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A FACTORIZATION PROBLEM

Abstract

A solution is presented of a problem proposed at the Summer Sym-
posium in Real Analysis XXXIII.

The factorization problem was proposed by the first author during the
Summer Symposium in Real Analysis XXXIII, which was held at Southeastern
Oklahoma State University. The statement of the problem (given in Section 1)
requires some definitions.

A partition Π of [0, 1) is a finite disjointed collection { Ii : i = 1, 2, . . . , n }
whose union is [0, 1), where Ii is a half-open interval of the form [a, b). The
size of a partition, δ(Π), is the maximum length of the intervals of Π.

A function ϕ : [0, 1] → [0, 1] is called a permutation of a partition Π of
[0, 1) if Π′ = {ϕ[Ii] : Ii ∈ Π } is a partition of [0, 1), ϕ restricted to Ii is a
translation for each i, and ϕ(1) = 1. Clearly a permutation is bijective and
has the property that the Lebesgue measures of ϕ[E] and ϕ−1[E] are equal
to the Lebesgue measure of E for every Lebesgue measurable set E ⊂ [0, 1].
(Lebesgue measure will be denoted by λ, and the modifying “Lebesgue” will
be dropped.) The set of all permutations will be denoted by P.

The set of all functions h : [0, 1]→ [0, 1] that are almost everywhere limits
of sequences in P will be denoted byH. This is the same as the set of functions
that are limit-in-measure of sequences in P. (See [2, Chapter 5].)

The collection of partitions of [0, 1) can be used to define another set H′. A
function h : [0, 1]→ [0, 1] is in H′ if, for each sequence Πn of partitions of [0, 1)
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such that δ(Πn)→ 0 as n→∞, there exists a permutation ϕn of Πn such that
ϕn converges almost everywhere to h. Obviously, H′ ⊂ H. It will be shown
in Section 2 that H = H′ and that h ∈ H if and only if h is λ-measurable and
λ = h#λ.1

1 Factorization problems

The statement of the proposed factorization problem is the following: Find
a minimal2 set G of functions g : [0, 1] → R such that for each λ-measurable
function f : [0, 1] → R there is an h in H and there is a g in G such that the
composition3 gh : [0, 1] → R is λ-equivalent to f . Observe that the set B2 of
Baire class 2 functions has the property that each λ-measurable function f
has a factorization f = gh almost everywhere with g ∈ B2 and h being the
identity function; but B2 is not minimal. (The first author conjectured that
a possible G is the set of nondecreasing functions.) See Theorems 7 and 5 for
our solution.

Factorization Problem. Give a minimal set G of functions g : [0, 1]→ [0, 1]
having the property that for each Borel measurable function f : [0, 1] → (0, 1)
there is an h in H and there is a g in G such that gh is λ-equivalent to f .

Note that the λ-measurability of f : [0, 1] → R has been replaced with
Borel measurability of f : [0, 1] → (0, 1) and that g : [0, 1] → R has been
replaced by g : [0, 1] → [0, 1]. Clearly there is no loss in generality in making
these replacements. We shall show that the set G of continuous-from-above,
nondecreasing functions will solve the above factorization problem. Also, we
strengthen the solution to include connections between the Baire classes of the
functions f and h.

Our solution of the factorization problem is achieved by employing mea-
sures on certain linearly ordered spaces (S,≺) which are defined in Section 4.
The order topology of (S,≺) will not be used, only its measure theoretic prop-
erties induced by the order ≺ are exploited.

Before embarking on the construction of the function h let us characterize
the sets H and H′.

1For any λ-measurable function f : E → R, where E is a Borel set of R, the measure f#λ
is defined on the Borel sets B of R by f#λ(B) = λ(f−1[B]).

2As usual, we mean minimal in the sense of the partial order ⊂. Of course, minimal sets
need not be unique.

3As real-valued functions will not be multiplied, compositions will be indicated in the
multiplicative notation.
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2 Characterization of H and H′

The 2 sets H and H′ were introduced to define the factorization problem.
H′ ⊂ H has been observed already. We have the following characterisation.

