Stanisław Kowalczyk, Institute of Mathematics, Academia Pomeraniensis, Arciszewskiego 22b, Slupsk, Poland. email: stkowalcz@onet.eu
Katarzyna Nowakowska, Institute of Mathematics, Academia Pomeraniensis, Arciszewskiego 22b, Slupsk, Poland. email: nowakowska_k@o2.pl

MAXIMAL CLASSES FOR THE FAMILY OF $[\lambda, \varrho]$-CONTINUOUS FUNCTIONS

Abstract

In this paper we give the definition of $[\lambda, \varrho]$-continuity of real-valued functions defined on an open interval, which is an example of path continuity. We give some properties of $[\lambda, \varrho]$-continuous functions. The aim of the paper is to find the maximal additive class and the maximal multiplicative class for the family of $[\lambda, \varrho]$-continuous functions.

1 Preliminaries

First, we shall collect some of the notions and definitions which appear frequently in the sequel. We apply standard symbols and notations. By \mathbb{R} we denote the set of real numbers, by \mathbb{N} we denote the set of positive integers. The symbol $|\cdot|$ stands for the Lebesgue measure on \mathbb{R}. Let f be a real-valued function defined on a open interval $I=(a, b)$. We will denote by $D_{a p}(f)$, $\left(D_{a p}^{+}(f), D_{a p}^{-}(f)\right)$ the set of all point at which function f is not approximately continuous (at which f is not approximately continuous from the right or the left, respectively).

Let E be a measurable subset of \mathbb{R} and let $x \in \mathbb{R}$. The numbers
$\underline{d}^{+}(E, x)=\liminf _{t \rightarrow 0^{+}} \frac{|E \cap[x, x+t]|}{t} \quad$ and $\quad \bar{d}^{+}(E, x)=\limsup _{t \rightarrow 0^{+}} \frac{|E \cap[x, x+t]|}{t}$

[^0]are called the right lower density of E at x and right upper density of E at x, respectively. The left lower and upper densities of E at x are defined analogously. If
$$
\underline{d}^{+}(E, x)=\bar{d}^{+}(E, x) \quad\left(\underline{d}^{-}(E, x)=\bar{d}^{-}(E, x)\right),
$$
then we call this number the right density (left density) of E at x and denote it by $d^{+}(E, x)\left(d^{-}(E, x)\right)$. The numbers
$\bar{d}(E, x)=\limsup _{\substack{t \rightarrow 0^{+} \\ k \rightarrow 0^{+} \\ t+k \neq 0}} \frac{|E \cap[x-t, x+k]|}{k+t} \quad$ and $\quad \underline{d}(E, x)=\liminf _{\substack{t \rightarrow 0^{+} \\ k \rightarrow 0^{+} \\ t+k \neq 0}} \frac{|E \cap[x-t, x+k]|}{k+t}$
are called the upper and lower density of E at x, respectively. If $\bar{d}(E, x)=\underline{d}(E, x)$, we call this number the density of E at x and denote it by $d(E, x)$.

Let us observe that
$\bar{d}(E, x)=\max \left\{\bar{d}^{+}(E, x), \bar{d}^{-}(E, x)\right\} \quad$ and $\quad \underline{d}(E, x)=\min \left\{\underline{d}^{+}(E, x), \underline{d}^{-}(E, x)\right\}$.
Moreover, it is clear that

$$
\bar{d}^{+}(E, x)=1-\underline{d}^{+}(\mathbb{R} \backslash E, x) \quad \text { and } \quad \underline{d}^{+}(E, x)=1-\bar{d}^{+}(\mathbb{R} \backslash E, x) .
$$

Similarly,

$$
\bar{d}^{-}(E, x)=1-\underline{d}^{-}(\mathbb{R} \backslash E, x) \quad \text { and } \quad \underline{d}^{-}(E, x)=1-\bar{d}^{-}(\mathbb{R} \backslash E, x) .
$$

A.M.Bruckner, R.J. O'Malley and B.S.Thomson in [1] investigated the notion of path system and developed a framework within which a number of generalized derivatives can be expressed. We use this idea for studying some notion of generalized continuity.

Definition 1.1. [3] Let E be a measurable subset of \mathbb{R} and $0<\lambda \leq \varrho<1$. We say that a point $x \in \mathbb{R}$ is a point of $[\lambda, \varrho]$-density of E if $\underline{d}(E, x)>\lambda$ and $\bar{d}(E, x)>\varrho$.

Definition 1.2. [3] Let $0<\lambda \leq \varrho<1$. A real-valued function f defined on an open interval I is called $[\lambda, \varrho]$-continuous at $x \in I$, provided that there is a measurable set $E \subset I$ such that x is a point of $[\lambda, \varrho]$-density of $E, x \in E$ and $f_{\mid E}$ is continuous at x. If f is $[\lambda, \varrho]$-continuous at each point of I, we say that f is $[\lambda, \varrho]$-continuous.

We will denote the class of all $[\lambda, \varrho]$-continuous functions by $\mathcal{C}_{[\lambda, \varrho]}$.

Definition 1.3. [1] A real-valued function f defined on an open interval I is called approximately continuous at $x \in I$ provided that there is a measurable set $E \subset I$ such that $\underline{d}(E, x)=1, x \in E$ and $f_{\mid E}$ is continuous at x. If f is approximately continuous at each point of I we say that f is approximately continuous.

By \mathcal{A} we denote the class of all real-valued approximately continuous functions defined on an open interval I.

Corollary 1.1. $\mathcal{A} \subset \mathcal{C}_{[\lambda, \varrho]}$ for each $0<\lambda \leq \varrho<1$.

2 Auxiliary lemmas

First we recall some standard properties of the density of a set at a point.
Lemma 2.1. Let E and F be any measurable subsets of \mathbb{R} and $x \in \mathbb{R}$. Then

1. $\underline{d}^{+}(E, x)+\underline{d}^{+}(F, x) \leq \underline{d}^{+}(E \cap F, x)+1$.
2. $\underline{d}^{+}(E, x)+\bar{d}^{+}(F, x) \leq \bar{d}^{+}(E \cap F, x)+1$.
3. $\underline{d}^{+}(E \cup F, x) \leq \underline{d}^{+}(E, x)+\bar{d}^{+}(F, x)$.
4. If $F \subset E$ and $\underline{d}^{+}(E, x)=\bar{d}^{+}(E, x)$, then
$\underline{d}^{+}(E \backslash F, x)=d^{+}(E, x)-\bar{d}^{+}(F, x) \quad$ and $\quad \bar{d}^{+}(E \backslash F, x)=d^{+}(E, x)-\underline{d}^{+}(F, x)$.
5. If $\bar{d}^{+}(E, x)=0$, then $\bar{d}^{+}(E \cup F, x)=\bar{d}^{+}(F, x)=\bar{d}^{+}(F \backslash E, x)$ and $\underline{d}^{+}(E \cup F, x)=\underline{d}^{+}(F, x)=\underline{d}^{+}(F \backslash E, x)$.
6. If $\bar{d}^{+}(E \backslash F, x)=\bar{d}^{+}(F \backslash E, x)=0$, then $\underline{d}^{+}(E \cap F, x)=\underline{d}^{+}(E, x)=$ $\underline{d}^{+}(F, x)$ and $\bar{d}^{+}(E \cap F, x)=\bar{d}^{+}(E, x)=\bar{d}^{+}(F, x)$.

