Gogi Pantsulaia, Department of Mathematics, Georgian Technical University, Tbilisi, 0175, Georgia

I.Vekua Institute of Applied Mathematics, Tbilisi State University, Tbilisi 0143, Georgia. email: gogipantsulaia@yahoo.com

# ON UNIFORMLY DISTRIBUTED SEQUENCES OF AN INCREASING FAMILY OF FINITE SETS IN INFINITE-DIMENSIONAL RECTANGLES

### Abstract

The concepts of uniformly distributed sequences of an increasing family of finite sets and Riemann integrability are considered in terms of the "Lebesgue measure" on infinite-dimensional rectangles in  $R^{\infty}$  and infinite-dimensional versions of famous results of Lebesgue and Weyl are proved.

## 1 Introduction

Following [5], a sequence  $s_1, s_2, s_3, \cdots$  of real numbers from an interval [a, b] is said to be equidistributed or uniformly distributed on that interval if the proportion of terms contained in a subinterval [c, d] is proportional to the length of that subinterval. Such sequences are studied in Diophantine approximation theory and have applications to Monte Carlo integration (see, for example, [5], [6], [12]).

Let  $\mathcal{R}$  be the class of all infinite dimensional rectangles R of the form

$$R = \prod_{i=1}^{\infty} [a_i, b_i], -\infty < a_i < b_i < +\infty$$

Mathematical Reviews subject classification: Primary: 28xx, 03xx; Secondary: 28C10 Key words: infinite-dimensional Lebesgue measure, Riemann integral, uniformly distributed sequences

Received by the editors May 10, 2010 Communicated by: Brian S. Thomson

with  $0 < \prod_{i=1}^{\infty} (b_i - a_i) < +\infty$ , where

$$\prod_{i=1}^{\infty} (b_i - a_i) := \lim_{n \to \infty} \prod_{i=1}^{n} (b_i - a_i).$$

In [1], a translation invariant Borel measure  $\lambda$  was constructed on  $\mathbb{R}^{\infty}$  such that

$$\lambda(R) = \prod_{i=1}^{\infty} (b_i - a_i)$$

for  $R \in \mathcal{R}$ .

The purpose of the present paper is to consider the concept of a uniform distribution in infinite-dimensional rectangles which can be used to calculate Riemann integrals over such rectangles. Similar topics are discussed in [10].

The paper is organized as follows.

In Section 2, some auxiliary notions and facts due to Weyl [13] are considered. In Section 3, the main results of the paper are proved. In particular, the infinite-dimensional versions of the famous results due to Lebesgue [9] and Weyl [13] are proved.

### 2 Auxiliary notions and propositions

**Definition 2.1.** A bounded sequence  $s_1, s_2, s_3, \cdots$  of real numbers is said to be equidistributed or uniformly distributed on an interval [a, b] if for any subinterval [c, d] of [a, b] we have

$$\lim_{n \to \infty} \frac{\#(\{s_1, s_2, s_3, \cdots, s_n\} \cap [c, d])}{n} = \frac{d - c}{b - a},$$

where # denotes a counting measure.

**Remark 2.1.** For  $a \le c < d \le b$ , let ][c,d][ denote a subinterval of [a,b] that has one of the following forms : [c,d],[c,d[,]c,d[] or ]c,d]. Then it is obvious that a bounded sequence  $s_1,s_2,s_3,\cdots$  of real numbers is equidistributed or uniformly distributed on an interval [a,b] iff, for any subinterval ][c,d][ of [a,b], we have

$$\lim_{n \to \infty} \frac{\#(\{s_1, s_2, s_3, \cdots, s_n\} \cap ][c, d][)}{n} = \frac{d - c}{b - a}.$$

**Definition 2.2** (Weyl [13]). A sequence  $s_1, s_2, s_3, \cdots$  is said to be equidistributed modulo 1 or uniformly distributed modulo 1 if the sequence  $(s_n - [s_n])_{n \in \mathbb{N}}$  of the fractional parts of  $(s_n)_{n \in \mathbb{N}}$ 's is equidistributed (equivalently, uniformly distributed) on the interval [0, 1].

**Example 2.1** ([5], Exercise 1.12, p. 16). The sequence of all multiples of an irrational  $\alpha$ 

$$0, \alpha, 2\alpha, 3\alpha \cdots$$

is uniformly distributed modulo 1.

**Example 2.2** ([5], Exercise 1.13, p. 16). The sequence

$$\frac{0}{1}, \frac{0}{2}, \frac{1}{2}, \frac{0}{3}, \frac{1}{3}, \frac{2}{3}, \dots, \frac{0}{k}, \dots, \frac{k-1}{k}, \dots$$

is uniformly distributed modulo 1.

**Example 2.3.** The sequence of all multiples of an irrational  $\alpha$  by successive prime numbers

$$2\alpha, 3\alpha, 5\alpha, 7\alpha, 11\alpha, \cdots$$

is equidistributed modulo 1. This is the famous theorem of analytic number theory proved by I. M. Vinogradov in 1935 (see [16]).

**Notation** In the sequel, and as distinct from N. Bourbaki's well known notion, by  $\mathbb{N}$  we understand the set  $\{1, 2, \dots\}$ .

