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MAXIMAL CLASSES FOR THE FAMILY OF
[λ, %]-CONTINUOUS FUNCTIONS

Abstract

In this paper we give the definition of [λ, %]-continuity of real-valued
functions defined on an open interval, which is an example of path con-
tinuity. We give some properties of [λ, %]-continuous functions. The
aim of the paper is to find the maximal additive class and the maximal
multiplicative class for the family of [λ, %]-continuous functions.

1 Preliminaries

First, we shall collect some of the notions and definitions which appear fre-
quently in the sequel. We apply standard symbols and notations. By R we
denote the set of real numbers, by N we denote the set of positive integers.
The symbol | · | stands for the Lebesgue measure on R. Let f be a real-valued
function defined on a open interval I = (a, b). We will denote by Dap(f),(
D+
ap(f), D−ap(f)

)
the set of all point at which function f is not approxi-

mately continuous (at which f is not approximately continuous from the right
or the left, respectively).

Let E be a measurable subset of R and let x ∈ R. The numbers

d+(E, x) = lim inf
t→0+

|E ∩ [x, x+ t]|
t

and d
+

(E, x) = lim sup
t→0+

|E ∩ [x, x+ t]|
t
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are called the right lower density of E at x and right upper density of E
at x, respectively. The left lower and upper densities of E at x are defined
analogously. If

d+(E, x) = d
+

(E, x)
(
d−(E, x) = d

−
(E, x)

)
,

then we call this number the right density (left density) of E at x and denote
it by d+(E, x) (d−(E, x)). The numbers

d(E, x) = lim sup
t→0+

k→0+

t+k 6=0

|E ∩ [x− t, x+ k]|
k + t

and d(E, x) = lim inf
t→0+

k→0+

t+k 6=0

|E ∩ [x− t, x+ k]|
k + t

are called the upper and lower density of E at x, respectively. If d(E, x) = d(E, x),
we call this number the density of E at x and denote it by d(E, x).

Let us observe that

d(E, x) = max {d+(E, x), d
−

(E, x)} and d(E, x) = min {d+(E, x), d−(E, x)}.

Moreover, it is clear that

d
+

(E, x) = 1− d+(R \ E, x) and d+(E, x) = 1− d+(R \ E, x).

Similarly,

d
−

(E, x) = 1− d−(R \ E, x) and d−(E, x) = 1− d−(R \ E, x).

A.M.Bruckner, R.J. O’Malley and B.S.Thomson in [1] investigated the
notion of path system and developed a framework within which a number of
generalized derivatives can be expressed. We use this idea for studying some
notion of generalized continuity.

Definition 1.1. [3] Let E be a measurable subset of R and 0 < λ ≤ % < 1.
We say that a point x ∈ R is a point of [λ, %]-density of E if d(E, x) > λ and
d(E, x) > %.

Definition 1.2. [3] Let 0 < λ ≤ % < 1. A real-valued function f defined on
an open interval I is called [λ, %]-continuous at x ∈ I, provided that there is a
measurable set E ⊂ I such that x is a point of [λ, %]-density of E, x ∈ E and
f|E is continuous at x. If f is [λ, %]-continuous at each point of I, we say that
f is [λ, %]-continuous.

We will denote the class of all [λ, %]-continuous functions by C[λ,%].
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Definition 1.3. [1] A real-valued function f defined on an open interval I is
called approximately continuous at x ∈ I provided that there is a measurable
set E ⊂ I such that d(E, x) = 1, x ∈ E and f|E is continuous at x. If f is
approximately continuous at each point of I we say that f is approximately
continuous.

By A we denote the class of all real-valued approximately continuous func-
tions defined on an open interval I.

Corollary 1.1. A ⊂ C[λ,%] for each 0 < λ ≤ % < 1.

2 Auxiliary lemmas

First we recall some standard properties of the density of a set at a point.

Lemma 2.1. Let E and F be any measurable subsets of R and x ∈ R. Then

1. d+(E, x) + d+(F, x) ≤ d+(E ∩ F, x) + 1.

2. d+(E, x) + d
+

(F, x) ≤ d+(E ∩ F, x) + 1.

3. d+(E ∪ F, x) ≤ d+(E, x) + d
+

(F, x).

4. If F ⊂ E and d+(E, x) = d
+

(E, x), then

d+(E\F, x) = d+(E, x)−d+(F, x) and d
+

(E\F, x) = d+(E, x)−d+(F, x).

5. If d
+

(E, x) = 0, then d
+

(E ∪ F, x) = d
+

(F, x) = d
+

(F \ E, x) and
d+(E ∪ F, x) = d+(F, x) = d+(F \ E, x).

6. If d
+

(E \ F, x) = d
+

(F \ E, x) = 0, then d+(E ∩ F, x) = d+(E, x) =

d+(F, x) and d
+

(E ∩ F, x) = d
+

(E, x) = d
+

(F, x).

Proof. We prove only the first inequality. The rest of the proofs are similar.
Given measurable sets A,B ⊂ R the equality |A∪B| = |A|+ |B| − |A∩B|

is true. Therefore∣∣[x, x+ t]
∣∣ ≥ ∣∣(E ∪ F ) ∩ [x, x+ t]

∣∣ =
∣∣E ∩ [x, x+ t]

∣∣+
∣∣F ∩ [x, x+ t]

∣∣− ∣∣E ∩ F ∩ [x, x+ t]
∣∣.