Proof. We prove only the first inequality. The rest of the proofs are similar.
Given measurable sets $A, B \subset \mathbb{R}$ the equality $|A \cup B|=|A|+|B|-|A \cap B|$ is true. Therefore
$|[x, x+t]| \geq|(E \cup F) \cap[x, x+t]|=|E \cap[x, x+t]|+|F \cap[x, x+t]|-|E \cap F \cap[x, x+t]|$.
Hence

$$
1 \geq \frac{|(E \cup F) \cap[x, x+t]|}{t}=\frac{|E \cap[x, x+t]|}{t}+\frac{|F \cap[x, x+t]|}{t}-\frac{|E \cap F \cap[x, x+t]|}{t}
$$

for each $t>0$. It implies that

$$
\begin{aligned}
& \underline{d}^{+}(E \cap F, x)+1=\liminf _{t \rightarrow 0^{+}}\left(1+\frac{|E \cap F \cap[x, x+t]|}{t}\right) \geq \\
& \geq \liminf _{t \rightarrow 0^{+}}\left(\frac{|E \cap[x, x+t]|}{t}+\frac{|F \cap[x, x+t]|}{t}\right) \geq \liminf _{t \rightarrow 0^{+}} \frac{|E \cap[x, x+t]|}{t}+ \\
& \quad+\liminf _{t \rightarrow 0^{+}} \frac{|F \cap[x, x+t]|}{t}=\underline{d}^{+}(E, x)+\underline{d}^{+}(F, x) .
\end{aligned}
$$

Certainly, similar lemma holds for the left densities.
Afterwards, we will need same auxiliary lemmas.
Lemma 2.2. Let $x \in \mathbb{R}, 0<a<1$ and let E be a measurable set. For each $k \in$ \mathbb{N} such that $\frac{1}{k}<a$ there is a sequence of intervals $\left\{I_{n}=\left[a_{n}, b_{n}\right]: n \geq 1\right\}$ such that $x<\ldots<b_{n+1}<a_{n}<\ldots, d^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x\right)=a$ and $\bar{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty} I_{n}, x\right) \geq$ $\frac{1}{k} \bar{d}^{+}(E, x)$.
Proof. Observe, that if

$$
\bar{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty} I_{n}, x\right) \geq \frac{1}{k} \bar{d}^{+}(E, x)
$$

for some k, then for every $k_{1} \geq k$ we get $\bar{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty} I_{n}, x\right) \geq \frac{1}{k_{1}} \bar{d}^{+}(E, x)$, too. Therefore we may assume that k is the smallest natural number for which $\frac{1}{k}<a$. Then $a<\frac{2}{k}$.

Let $c_{n}=x+\frac{1}{n}$ for $n \in \mathbb{N}$. Hence $\lim _{n \rightarrow \infty} \frac{\left|\left[c_{n+1}, c_{n}\right]\right|}{\left|\left[x, c_{n+1}\right]\right|}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n(n+1)}}{\frac{1}{n+1}}=0$. Let

$$
U_{n}^{i}=\left[c_{n+1}+\frac{i-1}{k}\left(c_{n}-c_{n+1}\right), c_{n+1}+\left(a+\frac{i-1}{k}\right)\left(c_{n}-c_{n+1}\right)\right]
$$

for $i=1, \ldots, k-1$ and $U_{n}^{k}=\left[c_{n}-a\left(c_{n}-c_{n+1}\right), c_{n}\right]$.
It is obvious that

$$
\left|U_{n}^{1}\right|=\left|U_{n}^{2}\right|=\ldots=\left|U_{n}^{k}\right|=a \cdot\left|\left[c_{n+1}, c_{n}\right]\right|
$$

and

$$
\left[c_{n+1}, c_{n}\right]=\bigcup_{i=1}^{k} U_{n}^{i}
$$

Hence

$$
\left|E \cap U_{n}^{1}\right|+\left|E \cap U_{n}^{2}\right|+\ldots+\left|E \cap U_{n}^{k}\right| \geq\left|E \cap\left[c_{n+1}, c_{n}\right]\right|
$$

Therefore for each $n \geq 1$ there exists a closed interval $J_{n} \subset\left[c_{n+1}, c_{n}\right]$ such that

$$
\left|J_{n}\right|=a \cdot\left|\left[c_{n+1}, c_{n}\right]\right| \text { and }\left|J_{n} \cap E\right| \geq \frac{1}{k}\left|E \cap\left[c_{n+1}, c_{n}\right]\right|
$$

First, we shall show that $d^{+}\left(\bigcup_{n=1}^{\infty} J_{n}, x\right)=a$.
Let $z \in\left(x, c_{1}\right)$. There is $n \geq 1$ such that $z \in\left[c_{n+1}, c_{n}\right]$. Then

$$
\begin{aligned}
& \left|\bigcup_{i=1}^{\infty} J_{i} \cap[x, z]\right|=\left|\bigcup_{i=1}^{\infty} J_{i} \cap\left[x, c_{n+1}\right]\right|+\left|\bigcup_{i=1}^{\infty} J_{i} \cap\left[c_{n+1}, z\right]\right|= \\
& =\left|\bigcup_{i=n+1}^{\infty} J_{i}\right|+\left|J_{n} \cap\left[c_{n+1}, z\right]\right| \leq a \cdot\left|\left[x, c_{n+1}\right]\right|+\left|\left[c_{n+1}, c_{n}\right]\right|
\end{aligned}
$$

and

$$
\frac{\left|\bigcup_{i=1}^{\infty} J_{i} \cap[x, z]\right|}{z-x} \leq \frac{\left|\bigcup_{i=1}^{\infty} J_{i} \cap[x, z]\right|}{c_{n+1}-x} \leq a+\frac{\left|\left[c_{n+1}, c_{n}\right]\right|}{\left|\left[x, c_{n+1}\right]\right|}
$$

On the other hand,

$$
\left|\bigcup_{i=1}^{\infty} J_{i} \cap[x, z]\right| \geq\left|\bigcup_{i=1}^{\infty} J_{i} \cap\left[x, c_{n+1}\right]\right| \geq a \cdot\left|\left[x, c_{n+1}\right]\right|=a|[x, z]|-\left|\left[c_{n+1}, c_{n}\right]\right|
$$

and

$$
\frac{\left|\bigcup_{i=1}^{\infty} J_{i} \cap[x, z]\right|}{z-x} \geq \frac{a \cdot|[x, z]|-\left|\left[c_{n+1}, c_{n}\right]\right|}{z-x} \geq a-\frac{\left|\left[c_{n+1}, c_{n}\right]\right|}{\left|\left[x, c_{n+1}\right]\right|}
$$

Suppose that $\lim _{m \rightarrow \infty} z_{m}=x$ and $z_{m} \in\left[c_{n_{m}+1}, c_{n_{m}}\right]$ for $m \geq 1$. Then $\lim _{m \rightarrow \infty} n_{m}=$
 it follows that $d^{+}\left(\bigcup_{n=1}^{\infty} J_{n}, x\right)=a$.

At the end, we will prove that $\bar{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty} J_{n}, x\right) \geq \frac{1}{k} \bar{d}^{+}(E, x)$. Again, let
$z \in\left(x, c_{1}\right)$ and $z \in\left[c_{n+1}, c_{n}\right]$. Then

$$
\begin{aligned}
& \left\lvert\, \frac{\left|\bigcup_{i=1}^{\infty} J_{i} \cap E \cap[x, z]\right|}{z-x} \geq \frac{1}{k} \cdot \frac{\sum_{i=n+1}^{\infty}\left|\left[c_{i+1}, c_{i}\right] \cap E\right|}{z-x}=\frac{1}{k} \cdot \frac{\left|\left[x, c_{n+1}\right] \cap E\right|}{z-x} \geq\right. \\
\geq & \frac{1}{k} \cdot \frac{|[x, z] \cap E|}{z-x}-\frac{1}{k} \cdot \frac{c_{n}-c_{n+1}}{z-x} \geq \frac{1}{k} \cdot \frac{|[x, z] \cap E|}{z-x}-\frac{\frac{1}{n}-\frac{1}{n+1}}{k \cdot \frac{1}{n}}=\frac{1}{k} \cdot \frac{|[x, z] \cap E|}{z-x}-\frac{1}{k(n+1)} .
\end{aligned}
$$

There is a sequence $\left(y_{m}\right)_{m=1}^{\infty}$ converging to x from right such that $\lim _{m \rightarrow \infty} \frac{\left|E \cap\left[x, y_{m}\right]\right|}{y_{m}-x}=$ $\bar{d}^{+}(E, x)$. For each m there is n_{k} such that $y_{m} \in\left[c_{n_{m}+1}, c_{n_{m}}\right]$. Certainly, $\lim _{m \rightarrow \infty} n_{m}=\infty$. Hence

$$
\lim _{m \rightarrow \infty} \frac{\left|\bigcup_{n=1}^{\infty} J_{n} \cap E \cap\left[x, y_{m}\right]\right|}{y_{m}-x} \geq \lim _{m \rightarrow \infty}\left(\frac{1}{k} \cdot \frac{\left|\left[x, y_{m}\right] \cap E\right|}{y_{m}-x}-\frac{1}{k\left(n_{m}+1\right)}\right)=\frac{1}{k} \bar{d}^{+}(E, x)
$$

Therefore $\bar{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty} J_{n}, x\right) \geq \frac{1}{k} \bar{d}^{+}(E, x)$.
We have proved that $d^{+}\left(\bigcup_{n=1}^{\infty} J_{n}, x\right)=a$ and $\bar{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty} J_{n}, x\right) \geq \frac{1}{k} \bar{d}^{+}(E, x)$, but the elements of the sequence do not have to be disjoint.