Theorem 1. H′ = H, and h ∈ H if and only if h is a λ-measurable function
such that λ = h#λ.

A λ-measurable function h : [0, 1]→ [0, 1] is said to be measure preserving4 if
λ = h#λ. Note that λ(h−1(1)) = 0.

The next 2 propositions provide the proof of the theorem.

Proposition 2. If h ∈ H, then h is measure preserving.

Proof. Let ϕn be a sequence of permutations converging in measure to h, and
let εn be such that λ(En) < εn, where En = {x : |ϕn(x)− h(x)| ≥ εn }, with
εn → 0 as n→∞. For closed sets K in [0, 1] let Kn be the εn-neighborhood
of K. As ϕn

−1[K] ⊂ h−1[Kn] ∪ En, it follows that λ(K) ≤ h#λ(Kn) + εn,
whence λ(K) ≤ h#λ(K). Consequently, λ(U) ≤ h#λ(U) for every open set U
in [0, 1]. It now follows that λ(K) = h#λ(K) since h#λ([0, 1]) = 1.

It remains to prove that if h is measure preserving then h ∈ H′. The
proof is a “pigeonhole” process. That is, a partition Π of pigeons are to be
assigned to a partition Π′ of pigeonholes under certain rules ϕ. Unfortunately
the pigeons may be too fat to achieve this assignment. The final step of the
proof of the characterization will depend on the following modified pigeonhole
lemma.

Lemma 3. Let Π′ = { I ′i : i = 1, 2, . . . , n } be a partition of [0, 1) and let
{Ki : i = 1, 2, . . . , n } be a disjointed collection of compact sets of [0, 1) such
that λ(I ′i) > λ(Ki) for each i. If ε > 0, then there is a δ > 0 such that for
each partition Π = { Ij : j = 1, 2, . . . ,m } with δ(Π) < δ there is a permutation
ϕ : [0, 1]→ [0, 1] of Π such that, for each i,

λ(I ′i)− 2δ(Π) > λ(ϕ[Hi]) > λ(ϕ[Ki])− ε/n,

where Hi =
⋃
j{ Ij : ϕ[Ij ] ⊂ I ′i and Ij ∩Ki 6= ∅ }.

Proof. Let γ be such that 0 < 3γ < λ(I ′i)− λ(Ki) and λ(Ui \Ki) < ε/n for
each i, where Ui is the γ-neighborhood of Ki, and such that 3γ is less than
the distances between distinct Ki’s.

4Here, h need not be bijective; in ergodic theory, “measure preserving” requires that h
be bijective and both h and h−1 be measurable and measure preserving in our sense (see,
for example, [1, page 7]). Such h is often called an automorphism.
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With W (i,Π) =
⋃
{ Ij ∈ Π: Ij∩Ki 6= ∅ }, observe that λ(I ′i)−λ(W (i,Π))+

λ
(
W (i,Π) \Ki

)
= λ(I ′i)− λ(Ki) > 3γ. As λ

(
W (i,Π) \Ki

)
→ 0 as δ(Π)→ 0,

there is a δ such that 0 < δ < γ and such that λ
(
W (i,Π) \Ki

)
< γ whenever

δ(Π) < δ. So, if δ(Π) < δ, then

λ(I ′i)− 2δ(Π) >
∑
{λ(Ij) : Ij ∈ Π, Ij ∩Ki 6= ∅ }.

Let us construct the required ϕ. Let δ(Π) < δ. Note that no interval Ij
intersects more than one of the Ki. We separate the intervals Ij into classes Bi,
which consists of those intervals which intersect Ki, 1 ≤ i ≤ n, and C, those
intervals which do not intersect any Ki. Denote

∑
{λ(Ij) : Ij ∈ Bi } by li

and index the collection C as J1, J2, . . . , Jm. Then
∑n
i=1 li +

∑m
k=1 λ(Jk) = 1.