Hence

1 ≥
∣∣(E ∪ F ) ∩ [x, x+ t]

∣∣
t

=

∣∣E ∩ [x, x+ t]
∣∣

t
+

∣∣F ∩ [x, x+ t]
∣∣

t
−
∣∣E ∩ F ∩ [x, x+ t]

∣∣
t
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for each t > 0. It implies that

d+(E ∩ F, x) + 1 = lim inf
t→0+

(
1 +

∣∣E ∩ F ∩ [x, x+ t]
∣∣

t

)
≥

≥ lim inf
t→0+

(∣∣E ∩ [x, x+ t]
∣∣

t
+

∣∣F ∩ [x, x+ t]
∣∣

t

)
≥ lim inf

t→0+

∣∣E ∩ [x, x+ t]
∣∣

t
+

+ lim inf
t→0+

∣∣F ∩ [x, x+ t]
∣∣

t
= d+(E, x) + d+(F, x).

Certainly, similar lemma holds for the left densities.
Afterwards, we will need same auxiliary lemmas.

Lemma 2.2. Let x ∈ R, 0 < a < 1 and let E be a measurable set. For each k ∈
N such that 1

k < a there is a sequence of intervals {In = [an, bn] : n ≥ 1} such

that x < . . . < bn+1 < an < . . ., d+
( ∞⋃
n=1

In, x

)
= a and d

+
(
E ∩

∞⋃
n=1

In, x

)
≥

1
kd

+
(E, x).

Proof. Observe, that if

d
+
(
E ∩

∞⋃
n=1

In, x

)
≥ 1

k
d
+

(E, x)

for some k, then for every k1 ≥ k we get d
+
(
E ∩

∞⋃
n=1

In, x

)
≥ 1

k1
d
+

(E, x),

too. Therefore we may assume that k is the smallest natural number for which
1
k < a. Then a < 2

k .

Let cn = x+ 1
n for n ∈ N. Hence lim

n→∞

∣∣[cn+1,cn]
∣∣∣∣[x,cn+1]
∣∣ = lim

n→∞

1
n(n+1)

1
n+1

= 0. Let

U in =
[
cn+1 + i−1

k (cn − cn+1), cn+1 + (a+ i−1
k )(cn − cn+1)

]
for i = 1, . . . , k − 1 and Ukn =

[
cn − a(cn − cn+1), cn

]
.

It is obvious that

|U1
n| = |U2

n| = . . . = |Ukn | = a · |[cn+1, cn]|

and

[cn+1, cn] =

k⋃
i=1

U in.
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Hence

|E ∩ U1
n|+ |E ∩ U2

n|+ . . .+ |E ∩ Ukn | ≥ |E ∩ [cn+1, cn]|.

Therefore for each n ≥ 1 there exists a closed interval Jn ⊂ [cn+1, cn] such
that

|Jn| = a · |[cn+1, cn]| and |Jn ∩ E| ≥
1

k
|E ∩ [cn+1, cn]|.

First, we shall show that d+
( ∞⋃
n=1

Jn, x

)
= a.

Let z ∈ (x, c1). There is n ≥ 1 such that z ∈ [cn+1, cn]. Then

∣∣ ∞⋃
i=1

Ji ∩ [x, z]
∣∣ =

∣∣ ∞⋃
i=1

Ji ∩ [x, cn+1]
∣∣+
∣∣ ∞⋃
i=1

Ji ∩ [cn+1, z]
∣∣ =

=
∣∣ ∞⋃
i=n+1

Ji
∣∣+
∣∣Jn ∩ [cn+1, z]

∣∣ ≤ a · |[x, cn+1]|+ |[cn+1, cn]|

and ∣∣ ∞⋃
i=1

Ji ∩ [x, z]
∣∣

z − x
≤

∣∣ ∞⋃
i=1

Ji ∩ [x, z]
∣∣

cn+1 − x
≤ a+

|[cn+1, cn]|
|[x, cn+1]|

.

On the other hand,

∣∣ ∞⋃
i=1

Ji ∩ [x, z]
∣∣ ≥ ∣∣ ∞⋃

i=1

Ji ∩ [x, cn+1]
∣∣ ≥ a · |[x, cn+1]| = a|[x, z]| − |[cn+1, cn]|

and ∣∣ ∞⋃
i=1

Ji ∩ [x, z]
∣∣

z − x
≥ a · |[x, z]| − |[cn+1, cn]|

z − x
≥ a− |[cn+1, cn]|

|[x, cn+1]|
.

Suppose that lim
m→∞

zm = x and zm ∈ [cnm+1, cnm ] for m ≥ 1. Then lim
m→∞

nm =

∞. Since lim
m→∞

|[cnm+1,cnm ]|
|[x,cnm+1]| = 0, we obtain that lim

m→∞

∣∣∣ ∞⋃
n=1

Jn∩[x,zm]

∣∣∣
z−x = a, and

it follows that d+
( ∞⋃
n=1

Jn, x

)
= a.

