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Abstract

The concepts of uniformly distributed sequences of an increasing
family of finite sets and Riemann integrability are considered in terms
of the “Lebesgue measure” on infinite-dimensional rectangles in R* and
infinite-dimensional versions of famous results of Lebesgue and Weyl are
proved.

1 Introduction

Following [5], a sequence $1, g, S3, - - - of real numbers from an interval [a, b] is
said to be equidistributed or uniformly distributed on that interval if the pro-
portion of terms contained in a subinterval [¢, d] is proportional to the length
of that subinterval. Such sequences are studied in Diophantine approximation
theory and have applications to Monte Carlo integration (see, for example, [5],
[6], [12]).

Let R be the class of all infinite dimensional rectangles R of the form

R = [ai,bi], —oo<a; <b <400
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with 0 < [T:2,(b; — a;) < +00, where

f[l(bi —a;) = HILH;O f[l(bl — ;).

In [1], a translation invariant Borel measure A was constructed on R* such
that

o0
AR) =[] (b — ai)
i=1
for ReR.

The purpose of the present paper is to consider the concept of a uniform
distribution in infinite-dimensional rectangles which can be used to calculate
Riemann integrals over such rectangles. Similar topics are discussed in [10].

The paper is organized as follows.

In Section 2, some auxiliary notions and facts due to Weyl [13] are con-
sidered. In Section 3, the main results of the paper are proved. In particular,
the infinite-dimensional versions of the famous results due to Lebesgue [9] and
Weyl [13] are proved.

2 Auxiliary notions and propositions

Definition 2.1. A bounded sequence si, S2,s3,--- of real numbers is said
to be equidistributed or uniformly distributed on an interval [a,d] if for any
subinterval [c, d] of [a, b] we have

lim #({513527533”' 75n}m[cad]) d—c

n— oo n b_a’

where # denotes a counting measure.

Remark 2.1. For a < ¢ < d <b, let |[¢, d][ denote a subinterval of [a, b] that
has one of the following forms : [c,d], [¢,d],]¢,d[ or |e,d]. Then it is obvious
that a bounded sequence si, So,83,--- of real numbers is equidistributed or
uniformly distributed on an interval [a,b] iff, for any subinterval ][c,d][ of
[a, b], we have

hl'Il #({317 52,83, 787l}ﬂ][c7 d]D _ d - C.

n—00 n b—a

Definition 2.2 (Weyl [13]). A sequence si, S2, S3,- -+ is said to be equidis-
tributed modulo 1 or uniformly distributed modulo 1 if the sequence (s, —
[$n])nen of the fractional parts of (s,)nen’s is equidistributed (equivalently,
uniformly distributed) on the interval [0, 1].
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Example 2.1 ([5], Exercise 1.12, p. 16). The sequence of all multiples of an
irrational o

0,a,2a,3a---
is uniformly distributed modulo 1.
Example 2.2 ([5], Exercise 1.13, p. 16). The sequence

001012 0 k-1

I7§u§7§7§7§7" 7%7 ) L P

is uniformly distributed modulo 1.

Example 2.3. The sequence of all multiples of an irrational o by successive
prime numbers

2a, 3a, ba, Ta, 11y, - - -

is equidistributed modulo 1. This is the famous theorem of analytic number
theory proved by I. M. Vinogradov in 1935 (see [16]).

Notation In the sequel, and as distinct from N. Bourbaki’s well known
notion, by N we understand the set {1,2,---}.

Remark 2.2. If (s;)ren is uniformly distributed modulo 1, then
((sk = [sk])(b — a) + a)ken
is uniformly distributed on an interval [a, b).

The following assertion contains an interesting application of uniformly
distributed sequences for the calculation of Riemann integrals.

Lemma 2.1 (Weyl [13]). The following two conditions are equivalent:
(i) (an)nen is equidistributed modulo 1;

(i) For every Riemann integrable function f on [0,1]

Jim 23 fa)= [ flade
j=1
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3 On uniformly distributed sequences of an increasing
family of finite sets in infinite-dimensional rectangles

Let s1, s2, 83, -+ be uniformly distributed on an interval [a, b]. Setting Y,, =
{81, 82,83, -+ ,8n} for n € N, (Y;,)nen will be an increasing sequence of finite
subsets of the [a,b] that, for any subinterval [c,d] of the [a,b], the following
equality

_ #Vanled) d-c
A THY)  bea

will be valid. This remark raises the following:

Definition 3.1. An increasing sequence (Y, )nen of finite subsets of [a,b] is
said to be equidistributed or uniformly distributed on an interval [a, b] if, for
any subinterval [c, d] of [a, b], we have

. #YuNled) d-c
AW b—a

Definition 3.2. Let [[,cylar,bx] € R. A set U is called an elementary
rectangle in [], oy[ax, bx] if it admits the following representation

U=][llew-dillx [  lar bel,
k=1 kEN\{1, ,m}
where a < ¢ <dp <bg for 1 <k <m.

