. For any cube Q0, choose f = χQ0 , then ‖χQ0‖Lp,λ = |Q0|(1−λ)/p
Since φM(bf) ∈ Lp,λ, we have

1

|Q0|λ

∫
Q0

(φMQ0
(b))

p
dx ≤ C|Q0|1−λ

1

|Q0|

∫
Q0

(φb)
p
dx ≤ C.

Similar to the proof of proposition 3, φb ∈ L∞ follows.

Observing all these, we have the following theorems.
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3 Theorems and the proofs

In this section, we will give main theorems and their proofs.

Theorem 5. Let b be a nonnegative BMO function. Then [Mp, b] is bounded
on Lq,λ, 1 ≤ p < q <∞.

Proof. From [2] we know that under such assumption, [Mp, b] is bounded on
Lq, that is,

|[Mp, b](f)‖Lq ≤ C‖f‖Lq .

Let Q be a fixed cube and g ∈ Lq,λ. Then function f = gχQ/|Q|λ/q ∈ Lq,
and

‖f‖Lq =

(
1

|Q|λ

∫
Q

|g(t)|qdt
)1/q

.

Also

‖[Mp, b](f)‖Lq ≥
(∫

Q

|Mp(bf)(t)− b(t)Mp(f)(t)|qdt
)1/q

.

For t ∈ Q, we have

Mp(bf)(t) =
1

|Q|λ/q
Mp(bg)(t)

and

Mp(f)(t) =
1

|Q|λ/q
Mp(g)(t).

So

‖[Mp, b](f)‖Lq ≥
(

1

|Q|λ

∫
Q

|Mp(bg)(t)− b(t)Mp(g)(t)|qdt
)1/q

.

Therefore(
1

|Q|λ

∫
Q

|Mp(bg)(t)− b(t)Mp(g)(t)|qdt
)1/q

≤ C
(

1

|Q|λ

∫
Q

|g(t)|qdt
)1/q

.

Hence
‖[Mp, b](g)‖Lq,λ ≤ C‖g‖Lq,λ .

Theorem 6. Let b be a nonnegative BMO function. Then [M#, b] is bounded
on Lq,λ, 1 ≤ p < q <∞.
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Proof. Let’s consider

|[M#, b](f)(x)| = |M#(bf)(x)− b(x)M#(f)(x)|

=

∣∣∣∣sup
x∈Q

1

|Q|

∫
Q

|b(t)f(t)− (bf)Q|dt− b(x) sup
x∈Q

1

|Q|

∫
Q

|f(t)− fQ|dt
∣∣∣∣

≤ sup
x∈Q

1

|Q|

∫
Q

|b(t)f(t)− b(x)f(t)− (bf)Q + b(x)fQ| dt

≤ sup
x∈Q

1

|Q|

∫
Q

|b(t)f(t)− b(x)f(t)|dt+ sup
x∈Q

1

|Q|

∫
Q

|b(x)fQ − (bf)Q|dt

≤ 2 sup
x∈Q

1

|Q|

∫
Q

|b(t)− b(x)||f(t)|dt

≤ 2 sup
x∈Q

(
1

|Q|

∫
Q

|b(t)− b(x)|r
′
dt

)1/r′ (
1

|Q|

∫
Q

|f(t)|rdt
)1/r

≤ 2‖b‖BMOMr(f)(x),

where p < r < q and 1
r + 1

r′ = 1. Therefore

‖[M#, b](f)‖Lq,λ ≤ C‖b‖BMO‖Mr(f)‖Lq,λ ≤ C‖b‖BMO‖f‖Lq,λ .

Note that Mr is bounded on Lq,λ.

Theorem 7. Let b be a real valued, locally integrable function in Rn. Then
the following are equivalent:

(a) The commutator [Mp, b] is bounded in Lq,λ, for some 1 ≤ p < q <∞,

(b) b ∈ BMO and b− ∈ L∞,

(c) For some q ∈ (1,∞), we have

sup
Q

1

|Q|

∫
Q

|b(t)−Mb,Q(b)(t)|qdt <∞.

Proof. We’ll prove this theorem by the cycle (b) =⇒ (a) =⇒ (c) =⇒ (b).
For this inclusion (b) ⇒ (a),we know that if b is in BMO, then |b| is also

in BMO. Considering the fact

|[Mp, b](f)− [Mp, |b|](f)| ≤ 2b−Mp(f)

and Theorem 5, we obtain (a).
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To prove inclusion (a) ⇒ (c), for a fixed cube Q, let f(t) = χQ(t) ∈ Lq,λ,

then ‖f‖Lq,λ = |Q|
1−λ
q . By (a) we have

‖[Mp, b](f)‖Lq,λ ≤ C‖f‖Lq,λ = C|Q|
1−λ
q .

Also since on Q, Mp(bχQ) = Mp,Q(b) and Mp(χQ) = χQ, we have

‖[Mp, b](f)‖Lq,λ ≥
(

1

|Q|λ

∫
Q

|Mp(bχQ)(t)− b(t)Mp(χQ)(t)|qdt
)1/q

≥
(

1

|Q|λ

∫
Q

|Mp,Q(b)(t)− b(t)|qdt
)1/q

.

Therefore (
1

|Q|λ

∫
Q

|Mp,Q(b)(t)− b(t)|qdt
)1/q

≤ C|Q|
1−λ
q ,

that is,
1

|Q|

∫
Q

|b(t)−Mp,Q(b)(t)|qdt ≤ C.

Hence

sup
Q

1

|Q|

∫
Q

|Mp,Q(b)(t)− b(t)|qdt <∞.