At the end, we will prove that d
+
(
E ∩

∞⋃
n=1

Jn, x

)
≥ 1

kd
+

(E, x). Again, let
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z ∈ (x, c1) and z ∈ [cn+1, cn]. Then∣∣∣∣ ∞⋃
i=1

Ji ∩ E ∩ [x, z]

∣∣∣∣
z − x

≥ 1

k
·
∑∞
i=n+1

∣∣[ci+1, ci] ∩ E
∣∣

z − x
=

1

k
·
∣∣[x, cn+1] ∩ E

∣∣
z − x

≥

≥ 1

k
·
∣∣[x, z] ∩ E∣∣
z − x

−1

k
·cn − cn+1

z − x
≥ 1

k
·
∣∣[x, z] ∩ E∣∣
z − x

−
1
n −

1
n+1

k · 1n
=

1

k
·
∣∣[x, z] ∩ E∣∣
z − x

− 1

k(n+ 1)
.

There is a sequence (ym)∞m=1 converging to x from right such that lim
m→∞

∣∣E∩[x,ym]
∣∣

ym−x =

d
+

(E, x). For each m there is nk such that ym ∈ [cnm+1, cnm ]. Certainly,
lim
m→∞

nm =∞. Hence

lim
m→∞

∣∣∣∣ ∞⋃
n=1

Jn ∩ E ∩ [x, ym]

∣∣∣∣
ym − x

≥ lim
m→∞

(
1

k
·
∣∣[x, ym] ∩ E

∣∣
ym − x

− 1

k(nm + 1)

)
=

1

k
d
+

(E, x).

Therefore d
+
(
E ∩

∞⋃
n=1

Jn, x

)
≥ 1

kd
+

(E, x).

We have proved that d+
( ∞⋃
n=1

Jn, x

)
= a and d

+
(
E ∩

∞⋃
n=1

Jn, x

)
≥ 1

kd
+

(E, x),

but the elements of the sequence do not have to be disjoint.
Let {In : n ≥ 1} be a sequence of closed disjoint intervals such that In ⊂

intJn for all n ∈ N and d
+
( ∞⋃
n=1

(Jn \ In), x

)
= 0. By Lemma 2.1, property 5,

it is immediate that

d+
( ∞⋃
n=1

In, x

)
= d+

( ∞⋃
n=1

Jn \
( ∞⋃
n=1

(Jn \ In)

)
, x

)
= d+

( ∞⋃
n=1

Jn, x

)
= a

and

d
+
( ∞⋃
n=1

In, x

)
= d

+
( ∞⋃
n=1

Jn \
( ∞⋃
n=1

(Jn \ In)

)
, x

)
= d

+
( ∞⋃
n=1

Jn, x

)
= a.

Hence, d+
( ∞⋃
n=1

In, x

)
= a.

Furthermore, d
+
(
E ∩

∞⋃
n=1

In, x

)
= d

+
(
E ∩

∞⋃
n=1

Jn, x

)
≥ 1

kd
+

(E, x). We

thus get a required sequence of closed disjoint intervals {In : n ≥ 1} which
completes the proof of the lemma.
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Lemma 2.3. Let F be a measurable set and let x ∈ R. There is a sequences
of intervals {In = [an, bn] : x < . . . < bn+1 < an < . . . , n ≥ 1} such that

d
+
(
F \

∞⋃
n=1

In, x

)
= d

+
( ∞⋃
n=1

In \ F, x
)

= 0.

Proof. Let xm = x + 1
2m and Fm = F ∩ (xm+1, xm). For each m ∈ N

there exists a closed set F̃m such that F̃m ⊂ Fm and |Fm \ F̃m| < 1
4m . Let

{U im}∞i=1 be the set of all connected components of the set (xm+1, xm) \ F̃m.

For every m there exists im such that

∣∣∣∣⋃∞i=im+1 U
i
m

∣∣∣∣ ≤ 1
4m . Therefore, the

set [xm+1, xm] \
⋃im−1
i=1 U im is a union of a finite number of closed intervals

F 1
m, F

2
m, . . . , F

im
m such that F̃m ⊂

⋃im
i=1 F

i
m and

∣∣∣∣⋃imi=1 F
i
m \ F̃m

∣∣∣∣ ≤ 1
4m . As

required sequence {In : n ≥ 1} we take the family of all intervals {F im : 1 ≤
i ≤ im, m ≥ 1} enumerated according to their natural order in R from the
right to the left. We have

∣∣∣∣ im⋃
i=1

F im \ Fm
∣∣∣∣ ≤ ∣∣∣∣ im⋃

i=1

F im \ F̃m
∣∣∣∣ < 1

4m
.

On the other hand,

∣∣∣∣Fm \ im⋃
i=1

F im

∣∣∣∣ ≤ |Fm \ F̃m|+ ∣∣∣∣F̃m \ im⋃
i=1

F im

∣∣∣∣ = |Fm \ F̃m| <
1

4m
.

Fix any y ∈ [x, x1]. There is m0 ∈ N such that y ∈
[
xm0+1, xm0

]
. Then

∣∣(F \⋃∞n=1 In) ∩ [x, y]
∣∣

y − x
≤
∣∣⋃∞

m=m0
(F \

⋃nm
n=1 F

i
m) ∩ [xm+1, xm]

∣∣
y − x

≤

∞∑
m=m0

1
4m

xm0+1 − x
=

=
1

4m0

1
2m0+1 (1− 1

4 )
=

2m0+1

3 · 4m0−1
.