Let $\left\{I_{n}: n \geq 1\right\}$ be a sequence of closed disjoint intervals such that $I_{n} \subset$ $\operatorname{int} J_{n}$ for all $n \in \mathbb{N}$ and $\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(J_{n} \backslash I_{n}\right), x\right)=0$. By Lemma 2.1, property 5 , it is immediate that

$$
\underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x\right)=\underline{d}^{+}\left(\bigcup_{n=1}^{\infty} J_{n} \backslash\left(\bigcup_{n=1}^{\infty}\left(J_{n} \backslash I_{n}\right)\right), x\right)=\underline{d}^{+}\left(\bigcup_{n=1}^{\infty} J_{n}, x\right)=a
$$

and

$$
\bar{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x\right)=\bar{d}^{+}\left(\bigcup_{n=1}^{\infty} J_{n} \backslash\left(\bigcup_{n=1}^{\infty}\left(J_{n} \backslash I_{n}\right)\right), x\right)=\bar{d}^{+}\left(\bigcup_{n=1}^{\infty} J_{n}, x\right)=a
$$

Hence, $d^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x\right)=a$.
Furthermore, $\bar{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty} I_{n}, x\right)=\bar{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty} J_{n}, x\right) \geq \frac{1}{k} \bar{d}^{+}(E, x)$. We thus get a required sequence of closed disjoint intervals $\left\{I_{n}: n \geq 1\right\}$ which completes the proof of the lemma.

Lemma 2.3. Let F be a measurable set and let $x \in \mathbb{R}$. There is a sequences of intervals $\left\{I_{n}=\left[a_{n}, b_{n}\right]: x<\ldots<b_{n+1}<a_{n}<\ldots, n \geq 1\right\}$ such that

$$
\bar{d}^{+}\left(F \backslash \bigcup_{n=1}^{\infty} I_{n}, x\right)=\bar{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n} \backslash F, x\right)=0
$$

Proof. Let $x_{m}=x+\frac{1}{2^{m}}$ and $F_{m}=F \cap\left(x_{m+1}, x_{m}\right)$. For each $m \in \mathbb{N}$ there exists a closed set \widetilde{F}_{m} such that $\widetilde{F}_{m} \subset F_{m}$ and $\left|F_{m} \backslash \widetilde{F}_{m}\right|<\frac{1}{4^{m}}$. Let $\left\{U_{m}^{i}\right\}_{i=1}^{\infty}$ be the set of all connected components of the set $\left(x_{m+1}, x_{m}\right) \backslash \widetilde{F}_{m}$. For every m there exists i_{m} such that $\left|\bigcup_{i=i_{m}+1}^{\infty} U_{m}^{i}\right| \leq \frac{1}{4^{m}}$. Therefore, the set $\left[x_{m+1}, x_{m}\right] \backslash \bigcup_{i=1}^{i_{m}-1} U_{m}^{i}$ is a union of a finite number of closed intervals $F_{m}^{1}, F_{m}^{2}, \ldots, F_{m}^{i_{m}}$ such that $\widetilde{F}_{m} \subset \bigcup_{i=1}^{i_{m}} F_{m}^{i}$ and $\left|\bigcup_{i=1}^{i_{m}} F_{m}^{i} \backslash \widetilde{F}_{m}\right| \leq \frac{1}{4^{m}}$. As required sequence $\left\{I_{n}: n \geq 1\right\}$ we take the family of all intervals $\left\{F_{m}^{i}: 1 \leq\right.$ $\left.i \leq i_{m}, m \geq 1\right\}$ enumerated according to their natural order in \mathbb{R} from the right to the left. We have

$$
\left|\bigcup_{i=1}^{i_{m}} F_{m}^{i} \backslash F_{m}\right| \leq\left|\bigcup_{i=1}^{i_{m}} F_{m}^{i} \backslash \widetilde{F}_{m}\right|<\frac{1}{4^{m}}
$$

On the other hand,

$$
\left|F_{m} \backslash \bigcup_{i=1}^{i_{m}} F_{m}^{i}\right| \leq\left|F_{m} \backslash \widetilde{F}_{m}\right|+\left|\widetilde{F}_{m} \backslash \bigcup_{i=1}^{i_{m}} F_{m}^{i}\right|=\left|F_{m} \backslash \widetilde{F}_{m}\right|<\frac{1}{4^{m}}
$$

Fix any $y \in\left[x, x_{1}\right]$. There is $m_{0} \in \mathbb{N}$ such that $y \in\left[x_{m_{0}+1}, x_{m_{0}}\right]$. Then

$$
\begin{array}{r}
\frac{\left|\left(F \backslash \bigcup_{n=1}^{\infty} I_{n}\right) \cap[x, y]\right|}{y-x} \leq \frac{\left|\bigcup_{m=m_{0}}^{\infty}\left(F \backslash \bigcup_{n=1}^{n_{m}} F_{m}^{i}\right) \cap\left[x_{m+1}, x_{m}\right]\right|}{y-x} \leq \frac{\sum_{m=m_{0}}^{\infty} \frac{1}{4^{m}}}{x_{m_{0}+1}-x}= \\
=\frac{\frac{1}{4^{m_{0}}}}{\frac{1}{2^{m_{0}+1}}\left(1-\frac{1}{4}\right)}=\frac{2^{m_{0}+1}}{3 \cdot 4^{m_{0}-1}}
\end{array}
$$

Hence $\bar{d}\left(F \backslash \bigcup_{n=1}^{\infty} I_{n}, x\right)=0$.

Besides,

$$
\begin{array}{r}
\frac{\left|\left(\bigcup_{n=1}^{\infty} I_{n} \backslash F\right) \cap[x, y]\right|}{y-x} \leq \frac{\left|\bigcup_{m=1}^{\infty}\left(\bigcup_{i=1}^{i_{m}} F_{m}^{i} \backslash \widetilde{F}_{m}\right) \cap\left[x_{m+1}, x_{m}\right]\right|}{y-x} \leq \frac{\sum_{m=m_{0}}^{\infty} \frac{1}{4^{m}}}{x_{m_{0}+1}-x}= \\
=\frac{\frac{1}{4^{m_{0}}}}{\frac{1}{2^{m_{0}+1}}\left(1-\frac{1}{4}\right)}=\frac{2^{m_{0}+1}}{3 \cdot 4^{m_{0}-1}}
\end{array}
$$

Hence $\bar{d}\left(\bigcup_{n=1}^{\infty} I_{n} \backslash F, x\right)=0$ and the proof is completed.
At the end, we present the equivalent condition for a function to belong to $\mathcal{C}_{[\lambda, \varrho]}$.

Theorem 2.1. [3, Theorem 2.1] Let $0<\lambda \leq \varrho<1$, and let $f: I \rightarrow \mathbb{R}$ be a measurable function. Then f is $[\lambda, \varrho]$-continuous at x if and only if

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}(\{y \in I:|f(x)-f(y)|<\varepsilon\}, x)>\lambda
$$

and

$$
\lim _{\varepsilon \rightarrow 0^{+}} \bar{d}(\{y \in I:|f(x)-f(y)|<\varepsilon\}, x)>\varrho
$$

Corollary 2.1. $\bigcap_{0<\lambda \leq \varrho<1} \mathcal{C}_{[\lambda, \varrho]}=\mathcal{A}$.