Call ai the right endpoint of I ′i.
Let us describe the first step of the construction of ϕ. As l1 < a1 − δ(Π),

there is an m1 such that 1 < m1 and
∑m1−1
k=1 λ(Jk) ≤ a1 − l1 <

∑m1

k=1 λ(Jk).
Define a′1 = l1 +

∑m1

k=1 λ(Jk). Let ϕ be a permutation of B1 onto [0, l1) and
{ Jk : k ≤ m1 } onto [l1, a

′
1) with a1 ∈ ϕ(Jm1

).
We now repeat this procedure for B2. We have a1 < a′1 < a′1 + l2 <

a2 − δ(Π), whence [a′1, a
′
1 + l2) ⊂ [a1, a2), and there is an m2 such that m1 <

m2 and
∑m2−1
k=m1+1 λ(Jk) ≤ a2 − (a′1 + l2) <

∑m2

k=m1+1 λ(Jk). Define a′2 =∑2
i=1 li +

∑m2

k=1 λ(Jk). Let ϕ be a permutation of B2 onto [a′1, a
′
1 + l2) and

{ Jk : m1 < k ≤ m2 } onto [a′1 + l2, a
′
2) with a2 ∈ ϕ(Jm2).

This process continues up to the nth stage, where an−1 ∈ ϕ(Jmn−1
) and

a′n−1 =
∑n−1
i=1 li +

∑mn−1

k=1 λ(Jk) satisfies an−1 < a′n−1 < a′n−1 + ln < 1− δ(Π).
The remainder of the construction of ϕ is left to the reader.

As W (i,Π) \Ki ⊂ Ui \Ki, the construction is completed.

Proposition 4. If h is measure preserving, then h ∈ H′.

Proof. Let h : [0, 1] → [0, 1] be measure preserving and, for each m, let Π′m
be a partition of [0, 1) such that δ(Π′m) < 2−m. Denote by nm the number
of intervals in Π′m. Then {h−1[I ′(m, i)] : I ′(m, i) ∈ Πm } and h−1(1) form a
decomposition of [0, 1]. For each I ′(m, i), let K(m, i) be a compact subset of
[0, 1) ∩ h−1[I ′(m, i)] such that λ

(
h−1[I ′(m, i)] \K(m, i)

)
< (nm2m)−1.

For each Π′m and ε = 2−m, let δm be as provided by the modified pigeonhole
lemma. We may assume δm > 2 δm+1. For each m let

Dm = h−1(1) ∪
⋃
m≤m′

⋃
{h−1[I ′(m′, i)] \K(m′, i) : I ′(m′, i) ∈ Π′m′ }.

Note Dm′ ⊂ Dm whenever m′ ≥ m, and λ(Dm) ≤ 2−(m−1). Also, if x /∈ Dm

and m′ > m, then x is in some K(m′, i), whence h(x) ∈ I ′(m′, i) ∈ Π′m′ .
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Suppose that Πk is a sequence of partitions such that δ(Πk)→ 0 as k → 0.
Let km be the least k such that δ(Πk′) < δm whenever k′ < k. Observe that
km is nondecreasing and converges to +∞. If k ≤ k1, then let ϕk be the
identity function. If km < k ≤ km+1, then let ϕk be as given by the modified
pigeonhole lemma for the partitions Πk and Π′m. Clearly ϕk, k = 1, 2, . . . , is
a well defined sequence.

The constructed sequence ϕk will converge almost everywhere to h. Indeed,
let ε > 0 and let m be such that 2−(m−1) < ε. Suppose x /∈ Dm and m′ ≥ m.
Let m′′ and k be such that km′ = km′′ < km′′+1 and km′′+1 ≥ k > km′′ . There
is an I(k, j) in Πk such that x ∈ I(k, j)∩K(m′′, i) for some i. By the modified
pigeonhole lemma, ϕk[I(k, j)] ⊂ I ′(m′′, i) ∈ Π′m′′ . Hence h(x) and ϕk(x) are

in the same I ′(m′′, i). As δ(Π′m′′) < 2−m
′′
, |ϕk(x)− h(x)| < 2−m

′′
whenever

km′′+1 ≥ k > km′′ . We infer from this that ϕk converges to h except on a
subset of Dm. Hence the set in which ϕk does not converge to h has measure
less than ε.