Hence d
(
F \

∞⋃
n=1

In, x
)

= 0.
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Besides,

∣∣(⋃∞n=1 In \ F ) ∩ [x, y]
∣∣

y − x
≤
∣∣⋃∞

m=1

(⋃im
i=1 F

i
m \ F̃m

)
∩ [xm+1, xm]

∣∣
y − x

≤

∞∑
m=m0

1
4m

xm0+1 − x
=

=
1

4m0

1
2m0+1 (1− 1

4 )
=

2m0+1

3 · 4m0−1
.

Hence d
( ∞⋃
n=1

In \ F, x
)

= 0 and the proof is completed.

At the end, we present the equivalent condition for a function to belong to
C[λ,%].

Theorem 2.1. [3, Theorem 2.1] Let 0 < λ ≤ % < 1, and let f : I → R be a
measurable function. Then f is [λ, %]-continuous at x if and only if

lim
ε→0+

d
(
{y ∈ I : |f(x)− f(y)| < ε}, x

)
> λ

and

lim
ε→0+

d
(
{y ∈ I : |f(x)− f(y)| < ε}, x

)
> %.

Corollary 2.1.
⋂

0<λ≤%<1

C[λ,%] = A.

3 The maximal additive class

Definition 3.1. Let F be a family of real functions defined on an open interval
I. A set Ma(F) = {g : I → R : ∀f∈F f +g ∈ F} is called the maximal additive
class for F .

Remark 3.1. Let f : I → R, f(x) = 0 for x ∈ I be a constant function.
Clearly, if f ∈ F then Ma(F) ⊂ F .

In [1] maximal additive classes and maximal multiplicative classes for Dar-
boux functions and for Darboux Baire 1 functions are described.
In this section we characterize the maximal additive class for C[λ,%].

Theorem 3.1. Let 0 < λ ≤ % < 1 and I = (a, b). If g : I → R, g ∈ C[λ,%] \ A
then there exists a function f ∈ C[λ,%] such that f + g 6∈ C[λ,%].
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Proof. Let g ∈ C[λ,%] \ A and x ∈ Dap(f). Without loss of generality we
may assume that g is not approximately continuous at right at x. Then

d
+

({y ∈ I : |g(x) − g(y)| ≥ ε}, x) = c > 0 for some ε > 0. There is a positive
integer k such that λ + c

2k < 1 and 2−c
2k < λ. Then 1

k < λ + c
2k . Applying

Lemma 2.2 to {y : |g(y)− g(x)| ≥ ε} and a = λ+ c
2k , we can find a sequence

of intervals {In = [an, bn] : i ≥ 1} such that x < . . . < bn+1 < an < . . . < b,

d+
( ∞⋃
n=1

In, x
)

= λ+ c
2k and d

+
(
{y : |g(y)− g(x)| ≥ ε} ∩

∞⋃
n=1

In, x
)
≥ c

k . Let

{Kn = [cn, dn] : n ≥ 1} be a sequence of intervals such that In ⊂ intKn for all

n ∈ N and d
+
( ∞⋃
n=1

(Kn \ In), x

)
= 0. Let a function f : I → R be defined by

f(y) =


0 if y ∈ (a, x] ∪ [d1, b) ∪

∞⋃
n=1

In,

−g(y) + g(x) + ε if y ∈
∞⋃
n=1

[dn+1, cn],

linear in each connected component of
∞⋃
n=1

Kn \
∞⋃
n=1

intIn.

Since g ∈ C[λ,%], it is obvious that f is [λ, %]-continuous at every point
except at x. From inequalities

d
(
{y ∈ I : f(y) = f(x) = 0}, x

)
≥ d
(

(a, x] ∪
∞⋃
n=1

In, x

)
= d+

( ∞⋃
n=1

In, x

)
≥ λ+ c

2k > λ

and

d
(
{y ∈ I : f(y) = f(x) = 0}, x

)
≥ d
(

(a, x] ∪
∞⋃
n=1

Kn, x
)

= d
−

((a, x], x) = 1 > %,

we deduce that f is [λ, %]-continuous at x. Hence f ∈ C[λ,%].

On the other hand, we have (f + g)(x) = g(x) and

{
y ∈ I : |(f + g)(y)− g(x)| < ε

}
∩
(

[x, b) \
∞⋃
n=1

Kn

)
= ∅.

We will show that f + g is not [λ, %]-continuous at x. Set E = {y : |(f +



316 Stanis law Kowalczyk and Katarzyna Nowakowska

g)(y)− g(x)| < ε}. Then we obtain

d+(E, x) ≤ d+
(
E ∩

∞⋃
n=1

In, x
)

+ d
+
(
E ∩

∞⋃
n=1

(Kn \ In), x
)

+

+d
+
(
E∩

∞⋃
n=1

[dn+1, cn], x
)

= d+
(
{y ∈ I : |g(y)−g(x)| < ε}∩

∞⋃
n=1

In, x
)

+0+0 =

= d+
( ∞⋃
n=1

In, x
)
−d+

(
{y ∈ I : |g(y)−g(x)| ≥ ε}∩

∞⋃
n=1

In, x
)
≤ λ+

c

2k
− c
k
< λ.

Therefore f + g is not [λ, %]-continuous at x. Hence f + g 6∈ C[λ,ρ] and the
proof is completed.

Lemma 3.1. Let f, g : I → R and x ∈ I. If both functions, f and g, are
[λ, %]-continuous at x and at least one of them is approximately continuous at
x then f + g, fg, min{f, g} and max{f, g} are [λ, %]-continuous at x.