**Remark 2.2.** If  $(s_k)_{k\in\mathbb{N}}$  is uniformly distributed modulo 1, then

$$((s_k - [s_k])(b-a) + a)_{k \in \mathbb{N}}$$

is uniformly distributed on an interval [a, b).

The following assertion contains an interesting application of uniformly distributed sequences for the calculation of Riemann integrals.

**Lemma 2.1** (Weyl [13]). The following two conditions are equivalent:

- (i)  $(a_n)_{n\in\mathbb{N}}$  is equidistributed modulo 1;
- (ii) For every Riemann integrable function f on [0, 1]

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(a_i) = \int_{[0,1]} f(x) dx.$$

# 3 On uniformly distributed sequences of an increasing family of finite sets in infinite-dimensional rectangles

Let  $s_1, s_2, s_3, \dots$  be uniformly distributed on an interval [a, b]. Setting  $Y_n = \{s_1, s_2, s_3, \dots, s_n\}$  for  $n \in \mathbb{N}$ ,  $(Y_n)_{n \in \mathbb{N}}$  will be an increasing sequence of finite subsets of the [a, b] that, for any subinterval [c, d] of the [a, b], the following equality

$$\lim_{n \to \infty} \frac{\#(Y_n \cap [c, d])}{\#(Y_n)} = \frac{d - c}{b - a}$$

will be valid. This remark raises the following:

**Definition 3.1.** An increasing sequence  $(Y_n)_{n\in\mathbb{N}}$  of finite subsets of [a,b] is said to be equidistributed or uniformly distributed on an interval [a,b] if, for any subinterval [c,d] of [a,b], we have

$$\lim_{n \to \infty} \frac{\#(Y_n \cap [c, d])}{\#(Y_n)} = \frac{d - c}{b - a}.$$

**Definition 3.2.** Let  $\prod_{k \in \mathbb{N}} [a_k, b_k] \in \mathcal{R}$ . A set U is called an elementary rectangle in  $\prod_{k \in \mathbb{N}} [a_k, b_k]$  if it admits the following representation

$$U = \prod_{k=1}^{m} [c_k, d_k] \left[ \times \prod_{k \in \mathbb{N} \setminus \{1, \dots, m\}} [a_k, b_k], \right]$$

where  $a_k \le c_k < d_k \le b_k$  for  $1 \le k \le m$ .

It is obvious that

$$\lambda(U) = \prod_{k=1}^{m} (d_k - c_k) \times \prod_{k=m+1}^{\infty} (b_k - a_k),$$

for the elementary rectangle U.

**Definition 3.3.** An increasing sequence  $(Y_n)_{n\in\mathbb{N}}$  of finite subsets of an infinite-dimensional rectangle  $\prod_{k\in\mathbb{N}}[a_k,b_k]\in\mathcal{R}$  is said to be uniformly distributed on  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  if for every elementary rectangle U in  $\prod_{k\in\mathbb{N}}[a_k,b_k[$  we have

$$\lim_{n \to \infty} \frac{\#(Y_n \cap U)}{\#(Y_n)} = \frac{\lambda(U)}{\lambda(\prod_{k \in \mathbb{N}} [a_k, b_k])}.$$

**Theorem 3.1.** Let  $\prod_{k\in\mathbb{N}}[a_k,b_k]\in\mathcal{R}$ . Let  $(x_n^{(k)})_{n\in\mathbb{N}}$  be uniformly distributed on the interval  $[a_k,b_k]$  for  $k\in\mathbb{N}$ . We set

$$Y_n = \prod_{k=1}^n (\bigcup_{j=1}^n x_j^{(k)}) \times \prod_{k \in \mathbb{N} \setminus \{1, \dots, n\}} \{a_k\}.$$

Then  $(Y_n)_{n\in\mathbb{N}}$  is uniformly distributed in the rectangle  $\prod_{k\in\mathbb{N}}[a_k,b_k]$ .

PROOF. Let U be an elementary rectangle in  $\prod_{k\in\mathbb{N}} [a_k, b_k]$ .

Since  $(x_n^{(k)})_{n\in\mathbb{N}}$  is uniformly distributed on the interval  $[a_k, b_k]$  for  $k \in \mathbb{N}$ , by Remark 2.1 we have

$$\lim_{n \to \infty} \frac{\#(\{x_1^{(k)}, x_2^{(k)}, \cdots, x_n^{(k)}\} \cap ][c_k, d_k][)}{n} = \frac{d_k - c_k}{b_k - a_k}.$$

Hence

$$\lim_{n \to \infty} \frac{\#(Y_n \cap U)}{\#(Y_n)} = \lim_{n \to \infty} \prod_{k=1}^m \frac{\#(\{x_1^{(k)}, x_2^{(k)}, \cdots, x_n^{(k)}\} \cap ][c_k, d_k][)}{n} =$$

$$= \prod_{k=1}^m \lim_{n \to \infty} \frac{\#(\{x_1^{(k)}, x_2^{(k)}, \cdots, x_n^{(k)}\} \cap ][c_k, d_k][)}{n} =$$

$$= \prod_{k=1}^m \frac{d_k - c_k}{b_k - a_k} = \frac{\lambda(U)}{\lambda(\prod_{k \in N} [a_k, b_k])}.$$

**Remark 3.1.** In the context of Theorem 3.1, it is natural to ask whether there exists an increasing sequence of finite subsets  $(Y_n)_{n\in\mathbb{N}}$  such that

$$\lim_{n \to \infty} \frac{\#(Y_n \cap U)}{\#(Y_n)} = \frac{\lambda(U)}{\lambda(\prod_{k \in \mathbb{N}} [a_k, b_k])}$$

for every infinite-dimensional rectangle  $U = \prod_{k \in \mathbb{N}} X_k \subset \prod_{k \in \mathbb{N}} [a_k, b_k]$ , where, for each  $k \in \mathbb{N}$ ,  $X_k$  is a finite sum of pairwise disjoint subintervals of  $[a_k, b_k]$ ?