3 Measure induced by f : [0, 1]→ [0, 1]

For a Borel measurable function f : [0, 1] → [0, 1] let g : [0, 1] → [0, 1] be
its nondecreasing, continuous-from-above distribution function (see Remark 8
below) that satisfies

g#λ([0, y]) = f#λ([0, y]), y ∈ [0, 1].

For each y in [0, 1], the level sets of g and f are given by g−1(y) and f−1(y),
respectively. Moreover, f#λ({y}) = λ(g−1(y)). As g is nondecreasing and
continuous-from-above, each nonempty level set g−1(y) is a connected set such
that

a(y) = min g−1(y) and b(y) = sup g−1(y)

satisfy λ
(
[0, a(y))

)
= λ

(
f−1

[
[0, y)

])
and λ(g−1(y)) = b(y)−a(y) = λ(f−1(y)).

It will be shown in the following section that the set G of all nondecreasing,
continuous-from-above functions g : [0, 1] → [0, 1] fulfills the requirements of
the factorization. Indeed, for each f , a measure-preserving h is constructed
so that f = gh almost everywhere. Moreover, if f ∈ G then the g in G
and the constructed h yielding f = gh almost everywhere are f and the
identity function, respectively. To see that G is a minimal set, it is enough to
observe that if two nondecreasing, continuous-from-above functions g1 and g2
are different, then they differ on a set of positive measure. Hence there exists
some r such that

λ({x : g1(x) > r }) 6= λ({x : g2(x) > r }).
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So there can be no measure preserving function h such that g1h = g2 almost
everywhere. Consequently, upon the successful construction of the measure
preserving h in the next section, the following theorem yields a solution of the
factorization problem.

Theorem 5. The set G of all functions g : [0, 1]→ [0, 1] that are nondecreasing
and continuous-from-above is a minimal set having the property that for each
Borel measurable function f : [0, 1] → (0, 1) there is an h in H and there is a
g in G such that gh is λ-equivalent to f .

(Observe: If each g in G of the theorem is reassigned the value y0 at 0 and
at 1, then the resulting set is also minimal. This will be useful for Theorem 7.)

4 Linearly ordered spaces

To prove Theorem 5 let g ∈ G correspond to the function f . Our task is to
construct a measure preserving function h such that gh = f almost every-
where. It will be convenient to designate by Z the space [0, 1] through which
the factorization is accomplished. That is, h : [0, 1]→ Z and g : Z → [0, 1].

Turning to the construction, we will need a Baire class 1 function η that
retracts [0, 1] onto g[Z]. To this end, define

η(y) =

{
inf [y, 1] ∩ g[Z], if [y, 1] ∩ g[Z] 6= ∅;
sup g[Z], if [y, 1] ∩ g[Z] = ∅.

Clearly η is nondecreasing (hence is Baire class 1); and, as g#λ([0, y]) is
continuous-from-above, g[Z] = η

[
g[Z]

]
and ηη = η. Moreover, ηf is equal

to f almost everywhere and ηf
[
[0, 1]

]
⊂ g[Z].

The tool used in the construction of the function h : [0, 1] → Z is the
following linear order5 ≺ of [0, 1]2.

(s, t) ≺ (s′, t′) if t < t′, or if t = t′ and s < s′.