Proof. Without loss of generality we may assume that f is approximately
continuous at x. Therefore there exists a measurable set E such that x ∈ E,
d(E, x) = 1 and f|E is continuous at x. Since g is [λ, %]-continuous at x, there
is a measurable set F such that x ∈ F , x is a point of [λ, %]-density of F and
g|F is continuous at x. Therefore functions f+g, fg, min{f, g} and max{f, g}
restricted to E ∩ F are continuous at x, E ∩ F is a measurable set,

d(E ∩ F, x) ≥ d(E, x) + d(F, x)− 1 > 1 + λ− 1 = λ

and
d(E ∩ F, x) ≥ d(E, x) + d(F, x)− 1 > 1 + %− 1 = %.

It follows that f + g, fg, min{f, g} and max{f, g} are [λ, %]-continuous at
x.

Corollary 3.1. If f, g : I → R, f, g ∈ C[λ,ρ] and Dap(f) ∩Dap(g) = ∅, then
f + g, fg, min{f, g} and max{f, g} belong to C[λ,ρ].

Corollary 3.2. If f, g : I → R, f ∈ C[λ,ρ] and g ∈ A, then f+g, fg,min{f, g},max{f, g} ∈
C[λ,%].

Theorem 3.2. Ma(C[λ,%]) = A.

Proof. By Theorem 3.1, we get C[λ,%]∩Ma(C[λ,%]) ⊂ A. By Corollary 3.2, we
conclude that A ⊂Ma(C[λ,%]). The last needed inclusion, Ma(C[λ,%]) ⊂ C[λ,%],
follows from Remark 3.1.
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4 The maximal multiplicative class

Definition 4.1. Let F be a family of real functions defined on an open interval
I. A set Mm(F) = {g : ∀f∈F fg ∈ F} is called the maximal multiplicative
class for F .

In this section we characterize the maximal multiplicative class for C[λ,%].

Lemma 4.1. Let g ∈ C[λ,%] \ A and x ∈ Dap(g). If g(x) 6= 0 then there exists
f ∈ C[λ,%] such that fg 6∈ C[λ,%].

Proof. Without loss of generality we may assume that g is not approximately
continuous from the right at x. Let g(x) = t 6= 0. Choose 0 < ε < |t| such

that d
+({y : |g(y)− t| ≥ ε}, x

)
= c > 0. There exists a positive integer k such

that λ+ c
2k < 1 and 2−c

2k < λ. Then 1
k < λ+ c

2k . Applying Lemma 2.2, we can
find a sequence {In = [an, bn] : x < . . . < bn+1 < an < . . . < b, n ≥ 1} such

that d+
( ∞⋃
n=1

In, x
)

= λ+ c
2k and d

+({y : |g(y)− t| ≥ ε} ∩
∞⋃
n=1

In, x
)
≥ c

k .

Let {Kn = [cn, dn] : n ≥ 1} be a sequence of pairwise disjoint intervals

satisfying conditions In ⊂ intKn for n ∈ N and d
+
( ∞⋃
n=1

(Kn \ In), x
)

= 0. A

function f : I → R is defined in the following way

f(y) =


1 if y ∈ (a, x] ∪ [d1, b) ∪

∞⋃
n=1

In,

0 if y ∈
∞⋃
n=1

[dn+1, cn],

linear in each connected component of
∞⋃
n=1

Kn \
∞⋃
n=1

intIn.

Certainly, f is continuous at each point except x. Since

d({y : f(y) = f(x) = 1}, x) ≥ d
(

(−∞, x] ∪
∞⋃
n=1

Kn, x
)

= d+
( ∞⋃
n=1

In, x
)

= λ+ c
2k

and

d({y : f(y) = f(x) = 1}, x) ≥ d
(

(a, x] ∪
∞⋃
n=1

Kn, x
)

= d
(
(a, x], x

)
= 1 > ρ,

we obtain that f ∈ C[λ,%].
On the other hand, we have (fg)(x) = g(x) and

{
y ∈ I : |(fg)(y)− g(x)| < ε

}
∩
∞⋃
n=1

[dn+1, cn] = ∅.
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We will show that fg is not [λ, %]-continuous at x. Set E = {y ∈ I : |(fg)(y)− g(x)| < ε}.
Then we obtain

d+(E, x) ≤ d+
(
E ∩

∞⋃
n=1

In, x
)

+ d
+
(
E ∩

∞⋃
n=1

(Kn \ In), x
)

+

+d
+
(
E∩

∞⋃
n=1

[dn+1, cn], x
)

= d+
(
{y ∈ I : |g(y)−g(x)| < ε}∩

∞⋃
n=1

In, x
)

+0+0 =

= d+
( ∞⋃
n=1

In, x
)
−d+

(
{y ∈ I : |g(y)−g(x)| > ε}∩

∞⋃
n=1

In, x
)
≤ λ+

c

2k
− c
k
< λ.

Therefore fg is not [λ, %]-continuous at x. Thus fg 6∈ C[λ,ρ], and the proof is
completed.