Let us show that the answer to this question is negative.

Indeed, assume the contrary and let  $(Y_n)_{n\in\mathbb{N}}$  be such an increasing sequence of finite subsets in  $\prod_{k\in\mathbb{N}}[a_k,b_k]$ . Then we have

$$\bigcup_{n\in\mathbb{N}} Y_n = \{ (x_i^{(k)})_{i\in\mathbb{N}} : k\in\mathbb{N} \}.$$

For  $k \in \mathbb{N}$ , we set  $X_k = [a_k, b_k] \setminus x_k^{(k)}$ . Then it is clear that

$$\lambda(\prod_{k\in\mathbb{N}}X_k)=\lambda(\prod_{k\in\mathbb{N}}[a_k,b_k])$$

and

$$\frac{\#(Y_n \cap \prod_{k \in \mathbb{N}} X_k)}{\#(Y_n)} = 0$$

for  $k \in \mathbb{N}$ , which implies

$$\lim_{n\to\infty}\frac{\#(Y_n\cap\prod_{k\in N}X_k)}{\#(Y_n)}=0<1=\frac{\lambda(\prod_{k\in N}X_k)}{\lambda(\prod_{k\in \mathbb{N}}[a_k,b_k])}.$$

**Definition 3.4.** Let  $\prod_{k\in\mathbb{N}}[a_k,b_k]\in\mathcal{R}$ . A family of pairwise disjoint elementary rectangles  $\tau=(U_k)_{1\leq k\leq n}$  of  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  is called the Riemann partition of  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  if  $\bigcup_{1\leq k\leq n}U_k=\prod_{k\in\mathbb{N}}[a_k,b_k]$ .

**Definition 3.5.** Let  $\tau = (U_k)_{1 \leq k \leq n}$  be the Riemann partition of  $\prod_{k \in N} [a_k, b_k]$ . Let  $\ell(Pr_i(U_k))$  be the length of the *i*-th projection  $Pr_i(U_k)$  of  $U_k$  for  $i \in \mathbb{N}$ . We set

$$d(U_k) = \sum_{i \in N} \frac{\ell(Pr_i(U_k))}{2^i (1 + \ell(Pr_i(U_k)))}.$$

It is obvious that  $d(U_k)$  is the diameter of the elementary rectangle  $U_k$  for  $k \in \mathbb{N}$  with respect to the Tikhonov metric  $\rho$  defined as follows

$$\rho((x_k)_{k \in \mathbb{N}}, (y_k)_{k \in \mathbb{N}}) = \sum_{k \in \mathbb{N}} \frac{|x_k - y_k|}{2^k (1 + |x_k - y_k|)}$$

for  $(x_k)_{k\in\mathbb{N}}, (y_k)_{k\in\mathbb{N}}\in\mathbb{R}^{\infty}$ .

A number  $d(\tau)$  defined by

$$d(\tau) = \max\{d(U_k) : 1 < k < n\}$$

is called the mesh or the norm of the Riemann partition  $\tau$ .

**Definition 3.6.** Let  $\tau_1 = (U_i^{(1)})_{1 \leq i \leq n}$  and  $\tau_2 = (U_j^{(2)})_{1 \leq j \leq m}$  be the Riemann partitions of  $\prod_{k \in N} [a_k, b_k]$ . We say that  $\tau_2 \leq \tau_1$  iff

$$(\forall j)((1 \le j \le m) \to (\exists i_0)(1 \le i_0 \le n \& U_j^{(2)} \subseteq U_{i_0}^{(1)})).$$

**Definition 3.7.** Let f be a real-valued bounded function defined on  $\prod_{i\in\mathbb{N}}[a_i,b_i]$ . Let  $\tau=(U_k)_{1\leq k\leq n}$  be the Riemann partition of  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  and  $(t_k)_{1\leq k\leq n}$  be a sample such that, for each  $k,\,t_k\in U_k$ . Then:

- (i) a sum  $\sum_{k=1}^{n} f(t_k)\lambda(U_k)$  is called a Riemann sum of f with respect to the Riemann partition  $\tau = (U_k)_{1 \leq k \leq n}$  together with the sample  $(t_k)_{1 \leq k \leq n}$ ;
- (ii) a sum  $S_{\tau} = \sum_{k=1}^{n} M_k \lambda(U_k)$  is called an upper Darboux sum with respect to the Riemann partition  $\tau$  where  $M_k = \sup_{x \in U_k} f(x) (1 \le k \le n)$ ;
- (iii) a sum  $s_{\tau} = \sum_{k=1}^{n} m_k \lambda(U_k)$  is called a lower Darboux sum with respect to the Riemann partition  $\tau$  where  $m_k = \inf_{x \in U_k} f(x) (1 \le k \le n)$ .