Denote the graph of g by Graph(g). The linear order ≺ restricted to Graph(g),
denoted ≺g, yields a linearly ordered space (Graph(g),≺g) which is order

5This is a dictionary order on [0, 1]2, though not the usual one. If f : [0, 1] → [0, 1]
is nondecreasing, then ψ : x 7→ (x, f(x)) is an increasing map of [0, 1] into the linearly
ordered space ([0, 1]2,≺). As the factorization problem is a measure theoretic one, the
emphasis will be on the σ-algebra B of ([0, 1]2,≺) generated by the open half-rays H(x̄, ȳ) =
{ (x, y) : (x, y) ≺ (x̄, ȳ) }. B is contained in the collection of the usual Borel sets of [0, 1]2.
Moreover, the sets of B that are contained in horizontal lines of [0, 1]2 are exactly the usual
Borel sets of the lines.
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isomorphic to (Z,<), where Z is the domain of g. Clearly, π(z, y) 7→ z is the
order-preserving isomorphism of Graph(g) onto Z.6

Consider next the linearly ordered space (Graph(ηf),≺ηf ). This linearly
ordered space need not be order isomorphic to the domain of ηf . Nonetheless
the following 2 statements hold for each ȳ in g[Z] and x̄ ∈ (ηf)−1(ȳ).

1. { (x, ηf(x)) : ηf(x) = ȳ } = (ηf)−1(ȳ)× ȳ.

2. {x : (x, ηf(x)) ≺ (x̄, ȳ) } = (ηf)−1
[
[0, ȳ)

]
∪ {x ∈ (ηf)−1(ȳ) : x < x̄ }.

The linear order ≺ηf induces a natural σ-algebra B generated by the “half-
rays” { (x, y) : (x, y) ≺ (x̄, ȳ) }∩Graph(ηf). As ψ : x 7→ (x, ηf(x)) is such that
ψ−1[B] is contained in the collection of Borel subsets of [0, 1] whenever ηf is
Borel measurable7, the measure ν = ψ#λ on Graph(ηf) is well defined and is
non-atomic. Consequently, if ηf is Borel measurable, then

ν(H(x, y)) = (ηf)#λ([0, y)) + λ
(
[0, x] ∩ (ηf)−1(y)

)
,

where H(x, y) is the half-ray for ηf(x) = y.
We are now ready to construct the measure preserving function h. In our

construction we shall assume that f is Borel measurable.
Define a ν-measurable map h0 from Graph(ηf) to Graph(g) as follows.

For each y in g[Z], define Iy to be the characteristic function of (ηf)−1(y). If
x ∈ (ηf)−1(y) and g−1(y) is a closed subset of Z, define h0(x, y) to be (z, y),
where z = a(y) +

∫ x
0
Iy dt. For the contrary case of g−1(y) = [a(y), b(y)) and

λ((ηf)−1(y)) = b(y)−a(y) > 0 the definition of h0(x, y) is a slight modification
of the above. That is, if x ∈ (ηf)−1(y), define h0(x, y) as before whenever
b(y)−a(y) >

∫ x
0
Iy dt and define h0(x, y) to be (a(y), y) whenever b(y)−a(y) ≤∫ x

0
Iy dt. As λ({x ∈ (ηf)−1(y) : b(y) − a(y) ≤

∫ x
0
Iy dt }) = 0, the above

defined h0 maps into Graph(g). The ν-measurability of h0 is easily shown by
the statements 1 and 2 above. Moreover, h0[(ηf)−1(y)× y] ⊂ g−1(y)× y.

Observe that if f = g, where g ∈ G, then the function that corresponds to
f in G is g itself and the constructed h0 is the identity map.

Let us return to the linearly ordered space (Graph(g),≺g). As this space
is linearly isomorphic to (Z,<) there is a natural “Lebesgue” measure λ0 on it
generated by λ0({ (z′, g(z′)) : (z′, g(z′)) ≺g (z, g(z)) }) = λ([0, z)) = z. Let us
verify λ0 = (h0)#ν. To this end, for y0 = g(z0), we exhibit the mutually exclu-
sive and exhaustive cases of M(z0) = h0

−1[{ (z, g(z)) : (z, g(z)) ≺g (z0, y0) }
]
.

