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PRODUCTS OF BAIRE ONE DOUBLE
STAR FUNCTIONS

Abstract

We characterize products of Baire one double star functions.

1 Preliminaries

The letters N, R, and Z denote the set of nonnegative integers, the real line,
and the set of all integers, respectively. The symbols ω0 and ω1 denote the
first infinite ordinal and the first uncountable ordinal, respectively. The word
function denotes a mapping from a subset of R into R. The symbol C(f)
stands for the set of points of continuity of a function f .

Let A ⊂ R. We use the symbols clA, bdA, and A′ to denote the closure,
the boundary, and the set of all accumulation points of A, respectively. For
each x ∈ R, we define %(x,A) to be the distance between x and A; i.e.,

%(x,A)
df
= inf {|x− a| ; a ∈ A}.

If f : R→ R, then for each a ∈ R, we define [f = a]
df
= {x ∈ R ; f(x) = a};

the symbols [f 6= a], [f > a], etc. are defined analogously.
If I ⊂ R is an interval and ψ : I → R, then for every ordinal α, we define [2]

Uα(ψ)
df
= int

(⋃
β<α Uβ(ψ) ∪ C

(
ψ�I \

⋃
β<α Uβ(ψ)

))
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(int stands for the interior operator in I) and Ũα(ψ)
df
= Uα(ψ) \

⋃
β<α Uβ(ψ).

For each α < ω1, we denote

Sα
df
=
{
f : R→ R ; Uα(f) = R

}
.

(Notice that the domain of each f ∈ Sα is R.) In particular, S0 is the class of
all continuous functions and S1 is the class B∗∗1 defined by R.J. Pawlak [4].

We say that f : R→ R is a Baire one star function [3], if for each nonempty

closed set P ⊂ R, there is a nonempty portion Q
df
= P ∩ (a, b) of P such that

f�Q is continuous. We denote the family of all Baire one star functions by B∗1.
In the article [2], the first author proved that 〈Sα ; α < ω1〉 is a classifi-

cation of Baire one star functions, and characterized sums of functions from
these classes. The goal of this paper is to make the first step toward the
characterization of the products of functions from these classes.

2 The theorem

We will prove the following theorem.

Theorem 2.1. Let f : R → R. Denote by I the family of all bounded con-
nected components I = (a, b) of U0(f) with the property that f(a)f(b) < 0 and
I ∩ [f = 0] = ∅. The following are equivalent :

i) there exist g, h ∈ S1 such that f = gh on R;

ii) f ∈ S2 and for each x ∈ [f 6= 0] \ U1(f):

(∃δ > 0) (x− δ, x+ δ) ∩
(⋃

I∈I bd I
)′ ∩ U1(f) = ∅, (2.1)

(∀ε > 0)(∃δ > 0)(∀I ∈ I)(
I ⊂ [f · f(x) > 0] ∩ (x− δ, x+ δ)⇒ %(f(x), f [cl I]) < ε

)
. (2.2)

It seems surprising that despite the simplicity of the definition of the
class S1 and the not-very-complicated characterization of the family of the
products of two such functions, the proof of this characterization is very long.
Therefore we adjourn the proof of this theorem to another section. First we
will prove several auxiliary lemmas used in the proof of the implication ii)⇒ i).

Remark. If f ∈ S2, then there exist g, h ∈ S1 such that f = g + h on R, and
we can require that U1(f) ⊂ U0(g) and U0(f) ⊂ U0(h). (Cf. [2, Proposition 8]
and its proof.) The main difficulty in the proof of our main theorem is that
in general, if f can be expressed as the product of two S1 functions, then we
cannot require that either factor is continuous on U0(f).
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Example. Define f : R→ R by the formula:

f(x)
df
=

{
(−2)n if x = n−1 for some n ∈ N \ {0},
1 otherwise.

Then f can be written as the product of two S1 functions. However, if f = g0g1
and g0, g1 ∈ S1, then U0(f) 6⊂ U0(g0).