**Definition 3.8.** Let f be a real-valued bounded function defined on  $\prod_{i \in N} [a_i, b_i]$ . We say that f is Riemann-integrable on  $\prod_{i \in \mathbb{N}} [a_i, b_i]$  if there exists a real number s such that for every positive real number  $\epsilon$  there exists a real number  $\delta > 0$  such that, for every Riemann partition  $(U_k)_{1 \le k \le n}$  of  $\prod_{k \in \mathbb{N}} [a_k, b_k]$  with  $d(\tau) < \delta$  and for every sample  $(t_k)_{1 \le k \le n}$ , we have

$$\left|\sum_{k=1}^{n} f(t_k)\lambda(U_k) - s\right| < \epsilon.$$

The number s is called a Riemann integral and denoted by

$$(R) \int_{\prod_{k \in \mathbb{N}} [a_k, b_k]} f(x) d\lambda(x).$$

**Definition 3.9.** A function f is called a step function on  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  if it can be written as

$$f(x) = \sum_{k=1}^{n} c_k \mathcal{X}_{U_k}(x),$$

where  $\tau = (U_k)_{1 \leq k \leq n}$  is any Riemann partition of  $\prod_{k \in \mathbb{N}} [a_k, b_k]$ ,  $c_k \in R$  for  $1 \leq k \leq n$  and  $\mathcal{X}_A$  is the indicator function of A.

**Theorem 3.2.** Let f be a continuous function on  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  with respect to the Tikhonov metric  $\rho$ . Then f is Riemann-integrable on  $\prod_{k\in\mathbb{N}}[a_k,b_k]$ .

PROOF. It is obvious that, for every Riemann partition  $\tau = (U_k)_{1 \le k \le n}$  of  $\prod_{k \in \mathbb{N}} [a_k, b_k]$  and for every sample  $(t_k)_{1 \le k \le n}$  with  $t_k \in U_k (1 \le k \le n)$ , we have

$$s_{\tau} \leq \sum_{k=1}^{n} f(t_k) \lambda(U_k) \leq S_{\tau}.$$

Note that if  $\tau_1$  and  $\tau_2$  are two Riemann partitions of  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  such that  $\tau_2\leq\tau_1$ , then

$$s_{\tau_1} \le s_{\tau_2} \le \sum_{k=1}^n f(t_k) \lambda(U_k) \le S_{\tau_2} \le S_{\tau_1}.$$

Let us show the validity of the condition

$$(\forall \epsilon)(\epsilon > 0 \to (\exists r)(\forall \tau)(d(\tau) < r \to S_{\tau} - s_{\tau} < \epsilon)),$$

which yields  $\inf_{\tau} S_{\tau} = \sup_{\tau} s_{\tau}$ .

Following the Tikhonov theorem,  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  is a compact set in the Polish group  $\mathbb{R}^{\infty}$  equipped with the Tikhonov metric  $\rho$ .

Following Cantor's well known result, the function f is uniformly continuous on  $\prod_{k\in N}[a_k,b_k]$ . Hence, for  $\epsilon>0$ , there exists r>0 such that

$$(\forall x,y)(x,y \in \prod_{k \in \mathbb{N}} [a_k,b_k] \& \rho(x,y) < r \to |f(x)-f(y)| \leq \frac{\epsilon}{\lambda(\prod_{k \in N} [a_k,b_k])}).$$

Thus, for every Riemann partition  $\tau = (U_k)_{1 \le k \le n}$  with  $d(\tau) < r$ , we get

$$S_{\tau} - s_{\tau} \le \frac{\epsilon}{\lambda(\prod_{k \in \mathbb{N}} [a_k, b_k[)]} \times \sum_{1 \le k \le n} \lambda(U_k) = \epsilon.$$

Thus  $\inf_{\tau} S_{\tau} = \sup_{\tau} s_{\tau}$ .

Finally, setting  $\delta = r$  and  $s = \inf_{\tau} S_{\tau}$ , we deduce that for every Riemann partition  $(U_k)_{1 \leq k \leq n}$  of the  $\prod_{k \in \mathbb{N}} [a_k, b_k]$  with  $d(\tau) < \delta$  and for every sample  $(t_k)_{1 \leq k \leq n}$  with  $t_k \in U_k (1 \leq k \leq n)$ , we have

$$\left|\sum_{k=1}^{n} f(t_k)\lambda(U_k) - s\right| \le S_{\tau} - s_{\tau} \le \epsilon.$$

This ends the proof of Theorem 3.2.

We have the following infinite-dimensional version of the Lebesgue theorem (see [8], Lebesgue Theorem, p. 359).

**Theorem 3.3.** Let f be a bounded real-valued function on  $\prod_{k \in \mathbb{N}} [a_k, b_k] \in \mathcal{R}$ . Then f is Riemann integrable on  $\prod_{k \in \mathbb{N}} [a_k, b_k]$  if and only if f is  $\lambda$ -almost continuous on  $\prod_{k \in \mathbb{N}} [a_k, b_k]$ .