As to (c) ⇒ (b), the proof here is due to [2]. Let Q be a fixed cube, by (c)
and Hölder inequality we have

1

|Q|

∫
Q

|b(t)−Mp,Q(b)(t)|dt ≤
(

1

|Q|

∫
Q

|b(t)−Mp,Q(b)(t)|qdt
)1/q

≤ C.

Let E = {x ∈ Q; b(x) ≤ bQ} and F = {x ∈ Q; b(x) > bQ}, then the equality∫
E

|b(t)− bQ|dt =

∫
F

|b(t)− bQ|dt

is true. Since for x ∈ E we have b(x) ≤ bQ ≤Mp,Q(b)(x) and also

1

|Q|

∫
Q

|b(t)− bQ|dt =
2

|Q|

∫
E

|b(t)− bQ|dt ≤
2

|Q|

∫
E

|b(t)−Mp,Q(b)(t)|dt

≤ 2

|Q|

∫
Q

|b(t)−Mp,Q(b)(t)|dt ≤ C,

we know that b ∈ BMO.
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To show that b− ∈ L∞ , note that Mp,Q(b) ≥ |b| in Q and therefore we
have, in Q,

0 ≤ b− = |b| − b+ ≤Mp,Qb− b+ + b− = Mp,Q(b)− b.

Combining this and (c) we see that for any cube Q,

(b−)Q ≤ C.

Thus the boundedness of b− follows from Lebesgue’s differentiation theo-
rem.

Theorem 8. Let b be a real valued, locally integrable function in Rn. Then
the following are equivalent:

(a) The commutator [M#, b] is bounded in Lq,λ, for some 1 ≤ q <∞,

(b) b ∈ BMO and b− ∈ L∞,

(c) For some q ∈ [1,∞), we have

sup
Q

1

|Q|

∫
Q

|b(t)− 2(bχQ)#(t)|qdt <∞.

Proof. We’ll show this theorem by the following order. (b) =⇒ (a) =⇒ (c)
=⇒ (b).

To show (b) ⇒ (a), note the facts that

|[M#, b](f)− [M#, |b|](f)| ≤ 2M#(b−f) + 2b−M#(f),

and if b ∈ BMO, then |b| ∈ BMO, and M#(f) ≤ 2M(f) for all locally
integrable functions f , (a) follows immediately.

In order to prove (a)⇒ (c), let Q be a fixed cube. We know that (χQ)# =
1
2 , for all x ∈ Q. Assume that f = χQ ∈ Lq,λ. Then by (a), we have

‖[M#, b](χQ)‖Lq,λ ≤ C‖χQ‖Lq,λ ,

namely, (
1

|Q|λ

∫
Q

|(bχQ)#(t)− b(t)(χQ)#(t)|qdt
)1/q

≤ C|Q|
1−λ
q

1

|Q|

∫
Q

|b(t)− 2(bχQ)#(t)|qdt ≤ C.
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So

sup
Q

1

|Q|

∫
Q

|b(t)− 2(bχQ)#(t)|qdt <∞.

Finally (c) ⇒ (b), the proof here is like the proof of Theorem 7 and also
due to [2].

For a cube Q, let x ∈ Q and choose a cube Q1 containing Q and with
volume |Q1| = 2|Q|. Then

1

2|Q|

∫
Q

∣∣∣∣b(t)− 1

2
bQ

∣∣∣∣ dt+
1

4
|bQ| =

1

2|Q|

(∫
Q

∣∣∣∣b(t)− 1

2
bQ

∣∣∣∣ dt+
1

2
|Q1\Q||bQ|

)
=

1

|Q1|

∫
Q1

|bχQ(t)− (bχQ)Q1 |dt

≤ (bχQ)#(x).

On the other hand

|bQ| ≤
1

|Q|

∫
Q

∣∣∣∣b(t)− 1

2
bQ

∣∣∣∣ dt+
1

|Q|

∫
Q

|1
2
bQ|dt

=
1

|Q|

∫
Q

∣∣∣∣b(t)− 1

2
bQ

∣∣∣∣ dt+
1

2
|bQ|,

and so
1

2
|bQ| ≤

1

|Q|

∫
Q

∣∣∣∣b(t)− 1

2
bQ

∣∣∣∣ dt.
Therefore, we get

|bQ| ≤ 2(bχQ)#(x),∀x ∈ Q.

Now we are able to show that b is in BMO. Let E = {x ∈ Q; b(x) ≤ bQ},
then

1

|Q|

∫
Q

|b(x)− bQ|dx =
2

|Q|

∫
E

(bQ − b(x))dx

≤ 2

|Q|

∫
E

(2(bχQ)#(x)− b(x))dx

≤ 2

|Q|

∫
E

|2(bχQ)#(x)− b(x)|dx

≤ 2

|Q|

∫
Q

|2(bχQ)#(x)− b(x)|dx ≤ C.
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To prove b is bounded, We start with the inequality

∀x ∈ Q, |bQ| − b+(x) + b−(x) ≤ 2(bχQ)#(x)− b(x).

Averaging on Q, we have

|bQ| −
1

|Q|

∫
Q

b+(x)dx+
1

|Q|

∫
Q

b−(x)dx =
1

|Q|

∫
Q

(
|bQ| − b+(x) + b−(x)

)
dx

≤ 1

|Q|

∫
Q

(
2(bχQ)#(x)− b(x)

)
dx

≤ 1

|Q|

∫
Q

∣∣2(bχQ)#(x)− b(x)
∣∣ dx

≤ C.

Letting |Q| → 0 with x ∈ Q, Lebesgue differentiation theorem assures that

2b− = |b(x)| − b+(x) + b−(x) ≤ C,

and we are done.
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