Proof. Indeed, 0 is the only element of R \ U1(f), and since f = f(0)
on U0(f), condition (2.2) is fulfilled. To prove condition (2.1), notice that
0 is the only accumulation point of R \ U0(f) and 0 /∈ U1(f). So by Theo-
rem 2.1, there exist g, h ∈ S1 such that f = gh on R.

Now let f = g0g1, where g0, g1 ∈ S1. Observe that 0 /∈ U0(g0) ∪ U0(g1),
since otherwise we would obtain 0 ∈ U1(f), which is not the case.

Since f(0) = 1, we may assume that g0(0) = g1(0) = 1 as well. There is a
δ > 0 such that

0 < g0 < 2 on (0, δ) \ U0(g0), 0 < g1 < 2 on (0, δ) \ U0(g1). (2.3)

Fix an odd integer n > 1/δ. Put x
df
= n−1 and z

df
= (n+ 1)−1. Then f(x) < 0,

so gi(x) < 0 for some i ∈ {0, 1}. From (2.3) we conclude that x ∈ U0(gi). Let

C be the connected component of U0(gi) to which x belongs, and let t
df
= inf C.

Notice that gi < 0 on (t, x] since gi(x) < 0 and gi 6= 0 on R.
If t < z, then gi(z) < 0, so g1−i(z) = f(z)/gi(z) < 0. By (2.3), we obtain

z ∈ U0(g1−i). Hence z ∈ U0(gi) ∩ U0(g1−i) ⊂ U0(f), a contradiction.
If t = z, then by (2.3), 0 < gi(z) < 2. (Recall that t /∈ U0(gi).) Hence

g1−i(z) > 0. Since g1−i = f/gi < 0 on (t, x], we obtain z /∈ U0(g1−i). Us-
ing (2.3) once more, we get g1−i(z) < 2. Consequently,

2n+1 = f(z) = gi(z)g1−i(z) < 2 · 2 = 4,

a contradiction.
So, t > z. Then t ∈ U0(f)\U0(gi). Since f is continuous in a neighborhood

of t, we conclude that t /∈ U0(g1−i).

We would like to state several open problems.

• Given an integer n > 2, characterize products of n functions from S1.

• Given nonzero ordinals α, β < ω1, characterize products of functions
g ∈ Sα and h ∈ Sβ .

• Characterize products of real Baire one double star functions defined on
some topological space different from R. (See [1] for the definition.)
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3 The lemmas

Throughout this section we assume that the assumptions listed in Theo-
rem 2.1.ii) are fulfilled. For brevity, for each interval J and each x ∈ R,
we define

w(x, J)
df
= sup

{
%
(
f(x), f

[
[f · f(x) > 0] ∩ cl I

])
; I ∈ I, I ⊂ [f · f(x) > 0] ∩ J

}
.

(If J contains no interval I ∈ I such that I ⊂ [f · f(x) > 0], then we define

w(x, J)
df
= 0.) With this notation, (2.2) becomes

(∀ε > 0)(∃δ > 0) w(x, (x− δ, x+ δ)) < ε.

We start with the construction on an interval disjoint from
⋃
I.

Lemma 3.1. Assume that S = (a, b) ⊂ U1(f) \
⋃
I and a, b ∈ R \U0(f). For

each z 6= 0, there are functions ϕ,ψ : clS → R such that f = ϕψ on clS, ϕ is
continuous on clS ∩ U1(f) and ψ = z on (clS \ U0(ψ)) ∪ bdS.

Proof. Arrange all connected components of the set S ∩U0(f) in a sequence
〈Sn ; n < ξ〉, where ξ ≤ ω0. For each n < ξ, we have Sn /∈ I. So, we can
construct a piecewise linear continuous function ϕn : clSn → R such that
ϕn = f/z on bdSn, [ϕn = 0] ⊂ [f = 0], and∣∣∣ϕn − f(inf Sn)

z

∣∣∣ < ∣∣∣f(supSn)− f(inf Sn)

z

∣∣∣+
1

n+ 1
on Sn.