PROOF. We first prove the necessity. Let f be a Riemann integrable function on  $\prod_{k\in\mathbb{N}}[a_k,b_k]\in\mathcal{R}$ .

Then, for every  $\epsilon>0$  and  $\mu>0$ , there exists a Riemann partition  $\tau=(U_k)_{1\leq k\leq n}$  such that

$$\epsilon \times \mu \ge S_{\tau} - s_{\tau} \ge \sum_{1 \le k \le n} (M_k - m_k) \lambda(U_k) \ge$$

$$\sum_{k \in I_1} (M_k - m_k) \lambda(U_k) \ge \mu \sum_{k \in I_1} \lambda(U_k), \tag{3.1}$$

where  $I_1 = \{k : 1 \le k \le n \& U_k \text{ contains at least one inner point } p \text{ belonging to the set } E_{\mu}\}$ , where

$$E_{\mu} = \{x : x \in \prod_{k \in \mathbb{N}} [a_k, b_k] \& \omega(f, x) \ge \mu\}$$

and

$$\omega(f,x) = \lim_{\delta \to 0} \sup_{x',x'' \in V(x,\delta) \cap \prod_{k \in \mathbb{N}} [a_k,b_k]} |f(x') - f(x'')|.$$

Here, for  $x \in \mathbb{R}^{\infty}$  and  $\delta > 0$ ,  $V(x, \delta)$  is defined by

$$V(x,\delta) = \{ y : y \in \prod_{k \in \mathbb{N}} [a_k, b_k] \& \rho(x, y) \le \delta \}.$$

Since, for  $k \in I_1$ , p is an inner point of  $U_k$ , there exists  $V(p, \delta(k, p))$  such that  $V(p, \delta(k, p)) \subseteq U_k$ . Note that

Since  $\omega(f, p) \ge \mu$ , we have

$$M_k - m_k \ge M_p - m_p \ge \omega(f, p) \ge \mu$$
,

where

$$M_p = \sup_{x \in V(p, \delta(k, p))} f(x), \ m_{\delta} = \inf_{x \in V(p, \delta(k, p))} f(x).$$

From (3.1) we get

$$\epsilon \geq \sum_{k \in I_1} \lambda(U_k).$$

Other points of  $E_{\mu}$ , which are not inner points of the elements of the partition  $\tau$ , can be placed on the boundary of the elements of  $\tau$ , whose  $\lambda$ -measure is zero.

Thus, for  $\mu > 0$ , we have

$$\lambda(E_{\mu}) \le \sum_{k \in I_1} \lambda(U_k) + \lambda(\cup_{1 \le k \le n} \partial(U_k)) \le \frac{\epsilon}{\mu},$$

which yields  $\lambda(E_{\mu}) = 0$ . Since the set E of all points of discontinuity of f admits the representation  $E = \bigcup_{k=1}^{\infty} E_{\frac{1}{k}}$ , we deduce that  $\lambda(E) = 0$ .

This ends the proof of necessity and we continue with the proof of the sufficiency.

For  $K \in \mathbb{R}^+$ , suppose we have  $|f(x)| \leq K$  whenever  $x \in \prod_{k \in \mathbb{N}} [a_k, b_k]$ . Suppose that f is  $\lambda$ -almost continuous on  $\prod_{k \in \mathbb{N}} [a_k, b_k]$ . For  $\epsilon > 0$ , let  $\mu$  be a positive number such that

$$4\mu\lambda(\prod_{k\in\mathbb{N}}[a_k,b_k])<\epsilon.$$

Since, for a set E of all points of discontinuity of f on  $\prod_{k \in \mathbb{N}} [a_k, b_k]$  we have  $\lambda(E) = 0$ , we easily claim that  $\lambda(E_{\mu}) = 0$ . Since  $E_{\mu}$  is closed in  $\prod_{k \in \mathbb{N}} [a_k, b_k]$ , we claim that  $E_{\mu}$  is compact. Hence, for  $\epsilon > 0$ , there exists a finite family of open elementary rectangles in  $\prod_{k \in \mathbb{N}} [a_k, b_k]$  whose union covers  $E_{\mu}$  such that

$$\lambda(\cup_{1\leq k\leq n}U_k)<\frac{\epsilon}{4K}.$$

Finally, we have

$$\prod_{k\in\mathbb{N}} [a_k, b_k] = \cup_{1\leq k\leq n} U_k \cup F,$$

where F is a compact subset in  $\prod_{k \in N} [a_k, b_k]$ .

It is obvious that, for every point  $x \in F$ , we have  $\omega(f,x) < \mu$ . Since F is compact, we can choose  $\delta > 0$  such that for every  $x, x' \in F$  the condition  $\rho(x,x') < \delta$  yields  $|f(x) - f(x')| < 2\lambda$ .