Definition 4.2. Let 0 < λ ≤ % < 1. Let P(λ, %) be a set of all functions
f : I → R satisfying the following conditions

(P1) Dap(f) ⊂ Nf , where Nf = {x ∈ I : f(x) = 0},

(P2) for each x ∈ Dap(f) and for each measurable set E such that E ⊃ Nf
and d(E, x) > λ,
d(E, x) > % we have

lim
ε→0+

d(E ∩ {y : |f(y)− f(x)| < ε}, x) > λ

and
lim
ε→0+

d(E ∩ {y : |f(y)− f(x)| < ε}, x) > %.

Corollary 4.1. Let 0 < λ ≤ % < 1. Then A ⊂ P(λ, %).

Theorem 4.1. Mm(C[λ,%]) = P(λ, %) for each 0 < λ ≤ % < 1.

Proof. Let g ∈ P(λ, %) and f ∈ C[λ,%]. Fix any x ∈ I. There exists a

measurable set E such that x ∈ E, d(E, x) > λ, d(E, x) > % and f|E is
continuous at x. First, assume that g is approximately continuous at x. Then,
by Lemma 3.1, fg is [λ, %]-continuous at x.

Now, consider the second case, x ∈ Dap(g). Applying (P1), we obtain
g(x) = 0. Since f|E is continuous at x, we conclude that there exist real
numbers r, M such that |f(y)| < M for y ∈ E ∩ [x − r, x + r]. It follows, in
view of (P2), that

lim
ε→0+

d({y : |(fg)(y)| < ε}, x) ≥ lim
ε→0+

d({y : |g(y)| < ε
M } ∩ E, x) =

= lim
ε→0+

d({y : |g(y)| < ε} ∩ E, x) > λ
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and

lim
ε→0+

d({y : |(fg)(y)| < ε}, x) ≥ lim
ε→0+

d({y : |g(y)| < ε
M } ∩ E, x) =

= lim
ε→0+

d({y : |g(y)| < ε} ∩ E, x) > %.

By Theorem 2.1, fg is [λ, %]-continuous at x. Hence fg ∈ C[λ,%]. Thus we have
proven that P(λ, %) ⊂Mm(C[λ,%]).

Now, let us assume that g ∈Mm(C[λ,%]). If x ∈ Dap(g) then, by Lemma 4.1,
we get g(x) = 0. Therefore g fulfils condition (P1). Take any measurable
set E such that d(E, x) > λ and d(E, x) > %. By Lemma 2.3 (and corre-
sponding lemma for left-sided density) we can find two sequences of intervals
{In = [an, bn] : . . . < bn < an+1 < . . . < . . . x, n ≥ 1} and {Jk = [ck, dk] : x <
. . . < dk+1 < ck < . . . , n ≥ 1} such that

d
(
E \

( ∞⋃
n=1

In ∪
∞⋃
k=1

Jk

)
, x
)

= d
(( ∞⋃

n=1

In ∪
∞⋃
k=1

Jk

)
\ E, x

)
= 0.

Let Īn = [ān, b̄n] and J̄k = [c̄k, d̄k] be pairwise disjoint closed intervals such

that In ⊂ int Īn, Jk ⊂ int J̄k for all n, k ∈ N and d
( ∞⋃
n=1

(Īn \ In) ∪
∞⋃
k=1

(J̄k \

Jk), x
)

= 0. By Lemma 2.1, we have d

( ∞⋃
n=1

In∪
∞⋃
k=1

Jk, x

)
= d(E, x) > λ and

d

( ∞⋃
n=1

In ∪
∞⋃
k=1

Jk, x

)
= d(E, x) > %. Since for each k ∈ N

lim
α→∞

∣∣([d̄k+1, c̄k] ∩ {y : |g(y) · α| < 1}) \Ng
∣∣ = 0,

we get that for each k ∈ N there exists a number αk, such that

∣∣([d̄k+1, c̄k] ∩ {y : |g(y) · αk| < 1}) \Ng
∣∣ < d̄k+1 − x

2k
. (1)

Moreover,

Ng ∩
∞⋃
k=1

[d̄k+1, c̄k] ⊂ E \
∞⋃
k=1

Jk. (2)

From (1) and (2), it is easy to verify that

d
+
( ∞⋃
k=1

([d̄k+1, c̄k] ∩ {y : |g(y) · αk| < 1}) \Ng, x
)

= 0.
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Similarly, we can find a sequence {βn : n ≥ 1} such that

d
−
( ∞⋃
k=1

([b̄n, ān+1] ∩ {y : |g(y) · βn| < 1}) \Ng, x
)

= 0.

Let a function f : I → R be defined by

f(y) =


1 if y ∈

∞⋃
n=1

In ∪
∞⋃
k=1

Jk ∪ (a, ā1] ∪ [d̄1, b) ∪ {x},

αk if y ∈ [d̄k+1, c̄k], k = 1, 2, . . . ,
βn if y ∈ [b̄n, ān+1], n = 1, 2, . . . ,

linear in [ān, an], [bn, b̄n], [c̄k, ck] and [dk, d̄k], k = 1, 2, . . . , n = 1, 2, . . . .

Directly from the definition of f , it follows that it is continuous at each point

except x. If E1 =
∞⋃
n=1

In ∪
∞⋃
k=1

Jk ∪ (−∞, ā1] ∪ [d̄1,∞) ∪ {x} then f restricted

to E1 is constant, so in particular, it is continuous at x. Moreover,

d(E1, x) ≥ d
( ∞⋃
n=1

In ∪
∞⋃
k=1

Jk, x
)

= d(E, x) > λ

and

d(E1, x) ≥ d
( ∞⋃
n=1

In ∪
∞⋃
k=1

Jk, x
)

= d(E, x) > %.