Define

ϕ(x)
df
=

{
ϕn(x) if x ∈ Sn, n ∈ N,

f(x)/z if x ∈ clS \ U0(f),

ψ(x)
df
=

{
f(x)/ϕ(x) if x ∈ U0(f) \ [ϕ = 0],

z if x ∈ (clS \ U0(f)) ∪ [ϕ = 0].

Take any sequence (xk) ⊂ clS convergent to some x ∈ clS ∩ U1(f) such that
ϕ(xk)→ y ∈ [−∞,∞]. Since U1(f) is open, we may assume (xk) ⊂ U1(f). If

there is a subsequence (xks) ⊂ Ũ1(f), then x ∈ Ũ1(f) as well, and using the

continuity of f�Ũ1(f) we conclude that

y = lim
s→∞

ϕ(xks) = lim
s→∞

f(xks)/z = f(x)/z = ϕ(x).

So, assume that (xk) ⊂ clS ∩ U0(f). For each k, choose an nk < ξ such that
xk ∈ Snk

. (We can find such nk because bdS ∩ U0(f) = ∅.) If there is an
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n < ξ such that xk ∈ Sn for infinitely many k, then y = ϕ(x) by the continuity
of ϕn = ϕ�Sn on the interval clSn. In the opposite case nk → ∞, whence
x = limk→∞ inf Snk

= limk→∞ supSnk
. Since inf Snk

, supSnk
∈ Ũ1(f) for

sufficiently big k, we conclude that x ∈ Ũ1(f) as well, and using the continuity

of f�Ũ1(f), we obtain

|y − ϕ(x)| ≤ lim
k→∞

|ϕ(xk)− ϕ(inf Snk
)|+ lim

k→∞
|ϕ(inf Snk

)− ϕ(x)|

≤ lim
k→∞

( ∣∣∣f(supSnk
)− f(inf Snk

)

z

∣∣∣+
1

nk + 1

)
= 0.

We have proved that ϕ is continuous on clS ∩ U1(f). Clearly the remaining
requirements are also fulfilled.

Next we turn to intervals in which there is no accumulation point of the
set
⋃
I∈I bd I.

Lemma 3.2. Assume that L = (a, b] ⊂ U1(f), a ∈ [f 6= 0]\U1(f), b ∈ Ũ1(f),
and

L ∩
(⋃

I∈I bd I
)′

= ∅. (3.1)

For each ε > 0, there are functions g, h : clL→ R such that

• f = gh on clL,

• h(a) = h(b) =
√
|f(a)|,

• g� clL \ U0(g) and h� clL \ U0(h) are continuous,

• |g − g(a)| ≤ w(a, L)/
√
|f(a)|+ ε on clL \ U0(g),

• |h− h(a)| ≤ w(a, L)/
√
|f(a)|+ ε on clL \ U0(h).

Proof. Put z
df
=
√
|f(a)| and z′

df
= z · sgn f(a). Using (3.1) we conclude that

we can arrange all elements of {b} ∪
(
L ∩

⋃
I∈I bd I

)
in a strictly decreasing

sequence 〈bn ; n < ξ〉, where ξ ≤ ω0; if ξ < ω0, then put bξ
df
= a. Notice that

• if ξ = ω0, then bn → a by (3.1),

• if f(bn) = 0 for some n < ξ + 1, then n = 0 and bn = b.

For each n < ξ, put Sn
df
= (bn+1, bn). Observe that if Sn /∈ I, then

• either bn+1 = a or bn+1 = sup I for some I ∈ I,
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• either bn = b or bn = inf I for some I ∈ I.

If Sn ∈ I, then

• if Sn ⊂ [f · f(a) < 0], then choose arbitrary dn ∈ Sn,

• if Sn ⊂ [f · f(a) > 0], then choose a dn ∈ clSn such that f(dn)f(a) > 0
and

|f(dn)− f(a)| < w(a, (a, bn)) +
zε

n+ 1
.