3 The maximal additive class

Definition 3.1. Let \mathcal{F} be a family of real functions defined on an open interval I. A set $\mathcal{M}_{a}(\mathcal{F})=\left\{g: I \rightarrow \mathbb{R}: \forall_{f \in \mathcal{F}} f+g \in \mathcal{F}\right\}$ is called the maximal additive class for \mathcal{F}.

Remark 3.1. Let $f: I \rightarrow \mathbb{R}, f(x)=0$ for $x \in I$ be a constant function. Clearly, if $f \in \mathcal{F}$ then $\mathcal{M}_{a}(\mathcal{F}) \subset \mathcal{F}$.

In [1] maximal additive classes and maximal multiplicative classes for Darboux functions and for Darboux Baire 1 functions are described.
In this section we characterize the maximal additive class for $\mathcal{C}_{[\lambda, \varrho]}$.
Theorem 3.1. Let $0<\lambda \leq \varrho<1$ and $I=(a, b)$. If $g: I \rightarrow \mathbb{R}, g \in \mathcal{C}_{[\lambda, \varrho]} \backslash \mathcal{A}$ then there exists a function $f \in \mathcal{C}_{[\lambda, \varrho]}$ such that $f+g \notin \mathcal{C}_{[\lambda, \varrho]}$.

Proof. Let $g \in \mathcal{C}_{[\lambda, \varrho]} \backslash \mathcal{A}$ and $x \in D_{a p}(f)$. Without loss of generality we may assume that g is not approximately continuous at right at x. Then $\bar{d}^{+}(\{y \in I:|g(x)-g(y)| \geq \varepsilon\}, x)=c>0$ for some $\varepsilon>0$. There is a positive integer k such that $\lambda+\frac{c}{2 k}<1$ and $\frac{2-c}{2 k}<\lambda$. Then $\frac{1}{k}<\lambda+\frac{c}{2 k}$. Applying Lemma 2.2 to $\{y:|g(y)-g(x)| \geq \varepsilon\}$ and $a=\lambda+\frac{c}{2 k}$, we can find a sequence of intervals $\left\{I_{n}=\left[a_{n}, b_{n}\right]: i \geq 1\right\}$ such that $x<\ldots<b_{n+1}<a_{n}<\ldots<b$, $d^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x\right)=\lambda+\frac{c}{2 k}$ and $\bar{d}^{+}\left(\{y:|g(y)-g(x)| \geq \varepsilon\} \cap \bigcup_{n=1}^{\infty} I_{n}, x\right) \geq \frac{c}{k}$. Let $\left\{K_{n}=\left[c_{n}, d_{n}\right]: n \geq 1\right\}$ be a sequence of intervals such that $I_{n} \subset \operatorname{int} K_{n}$ for all $n \in \mathbb{N}$ and $\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(K_{n} \backslash I_{n}\right), x\right)=0$. Let a function $f: I \rightarrow \mathbb{R}$ be defined by

$$
f(y)=\left\{\begin{array}{cl}
0 & \text { if } y \in(a, x] \cup\left[d_{1}, b\right) \cup \bigcup_{n=1}^{\infty} I_{n} \\
-g(y)+g(x)+\varepsilon & \text { if } y \in \bigcup_{n=1}^{\infty}\left[d_{n+1}, c_{n}\right], \\
\text { linear in each connected component of } \bigcup_{n=1}^{\infty} K_{n} \backslash \bigcup_{n=1}^{\infty} \operatorname{int} I_{n} .
\end{array}\right.
$$

Since $g \in \mathcal{C}_{[\lambda, \varrho]}$, it is obvious that f is $[\lambda, \varrho]$-continuous at every point except at x. From inequalities
$\underline{d}(\{y \in I: f(y)=f(x)=0\}, x) \geq \underline{d}\left((a, x] \cup \bigcup_{n=1}^{\infty} I_{n}, x\right)=\underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x\right) \geq \lambda+\frac{c}{2 k}>\lambda$
and
$\bar{d}(\{y \in I: f(y)=f(x)=0\}, x) \geq \bar{d}\left((a, x] \cup \bigcup_{n=1}^{\infty} K_{n}, x\right)=\bar{d}^{-}((a, x], x)=1>\varrho$,
we deduce that f is $[\lambda, \varrho]$-continuous at x. Hence $f \in \mathcal{C}_{[\lambda, \varrho]}$.
On the other hand, we have $(f+g)(x)=g(x)$ and

$$
\{y \in I:|(f+g)(y)-g(x)|<\varepsilon\} \cap\left([x, b) \backslash \bigcup_{n=1}^{\infty} K_{n}\right)=\emptyset
$$

We will show that $f+g$ is not $[\lambda, \varrho]$-continuous at x. Set $E=\{y: \mid(f+$
$g)(y)-g(x) \mid<\varepsilon\}$. Then we obtain

$$
\begin{aligned}
& \underline{d}^{+}(E, x) \leq \underline{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty} I_{n}, x\right)+\bar{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty}\left(K_{n} \backslash I_{n}\right), x\right)+ \\
+ & \bar{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty}\left[d_{n+1}, c_{n}\right], x\right)=\underline{d}^{+}\left(\{y \in I:|g(y)-g(x)|<\varepsilon\} \cap \bigcup_{n=1}^{\infty} I_{n}, x\right)+0+0= \\
= & d^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x\right)-\bar{d}^{+}\left(\{y \in I:|g(y)-g(x)| \geq \varepsilon\} \cap \bigcup_{n=1}^{\infty} I_{n}, x\right) \leq \lambda+\frac{c}{2 k}-\frac{c}{k}<\lambda .
\end{aligned}
$$

Therefore $f+g$ is not $[\lambda, \varrho]$-continuous at x. Hence $f+g \notin \mathcal{C}_{[\lambda, \rho]}$ and the proof is completed.

Lemma 3.1. Let $f, g: I \rightarrow \mathbb{R}$ and $x \in I$. If both functions, f and g, are $[\lambda, \varrho]$-continuous at x and at least one of them is approximately continuous at x then $f+g, f g, \min \{f, g\}$ and $\max \{f, g\}$ are $[\lambda, \varrho]$-continuous at x.

Proof. Without loss of generality we may assume that f is approximately continuous at x. Therefore there exists a measurable set E such that $x \in E$, $\underline{d}(E, x)=1$ and $f_{\mid E}$ is continuous at x. Since g is $[\lambda, \varrho]$-continuous at x, there is a measurable set F such that $x \in F, x$ is a point of $[\lambda, \varrho]$-density of F and $g_{\mid F}$ is continuous at x. Therefore functions $f+g, f g, \min \{f, g\}$ and $\max \{f, g\}$ restricted to $E \cap F$ are continuous at $x, E \cap F$ is a measurable set,

$$
\underline{d}(E \cap F, x) \geq \underline{d}(E, x)+\underline{d}(F, x)-1>1+\lambda-1=\lambda
$$

and

$$
\bar{d}(E \cap F, x) \geq \underline{d}(E, x)+\bar{d}(F, x)-1>1+\varrho-1=\varrho .
$$

It follows that $f+g, f g, \min \{f, g\}$ and $\max \{f, g\}$ are $[\lambda, \varrho]$-continuous at x.