Therefore f is [λ, %]-continuous at x. Hence f ∈ C[λ,%]. Moreover, fg(x) = 0.

Put Eε = {y ∈ I : |(fg)(y)−(fg)(x)| < ε} = {y ∈ I : |(fg)(y)| < ε} for 0 <
ε < 1. Since g ∈Mm(C[λ,%]), we get lim

ε→0+
d(Eε, x) > λ and lim

ε→0+
d(Eε, x) > %.

On the other hand,

d(Eε, x) ≤ d
(
Eε∩

( ∞⋃
n=1

In∪
∞⋃
k=1

Jk

)
, x
)

+d
(
Eε∩

( ∞⋃
n=1

[b̄n, ān+1]∪
∞⋃
k=1

[d̄k+1, c̄k]
)
, x
)

+

+ d
(
Eε ∩

( ∞⋃
n=1

(Īn \ In)∪
∞⋃
k=1

(J̄k \ Jk)
)
, x
)

= d
(
Eε ∩

( ∞⋃
n=1

In ∪
∞⋃
k=1

Jk

)
, x
)

=

= d
(
{y ∈ I : |g(y)| < ε}∩

( ∞⋃
n=1

In∪
∞⋃
k=1

Jk

)
, x
)

= d
(
{y ∈ I : |g(y)| < ε}∩F, x

)
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and

d(Eε, x) ≤ d
(
Eε∩

( ∞⋃
n=1

In∪
∞⋃
k=1

Jk

)
, x
)

+d
(
Eε∩

( ∞⋃
n=1

[b̄n, ān+1]∪
∞⋃
k=1

[d̄k+1, c̄k]
)
, x
)

+

+ d
(
Eε ∩

( ∞⋃
n=1

(Īn \ In)∪
∞⋃
k=1

(J̄k \ Jk)
)
, x
)

= d
(
Eε ∩

( ∞⋃
n=1

In ∪
∞⋃
k=1

Jk

)
, x
)

=

= d
(
{y ∈ I : |g(y)| < ε}∩

( ∞⋃
n=1

In∪
∞⋃
k=1

Jk

)
, x
)

= d
(
{y ∈ I : |g(y)| < ε}∩F, x

)
for each 0 < ε < 1. Hence lim

ε→0+
d
(
{y ∈ I : |g(y)| < ε}∩F, x

)
≥ lim
ε→0+

d(Eε, x) >

λ and lim
ε→0+

d
(
{y ∈ I : |g(y)| < ε} ∩ F, x

)
≥ lim

ε→0+
d(Eε, x) > %. It follows that

condition (P2) is fulfilled.

Corollary 4.2. If a function g satisfies condition (P1) and for each x ∈
Dap(g) we have d(Ng, x) > λ and d(Ng, x) > % then g ∈Mm(C[λ,%]).
Corollary 4.3. A  Mm(C[λ,%]).
Example 4.1. Fix any λ ∈ (0, 1). We will show that the sharp inequality
d(Ng, x) > λ in Corollary 4.2 is essential. We will construct a function g : R→
R such that g is discontinuous only at x = 0 belongs to C[λ,%] and does not
belong to Mm(C[λ,%]). Let {In = [an, bn] : 0 < . . . < bn+1 < an < . . . , n ≥ 1}

be a sequence of intervals such that d+
( ∞⋃
n=1

I3n, 0

)
= λ and

d+
( ∞⋃
n=1

I3n−1, 0

)
= d+

( ∞⋃
n=1

I3n−2, 0

)
=

1− λ
2

.

Then

d+
( ∞⋃
n=1

In, 0
)
≥ d+

( ∞⋃
n=1

I3n, 0
)

+ d+
( ∞⋃
n=1

I3n−1, 0
)

+ d+
( ∞⋃
n=1

I3n−2, 0
)

= 1.

Thus d+
( ∞⋃
n=1

In, 0
)

= 1. Define a function g : R→ R by

g(x) =



0 if x ∈ (−∞, 0] ∪ [b1,∞) ∪
∞⋃
n=1

I3n,

1 if x ∈
∞⋃
n=1

I3n−1,

1
n if x ∈

∞⋃
n=1

I3n−2,

linear on the intervals [bn+1, an], n = 1, 2, . . . .
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It is clear that g is continuous at each point except 0 and Ng = (−∞, 0] ∪
∞⋃
n=1

I3n. Hence d(Ng, 0) = λ and d(Ng, 0) = 1. Let E = (−∞, 0] ∪
∞⋃
n=1

(I3n ∪

I3n−2). Then g|E is continuous at 0, d(E, 0) = d
−

((−∞, 0], 0) = 1 and

d(E, 0) = d+
( ∞⋃
n=1

(I3n∪I3n−2), 0
)
≥ d+

( ∞⋃
n=1

I3n, 0
)

+d+
( ∞⋃
n=1

I3n−2, 0
)

=
1 + λ

2
> λ.

Hence g is [λ, %]-continuous at 0 and g ∈ C[λ,%]. Besides, Dap(g) ⊂ Ng. On

the other hand, let F = (−∞, 0] ∪
∞⋃
n=1

(I3n ∪ I3n−1). Then Ng ⊂ F , d(F, 0) =

d
−

((−∞, 0], 0) = 1 and

d(F, 0) = d+
( ∞⋃
n=1

(I3n∪I3n−1), 0
)
≥ d+

( ∞⋃
n=1

I3n, 0
)

+d+
( ∞⋃
n=1

I3n−1, 0
)

=
1 + λ

2
> λ.