For each n < ξ, put Sn
df
= (bn+1, bn). Put S−1

df
= {b}, g−1(b)

df
= f(b)/z, and

h−1(b)
df
= z. By induction on n < ξ we will define functions gn, hn : clSn → R

such that:

f = gnhn on clSn, (3.2)

gn(bn+1) = z′ or hn(bn+1) = z, (3.3)

hn(bn) = hn−1(bn) (whence also gn(bn) = gn−1(bn)), (3.4)

gn� clSn \ U0(gn) and hn� clSn \ U0(hn) are continuous, (3.5)

|gn − z′| ≤ w(a, (a, bn))/z + ε/(n+ 1) on clSn \ U0(gn), (3.6)

|hn − z| ≤ w(a, (a, bn))/z + ε/(n+ 1) on clSn \ U0(hn). (3.7)

Assume that for some n < ξ we have already defined the functions gn−1 and
hn−1 on clSn−1 according to the induction hypothesis. We consider several
cases.

Case 1. hn−1(bn) = z.

Case 1.a) Sn ∩
⋃
I = ∅.

Recall that bdSn ⊂ bdL ∪
⋃
I∈I bd I ⊂ R \ U0(f). Use Lemma 3.1 to

construct functions gn, hn : clSn → R such that f = gnhn on clSn, gn is
continuous on clSn∩U1(f) and hn = z on (clSn\U0(hn))∪bdSn. Then clearly
(3.2)–(3.4) and (3.7) are fulfilled. Notice that if clSn \ U0(gn) 6= ∅, then the
only element of this set is bn+1 = a (so (3.5) holds) and gn(a) = f(a)/z = z′,
so (3.6) holds as well.

Case 1.b) Sn ∈ I and Sn ⊂ [f · f(a) < 0].
Define

hn(x)
df
=


f(bn+1)/z′ if x = bn+1,

f(x) · z/f(bn) if x ∈ [dn, bn],

linearly in the interval [bn+1, dn].

Then hn is continuous on clSn \ {bn}. Observe that since Sn ∈ I,
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Figure 1: The graphs of gn and hn in Case 1.b):
hn−1(bn) = z, Sn ∈ I, and Sn ⊂ [f · f(a) < 0].

case f(a) > 0
case f(bn) > 0 case f(bn) < 0

bndnbn+1

y = gn(x)

bndnbn+1

y = gn(x)

bndnbn+1

y = hn(x)

bndnbn+1

y = hn(x)

case f(a) < 0
case f(bn) > 0 case f(bn) < 0

bndnbn+1

y = gn(x)

bndnbn+1

y = gn(x)

bndnbn+1

y = hn(x)

bndnbn+1

y = hn(x)
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f(bn+1)

z′
· f(dn)z

f(bn)
= f(dn)f(a) · f(bn)f(bn+1)

z′2(f(bn))2
> 0.

So, hn 6= 0 on clSn, and we can define gn
df
= f/hn. Notice that gn is continuous

on clSn \ {bn+1} and gn(bn+1) = z′.

Case 1.c) Sn ∈ I and Sn ⊂ [f · f(a) > 0].
Define

gn(x)
df
=


f(bn+1)/z if x ∈ [bn+1, dn),

f(dn)/z if x = dn,

f(bn)/z if x ∈ (dn, bn],

hn
df
= f/gn.

Then gn is continuous except at dn (which may happen to be an end point
of Sn), and

|gn(dn)− z′| =
∣∣∣ f(dn)

z
− z′

∣∣∣ =
|f(dn)− f(a)|

z
<

w(a, (a, bn))

z
+

ε

n+ 1
.

On the other hand, hn is continuous except at bn+1, dn, and bn, and hn takes
on the value z at these points; in particular, hn(bn+1) = z.

Case 2. hn−1(bn) 6= z. Then gn−1(bn) = z′, so hn−1(bn) = f(bn)/z′.

Case 2.a) Sn ∩
⋃
I = ∅.