Corollary 3.1. If $f, g: I \rightarrow \mathbb{R}, f, g \in \mathcal{C}_{[\lambda, \rho]}$ and $D_{a p}(f) \cap D_{a p}(g)=\emptyset$, then $f+g, f g, \min \{f, g\}$ and $\max \{f, g\}$ belong to $\mathcal{C}_{[\lambda, \rho]}$.
Corollary 3.2. If $f, g: I \rightarrow \mathbb{R}, f \in \mathcal{C}_{[\lambda, \rho]}$ and $g \in \mathcal{A}$, then $f+g, f g, \min \{f, g\}, \max \{f, g\} \in$ $\mathcal{C}_{[\lambda, \Omega]}$.
Theorem 3.2. $\mathcal{M}_{a}\left(\mathcal{C}_{[\lambda, \varrho]}\right)=\mathcal{A}$.
Proof. By Theorem 3.1, we get $\mathcal{C}_{[\lambda, \varrho]} \cap \mathcal{M}_{a}\left(\mathcal{C}_{[\lambda, \varrho]}\right) \subset \mathcal{A}$. By Corollary 3.2, we conclude that $\mathcal{A} \subset \mathcal{M}_{a}\left(\mathcal{C}_{[\lambda, \varrho]}\right)$. The last needed inclusion, $\mathcal{M}_{a}\left(\mathcal{C}_{[\lambda, \varrho]}\right) \subset \mathcal{C}_{[\lambda, \varrho]}$, follows from Remark 3.1.

4 The maximal multiplicative class

Definition 4.1. Let \mathcal{F} be a family of real functions defined on an open interval I. A set $\mathcal{M}_{m}(\mathcal{F})=\left\{g: \forall_{f \in \mathcal{F}} f g \in \mathcal{F}\right\}$ is called the maximal multiplicative class for \mathcal{F}.

In this section we characterize the maximal multiplicative class for $\mathcal{C}_{[\lambda, \varrho]}$.
Lemma 4.1. Let $g \in \mathcal{C}_{[\lambda, \varrho]} \backslash \mathcal{A}$ and $x \in D_{\text {ap }}(g)$. If $g(x) \neq 0$ then there exists $f \in \mathcal{C}_{[\lambda, \varrho]}$ such that $\mathrm{fg} \notin \mathcal{C}_{[\lambda, \varrho]}$.

Proof. Without loss of generality we may assume that g is not approximately continuous from the right at x. Let $g(x)=t \neq 0$. Choose $0<\varepsilon<|t|$ such that $\bar{d}^{+}(\{y:|g(y)-t| \geq \varepsilon\}, x)=c>0$. There exists a positive integer k such that $\lambda+\frac{c}{2 k}<1$ and $\frac{2-c}{2 k}<\lambda$. Then $\frac{1}{k}<\lambda+\frac{c}{2 k}$. Applying Lemma 2.2, we can find a sequence $\left\{I_{n}=\left[a_{n}, b_{n}\right]: x<\ldots<b_{n+1}<a_{n}<\ldots<b, n \geq 1\right\}$ such that $d^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x\right)=\lambda+\frac{c}{2 k}$ and $\bar{d}^{+}\left(\{y:|g(y)-t| \geq \varepsilon\} \cap \bigcup_{n=1}^{\infty} I_{n}, x\right) \geq \frac{c}{k}$.

Let $\left\{K_{n}=\left[c_{n}, d_{n}\right]: n \geq 1\right\}$ be a sequence of pairwise disjoint intervals satisfying conditions $I_{n} \subset \operatorname{int} K_{n}$ for $n \in \mathbb{N}$ and $\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(K_{n} \backslash I_{n}\right), x\right)=0$. A function $f: I \rightarrow \mathbb{R}$ is defined in the following way

$$
f(y)=\left\{\begin{array}{l}
1 \quad \text { if } y \in(a, x] \cup\left[d_{1}, b\right) \cup \bigcup_{n=1}^{\infty} I_{n}, \\
0 \quad \text { if } y \in \bigcup_{n=1}^{\infty}\left[d_{n+1}, c_{n}\right], \\
\text { linear in each connected component of } \bigcup_{n=1}^{\infty} K_{n} \backslash \bigcup_{n=1}^{\infty} \operatorname{int} I_{n}
\end{array}\right.
$$

Certainly, f is continuous at each point except x. Since
$\underline{d}(\{y: f(y)=f(x)=1\}, x) \geq \underline{d}\left((-\infty, x] \cup \bigcup_{n=1}^{\infty} K_{n}, x\right)=\underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x\right)=\lambda+\frac{c}{2 k}$ and

$$
\bar{d}(\{y: f(y)=f(x)=1\}, x) \geq \bar{d}\left((a, x] \cup \bigcup_{n=1}^{\infty} K_{n}, x\right)=\bar{d}((a, x], x)=1>\rho
$$

we obtain that $f \in \mathcal{C}_{[\lambda, \Omega]}$.
On the other hand, we have $(f g)(x)=g(x)$ and

$$
\{y \in I:|(f g)(y)-g(x)|<\varepsilon\} \cap \bigcup_{n=1}^{\infty}\left[d_{n+1}, c_{n}\right]=\emptyset
$$

We will show that $f g$ is not $[\lambda, \varrho]$-continuous at x. Set $E=\{y \in I:|(f g)(y)-g(x)|<\varepsilon\}$. Then we obtain

$$
\begin{aligned}
& \underline{d}^{+}(E, x) \leq \underline{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty} I_{n}, x\right)+\bar{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty}\left(K_{n} \backslash I_{n}\right), x\right)+ \\
+ & \bar{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty}\left[d_{n+1}, c_{n}\right], x\right)=\underline{d}^{+}\left(\{y \in I:|g(y)-g(x)|<\varepsilon\} \cap \bigcup_{n=1}^{\infty} I_{n}, x\right)+0+0= \\
= & d^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x\right)-\bar{d}^{+}\left(\{y \in I:|g(y)-g(x)|>\varepsilon\} \cap \bigcup_{n=1}^{\infty} I_{n}, x\right) \leq \lambda+\frac{c}{2 k}-\frac{c}{k}<\lambda .
\end{aligned}
$$

Therefore $f g$ is not $[\lambda, \varrho]$-continuous at x. Thus $f g \notin \mathcal{C}_{[\lambda, \rho]}$, and the proof is completed.

Definition 4.2. Let $0<\lambda \leq \varrho<1$. Let $\mathbf{P}(\lambda, \varrho)$ be a set of all functions $f: I \rightarrow \mathbb{R}$ satisfying the following conditions
(P1) $D_{a p}(f) \subset N_{f}$, where $N_{f}=\{x \in I: f(x)=0\}$,
(P2) for each $x \in D_{a p}(f)$ and for each measurable set E such that $E \supset N_{f}$ and $\underline{d}(E, x)>\lambda$, $\bar{d}(E, \bar{x})>\varrho$ we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}(E \cap\{y:|f(y)-f(x)|<\varepsilon\}, x)>\lambda
$$

and

$$
\lim _{\varepsilon \rightarrow 0^{+}} \bar{d}(E \cap\{y:|f(y)-f(x)|<\varepsilon\}, x)>\varrho
$$

Corollary 4.1. Let $0<\lambda \leq \varrho<1$. Then $\mathcal{A} \subset \mathbf{P}(\lambda, \varrho)$.
Theorem 4.1. $\mathcal{M}_{m}\left(\mathcal{C}_{[\lambda, \varrho]}\right)=\mathbf{P}(\lambda, \varrho)$ for each $0<\lambda \leq \varrho<1$.
Proof. Let $g \in \mathbf{P}(\lambda, \varrho)$ and $f \in \mathcal{C}_{[\lambda, \varrho]}$. Fix any $x \in I$. There exists a measurable set E such that $x \in E, \underline{d}(E, x)>\lambda, \bar{d}(E, x)>\varrho$ and $f_{\mid E}$ is continuous at x. First, assume that g is approximately continuous at x. Then, by Lemma 3.1, $f g$ is $[\lambda, \varrho]$-continuous at x.