It is obvious that

)\(U) = H(dk — Ck) X H (bk — ak),
k=1 k=m+1

for the elementary rectangle U.

Definition 3.3. An increasing sequence (Y}, )nen of finite subsets of an infinite-
dimensional rectangle [ ], cy[ax, bx] € R is said to be uniformly distributed on
[1.cnlar, by] if for every elementary rectangle U in [ ], cylax, br[ we have

oy #Xa0U) AU)
n— o0 #(Yn> )\(erN[akv b [) .
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Theorem 3.1. Let [],ylar,bx] € R. Let (x%k))neN be uniformly distributed

on the interval [ax, by] for k € N. We set
& k
Yo=[[ma™) < I {a)-
k=1 keN\{L,- ,n}
Then (Yn)nen is uniformly distributed in the rectangle T[], cyla, br].

PROOF. Let U be an elementary rectangle in [], cylax, b].

Since (;v;’“))neN is uniformly distributed on the interval [ag, b] for k € N,
by Remark 2.1 we have

#({t™, 2 aN)[en, di)) _dg —cg

li = .
nglgo n b}c — ag
Hence
i #0000) g 20 il ddD

k=1

m k k k
Tt 2l dilD
n—00 n
7 — o AU)
ios bk —ar M Iyenlar, be])’

O

Remark 3.1. In the context of Theorem 3.1, it is natural to ask whether there
exists an increasing sequence of finite subsets (Y, )nen such that
L#OLOD) D)
n—oo  #(Yy) A kenlar, be])
for every infinite-dimensional rectangle U = ], oy Xk C [[zenlar, br], where,
for each k € N, X, is a finite sum of pairwise disjoint subintervals of [ay, by ?

Let us show that the answer to this question is negative.
Indeed, assume the contrary and let (Y},),en be such an increasing sequence
of finite subsets in [], oy [ax, br]. Then we have

UnENYn = {(mz(‘k))iEN ke N}
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For k € N, we set Xj = [ag, bx] \xgc) Then it is clear that
AT Xx) = A([ o b&])
keN keN

and
#(Yn N erN Xk)

#(Yn)

=0
for k € N, which implies

lim #(Yn N erN Xk) —0<1= A(erN Xk)
A

n— o0 #(Yn) (HkEN[akv bk]) .
Definition 3.4. Let [],y[ax,bx] € R. A family of pairwise disjoint elemen-
tary rectangles 7 = (Uk)1<k<n Of [[cnlax, by] is called the Riemann partition
of [Tpenlar, o] if Ur<k<nUr = [enlar, bi]-

Definition 3.5. Let 7 = (Uk)1<k<n be the Riemann partition of [ [, o y [ax, bx]-
Let ¢(Pr;(Uy)) be the length of the i-th projection Pr;(Uy) of Uy for i € N.
We set

- ((Pri(Uy))
d(Uy) = Z 2i(1 + E(Prl:(Uk)).

iEN

It is obvious that d(Uy) is the diameter of the elementary rectangle Uy for
k € N with respect to the Tikhonov metric p defined as follows

|1 — Ykl
p((Tr)ken, (Yk)ren) = Z k
2R far — il)

for (z)ren, (Yr)ren € R,
A number d(7) defined by

d(r) =max{d(Uy) : 1 < k <n}
is called the mesh or the norm of the Riemann partition 7.

Definition 3.6. Let 71 = (Ui(l))lgign and 7 = (Uj@))lgjgm be the Riemann

partitions of [], oy [ax, bx]. We say that 7 < 7 iff
V(1 <j<m)—= (Fip) 1 <ipg<n& UJ@) C Ui(ol)))'

Definition 3.7. Let f be areal-valued bounded function defined on [, y[as, bs].
Let 7 = (Ur)i1<k<n be the Riemann partition of [],_y[ax,bx] and (tx)1<p<n
be a sample such that, for each k, t; € Ug. Then:
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(i) asum Y ,_, f(tx)A(Ug) is called a Riemann sum of f with respect to the
Riemann partition 7 = (Ug)1<k<n together with the sample (tx)1<k<n;

(ii) asum S; =Y ;_; MuA(Uy) is called an upper Darboux sum with respect
to the Riemann partition 7 where M}, = sup,cy, f(2)(1 <k < n);

(ii) a sum s; = > ,_; mpA(Uy) is called a lower Darboux sum with respect
to the Riemann partition 7 where my = inf ey, f(z)(1 <k <n).