Denoting the set { (x, ηf(x)) : ηf(x) < y0 } by N(y0), we have

6Observe that the 2 topologies on Graph(g) induced by ≺g and induced by the product
topology of [0, 1]2 will be the same if and only if g is continuous as well as nondecreasing.
We have not assumed that g is continuous.

7ψ maps Borel subsets of [0, 1] to usual Borel sets of [0, 1]2.
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1. If z0 = a(y0), then M(z0) = N(y0).

2. If a(y0) < z0 ≤ b(y0) and b(y0) ∈ g−1(y0), then

M(z0) = N(y0) ∪ { (x, ηf(x)) : ηf(x) = y0, a(y0) +
∫ x
0
Iy0 dt < z0 }.

3. If a(y0) < z0 ≤ b(y0) and b(y0) /∈ g−1(y0), then z0 6= b(y0) and

M(z0) = N(y0) ∪ { (x, ηf(x)) : ηf(x) = y0, a(y0) +
∫ x
0
Iy0 dt < z0 }

∪ { (x, ηf(x)) : ηf(x) = y0, a(y0) +
∫ x
0
Iy0 dt ≥ b(y0) }.

As ν(N(y0)) = a(y0), we have for each case that ν(M(z0)) = z0, whence
λ0 = h0#ν. It is easily seen that h = πh0ψ is a measurable function such that
λ = h#λ.

Note that h
[
(ηf)−1(y)

]
⊂ g−1(y) whenever y ∈ g[Z], whence ηf = gh. As

f = ηf almost everywhere, the promised h has been constructed.

Proposition 6. If f is a Baire class α function, then the above constructed
h is a Baire class α+ 3 function with ηf = gh everywhere.

Proof. If f : [0, 1]→ [0, 1] is a function of Baire class α, then ηf is a function
of Baire class α+ 1. Employing the bijection ψ : [0, 1]→ Graph(ηf), we infer
from the three cases above that h−1

[
[0, z)

]
is the finite union of Borel sets of

additive class α + 2. Hence h−1
[
[0, z]

]
is a Borel set of multiplicative class

α+ 3. From this we infer that h is a function of Baire class α+ 3.

Define G∗ to be the set of all functions g : [0, 1] → R such that g(0) =
g(1) = 0 and such that g restricted to (0, 1) is nondecreasing and continuous-
from-above. As every Lebesgue measurable function f : [0, 1] → R is equal
almost everywhere to a Baire class 2 function, Theorem 5 and the observation
that follows it yield the next theorem.

Theorem 7. G∗ is a minimal set having the property that for each Lebesgue
measurable function f : [0, 1] → R there is an h in H and there is a g in G∗
such that f = gh almost everywhere.

The factorization problem is posed in the context of almost everywhere
convergence of a sequence of permutations to the function h. The following
question remains.

Question. If h is measure preserving then does there exist a λ-equivalent H
such that H is the everywhere convergent limit of a sequence of permutations?
Clearly, such an H is a Baire class 2 function.
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Remark 8. The construction of a nondecreasing function, called a distribu-
tion function, was known to Hardy and Littlewood for measurable functions
defined on the open interval (0, 1). That is, for each real-valued measurable
function f on (0, 1), there corresponds a nondecreasing real-valued function g
on (0, 1) that is continuous-from-above such that f#λ((0, y]) = g#λ((0, y]) for
every y. As R and (0, 1) are order isomorphic, there is no loss in assuming
f and g map into (0, 1). Our function in Section 3 is related to the function
constructed by the Hardy-Littlewood rearrangement method (see [3, pages 91–
92], [5, pages 29–30], and [4, page 272]). Indeed, we infer from their result
that each Lebesgue measurable function f : [0, 1] → (0, 1) corresponds to a
nondecreasing, continuous-from-above distribution function g : [0, 1] → [0, 1]
with g−1[{0, 1}] ⊂ {0, 1}. Simply restrict f to the open interval (0, 1) and
adjust the resulting Hardy-Littlewood distribution function that is defined on
(0, 1) to the closed interval [0, 1] in the obvious way.
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