Now, consider the second case, $x \in D_{a p}(g)$. Applying $(P 1)$, we obtain $g(x)=0$. Since $f_{\mid E}$ is continuous at x, we conclude that there exist real numbers r, M such that $|f(y)|<M$ for $y \in E \cap[x-r, x+r]$. It follows, in view of ($P 2$), that

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}(\{y:|(f g)(y)|<\varepsilon\}, x) \geq \lim _{\varepsilon \rightarrow 0^{+}} & d\left(\left\{y:|g(y)|<\frac{\varepsilon}{M}\right\} \cap E, x\right)= \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}(\{y:|g(y)|<\varepsilon\} \cap E, x)>\lambda
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0^{+}} \bar{d}(\{y:|(f g)(y)|<\varepsilon\}, x) \geq \lim _{\varepsilon \rightarrow 0^{+}} & \bar{d}\left(\left\{y:|g(y)|<\frac{\varepsilon}{M}\right\} \cap E, x\right)= \\
= & \lim _{\varepsilon \rightarrow 0^{+}} \bar{d}(\{y:|g(y)|<\varepsilon\} \cap E, x)>\varrho
\end{aligned}
$$

By Theorem 2.1, $f g$ is $[\lambda, \varrho]$-continuous at x. Hence $f g \in \mathcal{C}_{[\lambda, \varrho]}$. Thus we have proven that $\mathbf{P}(\lambda, \varrho) \subset \mathcal{M}_{m}\left(\mathcal{C}_{[\lambda, \varrho]}\right)$.

Now, let us assume that $g \in \mathcal{M}_{m}\left(\mathcal{C}_{[\lambda, \varrho]}\right)$. If $x \in D_{a p}(g)$ then, by Lemma 4.1, we get $g(x)=0$. Therefore g fulfils condition $(P 1)$. Take any measurable set E such that $\underline{d}(E, x)>\lambda$ and $\bar{d}(E, x)>\varrho$. By Lemma 2.3 (and corresponding lemma for left-sided density) we can find two sequences of intervals $\left\{I_{n}=\left[a_{n}, b_{n}\right]: \ldots<b_{n}<a_{n+1}<\ldots<\ldots x, n \geq 1\right\}$ and $\left\{J_{k}=\left[c_{k}, d_{k}\right]: x<\right.$ $\left.\ldots<d_{k+1}<c_{k}<\ldots, n \geq 1\right\}$ such that

$$
\bar{d}\left(E \backslash\left(\bigcup_{n=1}^{\infty} I_{n} \cup \bigcup_{k=1}^{\infty} J_{k}\right), x\right)=\bar{d}\left(\left(\bigcup_{n=1}^{\infty} I_{n} \cup \bigcup_{k=1}^{\infty} J_{k}\right) \backslash E, x\right)=0
$$

Let $\bar{I}_{n}=\left[\bar{a}_{n}, \bar{b}_{n}\right]$ and $\bar{J}_{k}=\left[\bar{c}_{k}, \bar{d}_{k}\right]$ be pairwise disjoint closed intervals such that $I_{n} \subset \operatorname{int} \bar{I}_{n}, J_{k} \subset \operatorname{int} \bar{J}_{k}$ for all $n, k \in \mathbb{N}$ and $\bar{d}\left(\bigcup_{n=1}^{\infty}\left(\bar{I}_{n} \backslash I_{n}\right) \cup \bigcup_{k=1}^{\infty}\left(\bar{J}_{k} \backslash\right.\right.$ $\left.\left.J_{k}\right), x\right)=0$. By Lemma 2.1, we have $\underline{d}\left(\bigcup_{n=1}^{\infty} I_{n} \cup \bigcup_{k=1}^{\infty} J_{k}, x\right)=\underline{d}(E, x)>\lambda$ and $\bar{d}\left(\bigcup_{n=1}^{\infty} I_{n} \cup \bigcup_{k=1}^{\infty} J_{k}, x\right)=\bar{d}(E, x)>\varrho$. Since for each $k \in \mathbb{N}$

$$
\lim _{\alpha \rightarrow \infty}\left|\left(\left[\bar{d}_{k+1}, \bar{c}_{k}\right] \cap\{y:|g(y) \cdot \alpha|<1\}\right) \backslash N_{g}\right|=0
$$

we get that for each $k \in \mathbb{N}$ there exists a number α_{k}, such that

$$
\begin{equation*}
\left|\left(\left[\bar{d}_{k+1}, \bar{c}_{k}\right] \cap\left\{y:\left|g(y) \cdot \alpha_{k}\right|<1\right\}\right) \backslash N_{g}\right|<\frac{\bar{d}_{k+1}-x}{2^{k}} . \tag{1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
N_{g} \cap \bigcup_{k=1}^{\infty}\left[\bar{d}_{k+1}, \bar{c}_{k}\right] \subset E \backslash \bigcup_{k=1}^{\infty} J_{k} \tag{2}
\end{equation*}
$$

From (1) and (2), it is easy to verify that

$$
\bar{d}^{+}\left(\bigcup_{k=1}^{\infty}\left(\left[\bar{d}_{k+1}, \bar{c}_{k}\right] \cap\left\{y:\left|g(y) \cdot \alpha_{k}\right|<1\right\}\right) \backslash N_{g}, x\right)=0 .
$$

Similarly, we can find a sequence $\left\{\beta_{n}: n \geq 1\right\}$ such that

$$
\bar{d}^{-}\left(\bigcup_{k=1}^{\infty}\left(\left[\bar{b}_{n}, \bar{a}_{n+1}\right] \cap\left\{y:\left|g(y) \cdot \beta_{n}\right|<1\right\}\right) \backslash N_{g}, x\right)=0
$$

Let a function $f: I \rightarrow \mathbb{R}$ be defined by
$f(y)=\left\{\begin{aligned} & 1 \text { if } y \in \bigcup_{n=1}^{\infty} I_{n} \cup \bigcup_{k=1}^{\infty} J_{k} \cup\left(a, \bar{a}_{1}\right] \cup\left[\bar{d}_{1}, b\right) \cup\{x\}, \\ & \alpha_{k} \text { if } y \in\left[\bar{d}_{k+1}, \bar{c}_{k}\right], k=1,2, \ldots, \\ & \beta_{n} \text { if } y \in\left[\bar{b}_{n}, \bar{a}_{n+1}\right], n=1,2, \ldots, \\ & \text { linear in }\left[\bar{a}_{n}, a_{n}\right],\left[b_{n}, \bar{b}_{n}\right],\left[\bar{c}_{k}, c_{k}\right] \text { and }\left[d_{k}, \bar{d}_{k}\right], k=1,2, \ldots, n=1,2, \ldots\end{aligned}\right.$
Directly from the definition of f, it follows that it is continuous at each point except x. If $E_{1}=\bigcup_{n=1}^{\infty} I_{n} \cup \bigcup_{k=1}^{\infty} J_{k} \cup\left(-\infty, \bar{a}_{1}\right] \cup\left[\bar{d}_{1}, \infty\right) \cup\{x\}$ then f restricted to E_{1} is constant, so in particular, it is continuous at x. Moreover,

$$
\underline{d}\left(E_{1}, x\right) \geq \underline{d}\left(\bigcup_{n=1}^{\infty} I_{n} \cup \bigcup_{k=1}^{\infty} J_{k}, x\right)=\underline{d}(E, x)>\lambda
$$

and

$$
\bar{d}\left(E_{1}, x\right) \geq \bar{d}\left(\bigcup_{n=1}^{\infty} I_{n} \cup \bigcup_{k=1}^{\infty} J_{k}, x\right)=\bar{d}(E, x)>\varrho
$$