Definition 3.8. Let f be a real-valued bounded function defined on [, 5 [a, bi.
We say that f is Riemann-integrable on [ [, y[as, b;] if there exists a real num-
ber s such that for every positive real number e there exists a real number
d > 0 such that, for every Riemann partition (Uy)i1<k<n of [} cnla, br] with
d(1) < ¢ and for every sample (t;)1<k<n, We have

n

1D Ft)AUR) — 5| <e.

k=1

The number s is called a Riemann integral and denoted by

(R) /H oy @0,

Definition 3.9. A function f is called a step function on [],  ylax, bx] if it
can be written as

f(x) = ZCkXUk (l‘),
k=1

where 7 = (Ug)1<r<n is any Riemann partition of [], ylax,bx], cx € R for
1 <k <nand X, is the indicator function of A.

Theorem 3.2. Let f be a continuous function on ], ylax,bx] with respect
to the Tikhonov metric p. Then f is Riemann-integrable on [, cylak, bk].

PROOF. It is obvious that, for every Riemann partition 7 = (Ug)i<g<n Of
[Irenlar, by] and for every sample (tx)1<p<n with ¢ € Up(l < k < n), we
have

sr <Y f(t)AMUR) < Sr.
k=1

Note that if 7, and 7> are two Riemann partitions of [, .y[ax,bx] such that
75 < 71, then
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S

Sty < Sty < S S’TQ < S7'1~

k=1

Let us show the validity of the condition
(Ve)(e >0 — 3r)(Vr)(d(T) <7 —= S; — s <)),

which yields inf. S, = sup_ s;.

Following the Tikhonov theorem, [], cy[ax, bx] is a compact set in the Pol-
ish group R* equipped with the Tikhonov metric p.

Following Cantor’s well known result, the function f is uniformly continu-
ous on [, cylax,bx]. Hence, for € > 0, there exists r > 0 such that

(Vz,y)(z,y € Ig[ak,bk]&p(x,y) <r—=|flz) = fly)] < m)

Thus, for every Riemann partition 7 = (Uy)1<kp<n with d(7) < r, we get

S;—s; <

X AUg) =e.
(HkEN akabk Z k

1<k<n

Thus inf, S; = sup, s;.

Finally, setting § = r and s = inf, S, we deduce that for every Riemann
partition (Up)i<p<n of the J], ylax,bx] with d(7) < 0 and for every sample
(tk)lgkgn with t € Uk(l <k< n), we have

n

| Zf(tk)A(Uk) — s| <S8, —5s;<e

k=1

This ends the proof of Theorem 3.2. O

We have the following infinite-dimensional version of the Lebesgue theorem
(see [8], Lebesgue Theorem, p. 359).

Theorem 3.3. Let f be a bounded real-valued function on [, cxlar,br] € R.
Then f is Riemann integrable on [].cnlax,bx] if and only if f is A-almost
continuous on [, cylar, b].

PROOF. We first prove the necessity. Let f be a Riemann integrable function
on [],cnlar, br] € R.
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Then, for every € > 0 and g > 0, there exists a Riemann partition 7 =
(Uk)1<k<n such that

EX >SS, —s, > Z (Mg, — mp)A\(Ug) >

1<k<n

> (My = m)AUi) = p Y MUs), (3.1)

kel kel

where Iy = {k : 1 < k < n & Uy, contains at least one inner point p belonging
to the set E,}, where

E,={z:z¢ H[ak,bk] & w(f,z) > u}

keN

and

w(f,x) = lim sup £a) = £,

0=0 z’ " EV(wﬁ)ﬂerN[ak,bk]

Here, for z € R and § > 0, V(x,0) is defined by

V(z,0)={y:y¢€ H[ak,bk] &p(z,y) < 6}

keN

Since, for k € I, p is an inner point of Uy, there exists V(p, d(k,p)) such
that V(p,d0(k,p)) C Uy. Note that
Since w(f,p) > u, we have

Mk:_meMp_mpr(f7p)2/La

where

M, = su x), ms = inf
: xEV(p,ghp))f( ) z€V (p,d(k,p))

From (3.1) we get

e> > ANUy).
kel
Other points of E,,, which are not inner points of the elements of the
partition 7, can be placed on the boundary of the elements of 7, whose \-
measure is zero.
Thus, for p > 0, we have

AEL) <Y MU) + MUi<r<nd(Ur)) <
kel

)

=lam
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which yields A(E,) = 0. Since the set E of all points of discontinuity of f
admits the representation £ = U2, 1, we deduce that A(E) = 0.