Since F is a finite union of elementary rectangles in  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  (this follows from the fact that the class of all elementary rectangles in  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  is a ring), there exists a partition  $\tau_1=(F_i)_{2\leq i\leq m}$  of F such that, for i with  $2\leq i\leq m$ ,  $F_i$  is an elementary rectangle in  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  with  $d(F_i)<\delta$ . Then  $\tau=\{\cup_{1\leq k\leq n}U_k,F_2,\cdots,F_m\}$  will be Riemann partition of  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  such that

$$S_{\tau} - s_{\tau} = (M_1 - m_1)\lambda(\cup_{1 \le k \le n} U_k) + \sum_{1 \le i \le m} (M_i - m_i)\lambda(F_k) \le M_i + M_i$$

$$\frac{\epsilon}{2} + 2\mu\lambda(\prod_{k \in \mathbb{N}} [a_k, b_k])) \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

**Remark 3.2.** Theorem 3.2 is a simple consequence of Theorem 3.3. Therefore, using Theorem 3.3, one can extend the concept of Riemann integrability theory to the case of functions defined in the topological vector space  $\mathbb{R}^{\infty}$  of all real-valued sequences equipped with Tikhonov topology.

In the sequel, we need some important notions and well-known results from general topology and measure theory.

**Definition 3.10.** A topological Hausdorff space X is called normal if given any disjoint closed sets E and F, there are neighborhoods U of E and V of F that are also disjoint.

**Lemma 3.1** (Urysohn [15]). A topological space X is normal if and only if any two disjoint closed sets can be separated by a function. That is, given disjoint closed sets E and F, there is a continuous function f from X to [0,1] such that the preimages of 0 and 1 under f are E and F, respectively.

**Remark 3.3.** Since all compact Hausdorff spaces are normal, we deduce that  $\prod_{k\in N}[a_k,b_k]$  equipped with Tikhonov topology is normal. By Urysohn's lemma we deduce that any two disjoint closed sets in  $\prod_{k\in \mathbb{N}}[a_k,b_k]$  can be separated by a function.

**Definition 3.11.** A Borel measure  $\mu$ , defined on a Hausdorff topological space X is called Radon if

$$(\forall Y)(Y \in \mathcal{B}(X) \ \& \ 0 \leq \mu(Y) < +\infty \rightarrow \mu(Y) = \sup_{K \subseteq Y \atop \text{$K$ is compact in $X$}} \mu(K)).$$

**Lemma 3.2** (Ulam [14]). Every probability Borel measure defined on a Polish metric space is Radon.

In the sequel, we denote by  $\mathcal{C}(\prod_{k\in\mathbb{N}}[a_k,b_k])$  a class of all continuous (with respect to the Tikhonov topology) real-valued functions on  $\prod_{k\in\mathbb{N}}[a_k,b_k]$ .

**Theorem 3.4.** For  $\prod_{i\in\mathbb{N}}[a_i,b_i]\in\mathcal{R}$ , let  $(Y_n)_{n\in\mathbb{N}}$  be an increasing family of its finite subsets. Then  $(Y_n)_{n\in\mathbb{N}}$  is uniformly distributed in  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  if and only if the equality

$$\lim_{n \to \infty} \frac{\sum_{y \in Y_n} f(y)}{\#(Y_n)} = \frac{(R) \int_{\prod_{k \in N} [a_k, b_k]} f(x) d\lambda(x)}{\lambda(\prod_{i \in N} [a_i, b_i])}$$

holds for every  $f \in \mathcal{C}(\prod_{k \in \mathbb{N}} [a_k, b_k])$ .

PROOF. We begin by proving the necessity. Let  $(Y_n)_{n\in\mathbb{N}}$  be uniformly distributed on  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  and let  $f(x)=\sum_{k=1}^m c_k\mathcal{X}_{U_k}(x)$  be a step function. Then we have

$$\lim_{n \to \infty} \frac{\sum_{y \in Y_n} f(y)}{\#(Y_n)} = \lim_{n \to \infty} \frac{\sum_{y \in Y_n} \sum_{k=1}^m c_k \mathcal{X}_{U_k}(y)}{\#(Y_n)} =$$

$$\lim_{n \to \infty} \frac{\sum_{k=1}^m c_k \#(U_k \cap Y_n)}{\#(Y_n)} = \sum_{k=1}^m c_k \lim_{n \to \infty} \frac{\#(U_k \cap Y_n)}{\#(Y_n)} =$$

$$\sum_{k=1}^m c_k \frac{\lambda(U_k)}{\lambda(\prod_{i \in \mathbb{N}} [a_i, b_i])} = \frac{(R) \int_{\prod_{k \in \mathbb{N}} [a_k, b_k]} f(x) d\lambda(x)}{\lambda(\prod_{i \in \mathbb{N}} [a_i, b_i])}.$$

Now, let  $f \in \mathcal{C}(\prod_{k \in \mathbb{N}} [a_k, b_k])$ . By Theorem 3.2 we deduce that f is Riemann-integrable. From the definition of a Riemann integral we deduce that, for every positive  $\epsilon$ , there exist two step functions  $f_1$  and  $f_2$  on  $\prod_{i \in \mathbb{N}} [a_i, b_i]$  such that

$$f_1(x) \le f(x) \le f_2(x)$$

and

$$(R) \int_{\prod_{i \in N} [a_i, b_i]} (f_1(x) - f_2(x)) d\lambda(x) < \epsilon.$$