Therefore f is $[\lambda, \varrho]$-continuous at x. Hence $f \in \mathcal{C}_{[\lambda, \varrho]}$. Moreover, $f g(x)=0$.
Put $E_{\varepsilon}=\{y \in I:|(f g)(y)-(f g)(x)|<\varepsilon\}=\{y \in I:|(f g)(y)|<\varepsilon\}$ for $0<$ $\varepsilon<1$. Since $g \in \mathcal{M}_{m}\left(\mathcal{C}_{[\lambda, \varrho]}\right)$, we get $\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(E_{\varepsilon}, x\right)>\lambda$ and $\lim _{\varepsilon \rightarrow 0^{+}} \bar{d}\left(E_{\varepsilon}, x\right)>\varrho$. On the other hand,

$$
\begin{aligned}
& \underline{d}\left(E_{\varepsilon}, x\right) \leq \underline{d}\left(E_{\varepsilon} \cap\left(\bigcup_{n=1}^{\infty} I_{n} \cup \bigcup_{k=1}^{\infty} J_{k}\right), x\right)+\bar{d}\left(E_{\varepsilon} \cap\left(\bigcup_{n=1}^{\infty}\left[\bar{b}_{n}, \bar{a}_{n+1}\right] \cup \bigcup_{k=1}^{\infty}\left[\bar{d}_{k+1}, \bar{c}_{k}\right]\right), x\right)+ \\
+ & \bar{d}\left(E_{\varepsilon} \cap\left(\bigcup_{n=1}^{\infty}\left(\bar{I}_{n} \backslash I_{n}\right) \cup \bigcup_{k=1}^{\infty}\left(\bar{J}_{k} \backslash J_{k}\right)\right), x\right)=\underline{d}\left(E_{\varepsilon} \cap\left(\bigcup_{n=1}^{\infty} I_{n} \cup \bigcup_{k=1}^{\infty} J_{k}\right), x\right)= \\
= & \underline{d}\left(\{y \in I:|g(y)|<\varepsilon\} \cap\left(\bigcup_{n=1}^{\infty} I_{n} \cup \bigcup_{k=1}^{\infty} J_{k}\right), x\right)=\underline{d}(\{y \in I:|g(y)|<\varepsilon\} \cap F, x)
\end{aligned}
$$

and

$$
\begin{aligned}
& \bar{d}\left(E_{\varepsilon}, x\right) \leq \bar{d}\left(E_{\varepsilon} \cap\left(\bigcup_{n=1}^{\infty} I_{n} \cup \bigcup_{k=1}^{\infty} J_{k}\right), x\right)+\bar{d}\left(E_{\varepsilon} \cap\left(\bigcup_{n=1}^{\infty}\left[\bar{b}_{n}, \bar{a}_{n+1}\right] \cup \bigcup_{k=1}^{\infty}\left[\bar{d}_{k+1}, \bar{c}_{k}\right]\right), x\right)+ \\
+ & \bar{d}\left(E_{\varepsilon} \cap\left(\bigcup_{n=1}^{\infty}\left(\bar{I}_{n} \backslash I_{n}\right) \cup \bigcup_{k=1}^{\infty}\left(\bar{J}_{k} \backslash J_{k}\right)\right), x\right)=\bar{d}\left(E_{\varepsilon} \cap\left(\bigcup_{n=1}^{\infty} I_{n} \cup \bigcup_{k=1}^{\infty} J_{k}\right), x\right)= \\
= & \bar{d}\left(\{y \in I:|g(y)|<\varepsilon\} \cap\left(\bigcup_{n=1}^{\infty} I_{n} \cup \bigcup_{k=1}^{\infty} J_{k}\right), x\right)=\bar{d}(\{y \in I:|g(y)|<\varepsilon\} \cap F, x)
\end{aligned}
$$

for each $0<\varepsilon<1$. Hence $\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}(\{y \in I:|g(y)|<\varepsilon\} \cap F, x) \geq \lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(E_{\varepsilon}, x\right)>$ λ and $\lim _{\varepsilon \rightarrow 0^{+}} \bar{d}(\{y \in I:|g(y)|<\varepsilon\} \cap F, x) \geq \lim _{\varepsilon \rightarrow 0^{+}} \bar{d}\left(E_{\varepsilon}, x\right)>\varrho$. It follows that condition ($P 2$) is fulfilled.

Corollary 4.2. If a function g satisfies condition (P1) and for each $x \in$ $D_{a p}(g)$ we have $\underline{d}\left(N_{g}, x\right)>\lambda$ and $\bar{d}\left(N_{g}, x\right)>\varrho$ then $g \in \mathcal{M}_{m}\left(\mathcal{C}_{[\lambda, \varrho]}\right)$.
Corollary 4.3. $\mathcal{A} \varsubsetneqq \mathcal{M}_{m}\left(\mathcal{C}_{[\lambda, \varrho]}\right)$.
Example 4.1. Fix any $\lambda \in(0,1)$. We will show that the sharp inequality $\underline{d}\left(N_{g}, x\right)>\lambda$ in Corollary 4.2 is essential. We will construct a function $g: \mathbb{R} \rightarrow$ \mathbb{R} such that g is discontinuous only at $x=0$ belongs to $C_{[\lambda, \varrho]}$ and does not belong to $\mathcal{M}_{m}\left(\mathcal{C}_{[\lambda, \varrho]}\right)$. Let $\left\{I_{n}=\left[a_{n}, b_{n}\right]: 0<\ldots<b_{n+1}<a_{n}<\ldots, n \geq 1\right\}$ be a sequence of intervals such that $d^{+}\left(\bigcup_{n=1}^{\infty} I_{3 n}, 0\right)=\lambda$ and

$$
d^{+}\left(\bigcup_{n=1}^{\infty} I_{3 n-1}, 0\right)=d^{+}\left(\bigcup_{n=1}^{\infty} I_{3 n-2}, 0\right)=\frac{1-\lambda}{2}
$$

Then

$$
\underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, 0\right) \geq \underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{3 n}, 0\right)+\underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{3 n-1}, 0\right)+\underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{3 n-2}, 0\right)=1 .
$$

Thus $\underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, 0\right)=1$. Define a function $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(x)= \begin{cases}0 & \text { if } x \in(-\infty, 0] \cup\left[b_{1}, \infty\right) \cup \bigcup_{n=1}^{\infty} I_{3 n}, \\ 1 & \text { if } x \in \bigcup_{n=1}^{\infty} I_{3 n-1}, \\ \frac{1}{n} & \text { if } x \in \bigcup_{n=1}^{\infty} I_{3 n-2}, \\ \text { linear on the intervals }\left[b_{n+1}, a_{n}\right], n=1,2, \ldots\end{cases}
$$

It is clear that g is continuous at each point except 0 and $N_{g}=(-\infty, 0] \cup$ $\bigcup_{n=1}^{\infty} I_{3 n}$. Hence $\underline{d}\left(N_{g}, 0\right)=\lambda$ and $\bar{d}\left(N_{g}, 0\right)=1$. Let $E=(-\infty, 0] \cup \bigcup_{n=1}^{\infty}\left(I_{3 n} \cup\right.$ $\left.I_{3 n-2}\right)$. Then $g_{\mid E}$ is continuous at $0, \bar{d}(E, 0)=\bar{d}^{-}((-\infty, 0], 0)=1$ and
$\underline{d}(E, 0)=\underline{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(I_{3 n} \cup I_{3 n-2}\right), 0\right) \geq \underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{3 n}, 0\right)+\underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{3 n-2}, 0\right)=\frac{1+\lambda}{2}>\lambda$.
Hence g is $[\lambda, \varrho]$-continuous at 0 and $g \in \mathcal{C}_{[\lambda, \rho]}$. Besides, $D_{a p}(g) \subset N_{g}$. On the other hand, let $F=(-\infty, 0] \cup \bigcup_{n=1}^{\infty}\left(I_{3 n} \cup I_{3 n-1}\right)$. Then $N_{g} \subset F, \bar{d}(F, 0)=$ $\bar{d}^{-}((-\infty, 0], 0)=1$ and
$\underline{d}(F, 0)=\underline{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(I_{3 n} \cup I_{3 n-1}\right), 0\right) \geq \underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{3 n}, 0\right)+\underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{3 n-1}, 0\right)=\frac{1+\lambda}{2}>\lambda$.
But

$$
\underline{d}(F \cap\{x \in \mathbb{R}:|g(x)|<\varepsilon\}, 0)=\underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{3 n}, 0\right)=\lambda
$$

for each $0<\varepsilon<1$. It follows that condition ($P 2$) is not fulfilled. Hence $g \notin \mathcal{M}_{m}\left(\mathcal{C}_{[\lambda, \varrho]}\right)$.

$5 \operatorname{Min}_{\mathcal{F}}$ and $\operatorname{Max}_{\mathcal{F}}$

Definition 5.1. Let \mathcal{F} be a family of real functions defined on an open interval I. Then we define $\operatorname{Min}_{\mathcal{F}}=\left\{g: I \rightarrow \mathbb{R}: \forall_{f \in \mathcal{F}} \min \{f, g\} \in \mathcal{F}\right\}$ and $\operatorname{Max}_{\mathcal{F}}=$ $\left\{g: \forall_{f \in \mathcal{F}} \max \{f, g\} \in \mathcal{F}\right\}$.