This ends the proof of necessity and we continue with the proof of the
sufficiency.

For K € R*, suppose we have |f(z)| < K whenever z € [];cylak, bi].
Suppose that f is A-almost continuous on [[, o y[ax,bx]. For € > 0, let 1 be a
positive number such that

4;M(H [ak, bg]) < e.

keN

Since, for a set I of all points of discontinuity of f on [, cy[ax, bx] we have
A(E) = 0, we easily claim that A\(E),) = 0. Since E,, is closed in [[, cn[ax, br],
we claim that F,, is compact. Hence, for € > 0, there exists a finite family of
open elementary rectangles in [],y[ax, bx] whose union covers E,, such that

A(UlngnUk) < E

Finally, we have

H[am br] = Ui<k<nUx U F,
keN

where F'is a compact subset in [, c y[ax, br].

It is obvious that, for every point 2 € F, we have w(f,x) < u. Since F
is compact, we can choose § > 0 such that for every x, z € F the condition
plz,z') < 6 yields |f(z) — f(xl)| <2\

Since F' is a finite union of elementary rectangles in [],cylax,bx] (this
follows from the fact that the class of all elementary rectangles in [ [, y[ax, bx]
is a ring), there exists a partition 7 = (F})2<i<m of F such that, for ¢ with
2 <4 < m, Fj is an elementary rectangle in [], _y[ax, bx] with d(F;) < 6. Then
T = {Ui<r<nUy, Fa,- -+, Fp} will be Riemann partition of [], cylax, bx] such
that

Sy —sr = (My —mi)MUi<k<nUx) + Z (M; —mi)A\(F) <

1<i<m

=+ 2uM([ T law, 0a)) <

5 +
keN

[N e
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Remark 3.2. Theorem 3.2 is a simple consequence of Theorem 3.3. Therefore,
using Theorem 3.3, one can extend the concept of Riemann integrability theory
to the case of functions defined in the topological vector space R> of all real-
valued sequences equipped with Tikhonov topology.

In the sequel, we need some important notions and well-known results from
general topology and measure theory.

Definition 3.10. A topological Hausdorff space X is called normal if given
any disjoint closed sets E and F', there are neighborhoods U of E and V of F
that are also disjoint.

Lemma 3.1 (Urysohn [15]). A topological space X is normal if and only if
any two disjoint closed sets can be separated by a function. That is, given
disjoint closed sets E and F, there is a continuous function f from X to [0,1]
such that the preimages of 0 and 1 under f are E and F, respectively.

Remark 3.3. Since all compact Hausdorff spaces are normal, we deduce
that [],clax, bx] equipped with Tikhonov topology is normal. By Urysohn’s
lemma we deduce that any two disjoint closed sets in [],ylax,bx] can be
separated by a function.

Definition 3.11. A Borel measure u, defined on a Hausdorff topological space
X is called Radon if

(VY)Y e B(X) &0 < u(Y) < 400 — u(Y) = sup p(K)).
KCY
K is compact in X

Lemma 3.2 (Ulam [14]). Every probability Borel measure defined on a Polish
metric space is Radon.

In the sequel, we denote by C(]],cnlar, bx]) a class of all continuous (with
respect to the Tikhonov topology) real-valued functions on [], c y[ax, bx]-

Theorem 3.4. For [],.ylai, bi] € R, let (Yn)nen be an increasing family of
its finite subsets. Then (Y, )nen is uniformly distributed in [ [, cylax, bx] if and
only if the equality

o Syev, f@) () i1, f@)AA(@)
novoo #(Yn) A Tie @i, bi])

holds for every f € C([[,enlar, br])-




336 GOGI PANTSULAIA

PROOF. We begin by proving the necessity. Let (Y, )nen be uniformly dis-
tributed on [], cxlak,bx] and let f(z) = 37", ey, (x) be a step function.
Then we have

lim M ~ im ZyEYn Dkt X, (y) _
n—r00 #(Yn) n— 0o #(Yn)
i k= 13;?& Uy N Yn) =3 o i U(;;f) _
) _ fnkeN[ak,bk] f(x) )\(x)
ZCk zeN[a“bl]) B M Lienlai; b)) '