Then we have

$$(R) \int_{\prod_{i \in \mathbb{N}} [a_i, b_i]} f(x) d\lambda(x) - \epsilon \leq (R) \int_{\prod_{i \in \mathbb{N}} [a_i, b_i]} f_1(x) d\lambda(x) =$$

$$\lambda(\prod_{i \in \mathbb{N}} [a_i, b_i]) \times \lim_{n \to \infty} \frac{\sum_{y \in Y_n} f_1(y)}{\#(Y_n)} \leq \lambda(\prod_{i \in \mathbb{N}} [a_i, b_i]) \times \underline{\lim}_{n \to \infty} \frac{\sum_{y \in Y_n} f(y)}{\#(Y_n)} \leq$$

$$\lambda(\prod_{i \in \mathbb{N}} [a_i, b_i]) \times \overline{\lim}_{n \to \infty} \frac{\sum_{y \in Y_n} f(y)}{\#(Y_n)} \leq \lim_{n \to \infty} \frac{\sum_{y \in Y_n} f_2(y)}{\#(Y_n)} \leq$$

$$\lambda(\prod_{i \in \mathbb{N}} [a_i, b_i]) \times (R) \int_{\prod_{i \in \mathbb{N}} [a_i, b_i]} f_2(x) d\lambda(x) \leq (R) \int_{\prod_{i \in \mathbb{N}} [a_i, b_i]} f(x) d\lambda(x) + \epsilon.$$

The latter relation yields the existence of a limit  $\lim_{n\to\infty} \frac{\sum_{y\in Y_n} f(y)}{\#(Y_n)}$  such that

$$\lim_{n\to\infty}\frac{\sum_{y\in Y_n}f(y)}{\#(Y_n)}=\frac{(R)\int_{\prod_{k\in N}[a_k,b_k]}f(x)d\lambda(x)}{\lambda(\prod_{i\in N}[a_i,b_i])}.$$

This ends the proof of the necessity.

To begin the proof of the sufficiency, assume that  $(Y_n)_{n\in\mathbb{N}}$  is an increasing sequence of subsets of  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  such that the equality

$$\lim_{n \to \infty} \frac{\sum_{y \in Y_n} f(y)}{\#(Y_n)} = \frac{(R) \int_{\prod_{k \in N} [a_k, b_k[} f(x) d\lambda(x)}{\lambda(\prod_{i \in N} [a_i, b_i])}$$

holds for every  $f \in \mathcal{C}(\prod_{k \in \mathbb{N}} [a_k, b_k])$ .

Let U be any elementary rectangle in  $\prod_{i \in \mathbb{N}} [a_i, b_i]$ .

For  $\epsilon > 0$ , by Ulam's lemma we can choose a compact set

$$F \subset \prod_{k \in \mathbb{N}} [a_k, b_k] \setminus [U]_T,$$

such that  $\lambda((\prod_{k\in\mathbb{N}}[a_k,b_k]\setminus[U]_T)\setminus F)<\frac{\epsilon}{2}$ , where  $[U]_T$  denotes the completion of the set U by the Tikhonov topology in  $\prod_{k\in\mathbb{N}}[a_k,b_k]$ . Then, by Urysohn's lemma there is a continuous function  $g_2$  from  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  to [0,1] such the preimages of 0 and 1 under  $g_2$  are F and  $[U]_T$ , respectively. Then, for  $x\in\prod_{k\in\mathbb{N}}[a_k,b_k]$ , we have

$$\mathcal{X}_U(x) \leq g_2(x)$$

and

$$(R) \int_{\prod_{k \in N} [a_k, b_k]} (g_2(x) - \mathcal{X}_U(x)) d\lambda(x) \le \frac{\epsilon}{2},$$

where  $\mathcal{X}_U$  is an indicator of U defined on  $\prod_{k\in\mathbb{N}}[a_k,b_k]$ .

Now let us consider the set  $[\prod_{k\in\mathbb{N}}[a_k,b_k]\setminus U]_T$ . Using Ulam's lemma, we can choose a compact set

$$F_1 \subset \prod_{k \in \mathbb{N}} [a_k, b_k] \setminus [\prod_{k \in \mathbb{N}} [a_k, b_k] \setminus U]_T$$

such that

$$\lambda((\prod_{k\in\mathbb{N}}[a_k,b_k]\setminus[\prod_{k\in N}[a_k,b_k]\setminus U]_T)\setminus F_1)<\frac{\epsilon}{2}.$$

Then, by Urysohn's lemma there is a continuous function  $g_1$  from  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  to [0,1] such that the preimages of 0 and 1 under  $g_1$  are  $[\prod_{k\in\mathbb{N}}[a_k,b_k]\setminus U]_T$  and  $F_1$ , respectively. Then, for  $x\in\prod_{k\in\mathbb{N}}[a_k,b_k]$ , we have

$$g_1(x) \leq \mathcal{X}_U(x)$$

and

$$(R) \int_{\prod_{t \in \mathcal{X}} [a_k, b_k]} (\mathcal{X}_U(x) - g_1(x)) d\lambda(x) \le \frac{\epsilon}{2}.$$

Now, we deduce that for every elementary rectangle U in  $\prod_{i\in\mathbb{N}}[a_i,b_i]$  there exists two continuous functions  $g_1$  and  $g_2$  on  $\prod_{i\in\mathbb{N}}[a_i,b_i]$  such that

$$g_1(x) \le \mathcal{X}_U(x) \le g_2(x)$$

and

$$(R) \int_{\prod_{i \in \mathbb{N}} [a_i, b_i]} (g_2(x) - g_1(x)) d\lambda(x) \le \epsilon.$$