Lemma 5.1.

1. $\operatorname{Min}_{\mathcal{C}_{[\lambda, e]}}=\left\{-f: f \in \operatorname{Max}_{\left.\mathcal{C}_{[\lambda, e]}\right\}}\right.$.
2. $\operatorname{Min}_{\mathcal{C}_{[\lambda, e]}} \subset \mathcal{C}_{[\lambda, e]}$ and $\operatorname{Max}_{\mathcal{C}_{[\lambda, e]}} \subset \mathcal{C}_{[\lambda, e]}$.

Proof. 1. It follows immediately from equality $\max \{f, g\}=-\min \{-f,-g\}$ and property $f \in \mathcal{C}_{[\lambda, e]} \Rightarrow-f \in \mathcal{C}_{[\lambda, e]}$.
2. Let $f \in \operatorname{Min}_{\mathcal{C}_{[\lambda, e]}}$ and fix $x \in I$. Take the constant functions $g(y)=$ $f(x)+1$ for $y \in I$. Then $g \in \mathcal{C}_{[\lambda, e]}, \min \{f, g\} \in \mathcal{C}_{[\lambda, e]}$ and $\min \{f(x), g(x)\}=$ $f(x)$. Moreover,

$$
\{y \in I:|\min \{f(y), g(y)\}-f(x)|<\varepsilon\}=\{y \in I:|f(y)-f(x)|<\varepsilon\}
$$

for all $0<\varepsilon<1$. Hence f is $[\lambda, \varrho]$-continuous at x which gives an inclusion $\operatorname{Min}_{\mathcal{C}_{[\lambda, e]}} \subset \mathcal{C}_{[\lambda, \varrho]}$. Moreover, $\operatorname{Max}_{\mathcal{C}_{[\lambda, e]}}=-\operatorname{Min}_{\mathcal{C}_{[\lambda, e]}} \subset-\mathcal{C}_{[\lambda, \varrho]}=$ $\mathcal{C}_{[\lambda, \varrho]}$.

Theorem 5.1. $\operatorname{Max}_{\mathcal{C}_{[\lambda, e]}}=\mathcal{A}$.

Proof. By Corollary 3.2, we get $\mathcal{A} \subset \operatorname{Max}_{\mathcal{C}_{[\lambda, e]}}$.
Let $g \notin \mathcal{A}$ and g is not approximately continuous at $x \in I$. Without loss of generality we may assume that g is not approximately continuous at right at x. Therefore $\bar{d}^{+}(\{y \in I:|g(y)-f(x)| \geq \varepsilon\}, x)=c>$ 0 for some $0<\varepsilon<1$. As earlier, we choose a positive integer k such that $\lambda+\frac{c}{2 k}<1, \frac{2-c}{2 k}<\lambda$ and $\frac{1}{k}<\lambda+\frac{c}{2 k}$. Applying Lemma 2.2 to $\{y:|g(y)-g(x)| \geq \varepsilon\}$ and $a=\lambda+\frac{c}{2 k}$, we can find a sequence of intervals $\left\{I_{n}=\right.$ $\left.\left[a_{n}, b_{n}\right]: i \geq 1\right\}$ such that $x<\ldots<b_{n+1}<a_{n}<\ldots, d^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x\right)=\lambda+\frac{c}{2 k}$ and $\bar{d}^{+}\left(\{y:|g(y)-g(x)| \geq \varepsilon\} \cap \bigcup_{n=1}^{\infty} I_{n}, x\right) \geq \frac{c}{k}$. Let $\left\{K_{n}=\left[c_{n}, d_{n}\right]: n \geq 1\right\}$ be a sequence of pairwise disjoint intervals such that $I_{n} \subset \operatorname{int} K_{n}$ for all $n \in \mathbb{N}$ and $\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(K_{n} \backslash I_{n}\right), x\right)=0$. Let a function $f: I \rightarrow \mathbb{R}$ be defined in the following way

$$
f(y)=\left\{\begin{array}{l}
g(x)-1 \quad \text { if } y \in(a, x] \cup\left[d_{1}, b\right) \cup \bigcup_{n=1}^{\infty} I_{n}, \\
g(x)+1 \quad \text { if } y \in \bigcup_{n=1}^{\infty}\left[d_{n+1}, c_{n}\right], \\
\text { linear in every connected component of } \bigcup_{n=1}^{\infty} K_{n} \backslash \bigcup_{n=1}^{\infty} \operatorname{int} I_{n} .
\end{array}\right.
$$

It is obvious that f is $[\lambda, \varrho]$-continuous at each point except x. Inequalities $\underline{d}(\{y \in I: f(y)=f(x)=0\}, x) \geq \underline{d}\left((a, x] \cup \bigcup_{n=1}^{\infty} I_{n}, x\right)=\underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x\right) \geq \lambda+\frac{c}{2 k}>\lambda$
and
$\bar{d}(\{y \in I: f(y)=f(x)=0\}, x) \geq \bar{d}\left((a, x] \cup \bigcup_{n=1}^{\infty} I_{n}, x\right)=\bar{d}^{-}((a, x], x)=1>\varrho$, imply that f is $[\lambda, \varrho]$-continuous at x. Hence $f \in \mathcal{C}_{[\lambda, \varrho]}$.

We will show that $\max \{f, g\}$ is not $[\lambda, \varrho]$-continuous at x. Certainly, $\max \{f(x), g(x)\}=g(x)$. Set $E=\{y \in I:|\max \{f(y), g(y)\}-g(x)|<\varepsilon\}$.

Then $E \cap \bigcup_{n=1}^{\infty}\left[b_{n+1}, c_{n}\right]=\emptyset$. Moreover,

$$
\begin{aligned}
& \underline{d}^{+}(E, x) \leq \underline{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty} I_{n}, x\right)+\bar{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty}\left(K_{n} \backslash I_{n}\right), x\right)+ \\
& +\bar{d}^{+}\left(E \cap \bigcup_{n=1}^{\infty}\left[d_{n+1}, c_{n}\right], x\right)=\underline{d}^{+}\left(\{y \in I:|g(y)-g(x)|<\varepsilon\} \cap \bigcup_{n=1}^{\infty} I_{n}, x\right)= \\
& =d^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x\right)-\bar{d}^{+}\left(\{y \in I:|g(y)-g(x)| \geq \varepsilon\} \cap \bigcup_{n=1}^{\infty} I_{n}, x\right) \leq \lambda+\frac{c}{2 k}-\frac{c}{k}<\lambda .
\end{aligned}
$$

Therefore $\max \{f, g\}$ is not $[\lambda, \varrho]$-continuous at x. Hence $\max \{f, g\} \notin \mathcal{C}_{[\lambda, \rho]}$ which completes the proof.

Corollary 5.1. $\operatorname{Min}_{\mathcal{C}_{[\lambda, e]}}=-\operatorname{Max}_{\mathcal{C}_{[\lambda, e]}}=\mathcal{A}$.

References

[1] Andrew M. Bruckner, Differentiation of Real Functions, Lecture Notes in Mathematics, 659, Springer-Verlag Berlin Heidelberg New York, 1978.
[2] A. M. Bruckner, R. J. O'Malley and B. S. Thomson, Path Derivatives: A Unified View of Certain Generalized Derivatives, Trans. Amer. Math. Soc., 283, (1984), 97-125.
[3] K. Nowakowska, On a family of $[\lambda, \varrho]$-continuous functions, Tatra Mt. Math. Publ., 44, (2009), 129-138.

[^0]: Mathematical Reviews subject classification: Primary: 26A15 ; Secondary: 54C30
 Key words: density of a set at a point, continuous functions, approximately continuous functions, path continuity, maximal additive class, maximal multiplicative class

 Received by the editors April 20, 2010
 Communicated by: Brian S. Thomson