But

d(F ∩ {x ∈ R : |g(x)| < ε}, 0) = d+
( ∞⋃
n=1

I3n, 0
)

= λ

for each 0 < ε < 1. It follows that condition (P2) is not fulfilled. Hence
g 6∈ Mm(C[λ,%]).

5 MinF and MaxF

Definition 5.1. Let F be a family of real functions defined on an open interval
I. Then we define MinF = {g : I → R : ∀f∈F min{f, g} ∈ F} and MaxF =
{g : ∀f∈F max{f, g} ∈ F}.

Lemma 5.1.

1. MinC[λ,%] = {−f : f ∈MaxC[λ,%]}.

2. MinC[λ,%] ⊂ C[λ,%] and MaxC[λ,%] ⊂ C[λ,%].

Proof. 1. It follows immediately from equality max{f, g} = −min{−f,−g}
and property f ∈ C[λ,%] ⇒ −f ∈ C[λ,%].

2. Let f ∈ MinC[λ,%] and fix x ∈ I. Take the constant functions g(y) =
f(x)+1 for y ∈ I. Then g ∈ C[λ,%], min{f, g} ∈ C[λ,%] and min{f(x), g(x)} =
f(x). Moreover,

{y ∈ I : |min{f(y), g(y)} − f(x)| < ε} = {y ∈ I : |f(y)− f(x)| < ε}
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for all 0 < ε < 1. Hence f is [λ, %]-continuous at x which gives an inclu-
sion MinC[λ,%] ⊂ C[λ,%]. Moreover, MaxC[λ,%] = −MinC[λ,%] ⊂ −C[λ,%] =
C[λ,%].

Theorem 5.1. MaxC[λ,%] = A.

Proof. By Corollary 3.2, we get A ⊂MaxC[λ,%] .

Let g /∈ A and g is not approximately continuous at x ∈ I. With-
out loss of generality we may assume that g is not approximately contin-

uous at right at x. Therefore d
+

({y ∈ I : |g(y) − f(x)| ≥ ε}, x) = c >
0 for some 0 < ε < 1. As earlier, we choose a positive integer k such
that λ + c

2k < 1, 2−c
2k < λ and 1

k < λ + c
2k . Applying Lemma 2.2 to

{y : |g(y)−g(x)| ≥ ε} and a = λ+ c
2k , we can find a sequence of intervals {In =

[an, bn] : i ≥ 1} such that x < . . . < bn+1 < an < . . ., d+
( ∞⋃
n=1

In, x
)

= λ+ c
2k

and d
+
(
{y : |g(y)− g(x)| ≥ ε} ∩

∞⋃
n=1

In, x
)
≥ c

k . Let {Kn = [cn, dn] : n ≥ 1}

be a sequence of pairwise disjoint intervals such that In ⊂ intKn for all n ∈ N
and d

+
( ∞⋃
n=1

(Kn \ In), x
)

= 0. Let a function f : I → R be defined in the

following way

f(y) =


g(x)− 1 if y ∈ (a, x] ∪ [d1, b) ∪

∞⋃
n=1

In,

g(x) + 1 if y ∈
∞⋃
n=1

[dn+1, cn],

linear in every connected component of
∞⋃
n=1

Kn \
∞⋃
n=1

intIn.

It is obvious that f is [λ, %]-continuous at each point except x. Inequalities

d
(
{y ∈ I : f(y) = f(x) = 0}, x

)
≥ d
(

(a, x] ∪
∞⋃
n=1

In, x

)
= d+

( ∞⋃
n=1

In, x

)
≥ λ+ c

2k > λ

and

d
(
{y ∈ I : f(y) = f(x) = 0}, x

)
≥ d
(

(a, x] ∪
∞⋃
n=1

In, x

)
= d
−
(

(a, x], x

)
= 1 > %,

imply that f is [λ, %]-continuous at x. Hence f ∈ C[λ,%].
We will show that max{f, g} is not [λ, %]-continuous at x. Certainly,

max{f(x), g(x)} = g(x). Set E = {y ∈ I : |max{f(y), g(y)} − g(x)| < ε}.
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Then E ∩
∞⋃
n=1

[bn+1, cn] = ∅. Moreover,

d+(E, x) ≤ d+
(
E ∩

∞⋃
n=1

In, x
)

+ d
+
(
E ∩

∞⋃
n=1

(Kn \ In), x
)

+

+ d
+
(
E ∩

∞⋃
n=1

[dn+1, cn], x
)

= d+
(
{y ∈ I : |g(y)− g(x)| < ε} ∩

∞⋃
n=1

In, x
)

=

= d+
( ∞⋃
n=1

In, x
)
−d+

(
{y ∈ I : |g(y)−g(x)| ≥ ε}∩

∞⋃
n=1

In, x
)
≤ λ+

c

2k
− c
k
< λ.

Therefore max{f, g} is not [λ, %]-continuous at x. Hence max{f, g} 6∈ C[λ,ρ]
which completes the proof.

Corollary 5.1. MinC[λ,%] = −MaxC[λ,%] = A.
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