Then we have

$$\begin{split} &\lambda(U) - \epsilon \leq (R) \int_{\prod_{i \in N} [a_i,b_i]} g_2(x) d\lambda(x) - \epsilon \leq (R) \int_{\prod_{i \in N} [a_i,b_i]} g_1(x) d\lambda(x) = \\ &\lambda(\prod_{i \in \mathbb{N}} [a_i,b_i]) \times \lim_{n \to \infty} \frac{\sum_{y \in Y_n} g_1(y)}{\#(Y_n)} \leq \lambda(\prod_{i \in \mathbb{N}} [a_i,b_i]) \times \underline{\lim}_{n \to \infty} \frac{\#(Y_n \cap U)}{\#(Y_n)} \leq \\ &\lambda(\prod_{i \in \mathbb{N}} [a_i,b_i]) \times \overline{\lim}_{n \to \infty} \frac{\#(Y_n \cap U)}{\#(Y_n)} \leq \lambda(\prod_{i \in \mathbb{N}} [a_i,b_i]) \times \lim_{n \to \infty} \frac{\sum_{y \in Y_n} g_2(y)}{\#(Y_n)} = \\ &(R) \int_{\prod_{i \in N} [a_i,b_i]} g_2(x) d\lambda(x) \leq (R) \int_{\prod_{i \in N} [a_i,b_i]} g_1(x) d\lambda(x) + \epsilon \leq \lambda(U) + \epsilon. \end{split}$$

Since  $\epsilon$  was taken arbitrary, we deduce that

$$\lambda(\prod_{i \in \mathbb{N}} [a_i, b_i]) \times \lim_{n \to \infty} \frac{\#(Y_n \cap U)}{\#(Y_n)} = \lambda(U).$$

This ends the proof of Theorem 3.4.

Now by the scheme used in the proof of Theorem 3.4, one can get the validity of an infinite-dimensional analog of Lemma 3.1. In particular, the following assertion is valid.

**Theorem 3.5.** For  $\prod_{i\in\mathbb{N}}[a_i,b_i]\in\mathcal{R}$ , let  $(Y_n)_{n\in\mathbb{N}}$  be an increasing family its finite subsets. Then  $(Y_n)_{n\in\mathbb{N}}$  is uniformly distributed in the  $\prod_{k\in\mathbb{N}}[a_k,b_k]$  if and only if the equality

$$\lim_{n \to \infty} \frac{\sum_{y \in Y_n} f(y)}{\#(Y_n)} = \frac{(R) \int_{\prod_{k \in N} [a_k, b_k]} f(x) d\lambda(x)}{\lambda(\prod_{i \in N} [a_i, b_i])}$$

holds for every Riemann integrable function f on  $\prod_{k\in\mathbb{N}} [a_k, b_k]$ ).

**Acknowledgment**. The author wishes to thank Professor G. Akhalaia for suggesting an investigation of the Riemann integrability problem for bounded real-valued functions defined on infinite-dimensional rectangles in terms of the "Lebesgue measure" [1].

### References

- [1] R. Baker, "Lebesgue measure" on  $\mathbb{R}^{\infty}$ , Proc. Amer. Math. Soc., **113(4)** (1991), 1023–1029.
- [2] R. Engelking, *Outline of general topology*, PWN, Warsaw.: North-Holland, Amsterdam, 1974.
- [3] P. R. Halmos, Measure theory, Van Nostrand, New York, 1950.
- [4] K. Kuratowski, A. Mostowski, Set theory, Nauka, Moscow, 1980. (Russian).
- [5] L. Kuipers, H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.
- [6] G. H. Hardy, J. E. Littlewood, Some problems of diophantine approximation, Acta Math., 41(1) (1916), 196.
- [7] A. B. Kharazishvili, Topological aspects of measure theory, Naukova Dumka, Kiev, 1984 (Russian).
- [8] S. M. Nikolski, Course of mathematical analysis, Vol. 1, Moscow, 1983 (Russian).
- [9] S. M. Nikolski, Course of mathematical analysis, Vol. 2, Moscow, 1983 (Russian).
- [10] G. R. Pantsulaia, Riemann Integrability and Uniform Distribution in Infinite-Dimensional Rectangles, Georgian Int. J. Sci. Technol., 2(3) (2010), 251–262.
- [11] A. M. Bruckner, J. B. Bruckner and B. S. Thomson, *Real Analysis*, Prentice-Hall, Englewood Cliffs, NJ, 1996.
- [12] G. H. Hardy, J. E. Littlewood, Some problems of diophantine approximation, Acta Math., **37(1)** (1914), 193–239.
- [13] H. Weyl, Über ein Problem aus dem Gebiete der diophantischen Approximation, Marchr. Ges. Wiss. GÖtingen. Math-phys. K1., (1914), 234–244.
- [14] S. Ulam, Zur Masstheorier in der allgemeinen Mengenlehre, Fund. Math., **16** (1930), 140–150.

[15] P. Urysohn, *Zum Metrisationsproblem*, (German) Math. Ann., **94** (1) (1925), 309–315.

[16] I. Vinogradow, On fractional parts of certain functions, Ann. Math., **37(2)** (1936), 448–455.