Now, let f € C(I[,enlax,bx]). By Theorem 3.2 we deduce that f is Riemann-
integrable. From the definition of a Riemann integral we deduce that, for

every positive e, there exist two step functions f; and fo on [, ylas, bs] such
that
fi(z) < f(z) < fa(z)
and
® [ (f1(2) = Fal@))dA(@) < e
HieN[ai bi]
Then we have
® | f@)ix@) - e< (®) [ fil@)dr () =
LeN[alvb ] HieN[a'i7bi]
> yey, [1(Y) doyey, FY)
A Tjai, bi]) x lim =2 22070 \(TTlas, b)) x lim, =2 227 <
— > Y, f() > Y, f2(y)
A a;, b)) X limyy oo =¥ " 2 < i SXER T2 <
(Lo b e Bimooe =55 < Jim, =555 <
A los.bi) = (7) [ fal@)dN@) < (R) | F@)dA@) +e.
€N [Tienlai,bil [Ticnlai,bil
The latter relation yields the existence of a limit lim,, % such that

lim ZyEYn f(y) _ (R) ferN[ak7bk] f(lL')d)\({E)
n—00 #(Yn) )‘(HieN[aia bz])
This ends the proof of the necessity.
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To begin the proof of the sufficiency, assume that (Y, )nen is an increasing
sequence of subsets of [, c y[ax,bx] such that the equality

lim ZyEYn f() _ (R) fHkEN[ak’bk[f(I)dA(x)
nooo (V) A[Tienlai, bi])

holds for every f € C(I],cnlar,bx])-
Let U be any elementary rectangle in [, ylas, bi].
For € > 0, by Ulam’s lemma we can choose a compact set

F < []lar, b\ [Ulr,

keN

such that A((J],enlar, 0k)\ [Ulr) \ F) < §, where [U]r denotes the completion
of the set U by the Tikhonov topology in ], ylax,bx]. Then, by Urysohn’s
lemma there is a continuous function g from [, .y[ax,bx] to [0,1] such the
preimages of 0 and 1 under g, are F' and [U]r, respectively. Then, for z €
erN[ak,bk], we have

Xy (2) < ga2(z)

and

DO | ™

<m/ (92() — Xy (2))dA(x) <
[Trenlar,br]

where Ay is an indicator of U defined on [], cy[ax, br]-

Now let us consider the set [[[cylax, bx] \ U]r. Using Ulam’s lemma, we
can choose a compact set

Fy € [Tlax, o) \ [T law, ba] \ Ulr

keN keN

such that

M T (s 0] NI T ok, k] \ Ulr) \ Fr) < g

keN keEN

Then, by Urysohn’s lemma there is a continuous function g; from [ [, cylax, bx]
to [0,1] such that the preimages of 0 and 1 under g; are [[[;cylax, bx] \ Ulr
and Fy, respectively. Then, for 2 € [, cy[ax, bx], we have

91(z) < Xp(x)

and
@/ (Xo(x) — g1 (2)dA(2) <
[Trenlaw,bil

[N e
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Now, we deduce that for every elementary rectangle U in [], y[ai, b;] there
exists two continuous functions g; and g» on [], ya:, bs] such that

91(z) < Xy (2) < g2(2)
and
(R)/ (g2(z) — g1(x))dA(x) <e.
HieN[aiwbi]

Then we have

p@DE) <) [ g =

im —————— n— 00 —
ieN novoe #(Ya) i€N - #(Yn)
#(Y.NU) >yey, 92(Y)
A aq,b;]) x lim, o <A ai,b;]) x lim L =
(R)/ g2(z)dA\(z) < (R)/ g1(z)d\(z) +e < ANU) +e.
HiEN[a’i’bi] HiEN[ai’bi]
Since € was taken arbitrary, we deduce that
- #(YnNU)
A a;,bi]) x lim ——= = A(U).
([Tt x Jim 5= = 3@)
This ends the proof of Theorem 3.4. O

Now by the scheme used in the proof of Theorem 3.4, one can get the
validity of an infinite-dimensional analog of Lemma 3.1. In particular, the
following assertion is valid.

Theorem 3.5. For [[,y[ai,bi] € R, let (Yo)nen be an increasing family its
finite subsets. Then (Yy,)nen is uniformly distributed in the [],cylak, bx] if
and only if the equality

hIIl Zern f(y) _ (R) ‘[erN[ak,bk] f(fE)d)\({E)

w () MILienlorb])

holds for every Riemann integrable function f on [],cxlar,bx]).
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