Recall that bdSn ⊂ bdL ∪
⋃
I∈I bd I ⊂ R \ U0(f). Use Lemma 3.1 to

construct functions gn, hn : clSn → R such that f = gnhn on clSn, hn is
continuous on clSn∩U1(f) and gn = z′ on (clSn\U0(gn))∪bdSn. Then clearly
(3.2)–(3.4) and (3.6) are fulfilled. Notice that if clSn \ U0(hn) 6= ∅, then the
only element of this set is bn+1 = a (so (3.5) holds) and hn(a) = f(a)/z′ = z,
so (3.7) holds as well.

Case 2.b) Sn ∈ I and Sn ⊂ [f · f(a) < 0].
Define

gn(x)
df
=


f(bn+1)/z if x = bn+1,

f(x) · z′/f(bn) if x ∈ [dn, bn],

linearly in the interval [bn+1, dn].

Then gn is continuous on clSn \ {bn}. Observe that since Sn ∈ I,

f(bn+1)

z
· f(dn)z′

f(bn)
= f(dn)f(a) · f(bn)f(bn+1)

z2(f(bn))2
> 0.

So, gn 6= 0 on clSn, and we can define hn
df
= f/gn. Notice that hn is continuous

on clSn \ {bn+1} and hn(bn+1) = z.
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Figure 2: The graphs of gn and hn in Case 1.c):
hn−1(bn) = z, Sn ∈ I, and Sn ⊂ [f · f(a) > 0].
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case f(bn) > 0 case f(bn) < 0
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y = gn(x)
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y = hn(x)

case f(a) < 0
case f(bn) > 0 case f(bn) < 0

bndnbn+1

y = gn(x)

bndnbn+1

y = gn(x)

bndnbn+1

y = hn(x)

bndnbn+1

y = hn(x)



278 Agnieszka  Lukasiewicz and Aleksander Maliszewski

Case 2.c) Sn ∈ I and Sn ⊂ [f · f(a) > 0].
Define

hn(x)
df
=


f(bn+1)/z′ if x ∈ [bn+1, dn),

f(dn)/z′ if x = dn,

f(bn)/z′ if x ∈ (dn, bn],

gn
df
= f/hn.

Then hn is continuous except at dn (which may happen to be an end point
of Sn), and

|hn(dn)− z| =
∣∣∣ f(dn)

z′
− z
∣∣∣ =
|f(dn)− f(a)|

|z′|
<

w(a, (a, bn))

z
+

ε

n+ 1
.

On the other hand, gn is continuous except at bn+1, dn, and bn, and gn takes
on the value z′ at these points; in particuar, gn(bn+1) = z′. This completes
the induction procedure.

To complete the proof define

g(x)
df
=

{
gn(x) if x ∈ clSn, n < ξ,

z′ if x = a,
h(x)

df
=

{
hn(x) if x ∈ clSn, n < ξ,

z if x = a.

Notice that if ξ < ω0, then a = bξ, and by (3.3), we get gξ−1(a) = z′ and
hξ−1(a) = z. So, the functions g and h are well-defined.

Evidently f = gh on clL. We have clL\U0(g) ⊂
⋃
n<ξ(clSn\U0(gn))∪{a}.

So by (3.5), we conclude that g� clL \U0(g) is continuous except, maybe, the
point a. However if ξ = ω0, then by (3.6) and (2.2), we obtain

lim
t→a,t∈clL\U0(g)

|g(t)− g(a)| ≤ lim
n→∞

(w(a, (a, bn))

z
+

ε

n+ 1

)
= 0.

Similarly we can prove that h� clL\U0(h) is continuous. Since for each n < ξ,
w(a, (a, bn)) ≤ w(a, L), the functions g and h fulfill also the other require-
ments.

Evidently a lemma analogous to Lemma 3.2, in which we assume that
a ∈ Ũ1(f) and b ∈ [f 6= 0] \ U1(f), is also true. (Consider the function
x 7→ f(−x) and the interval [−b,−a].) Using this result in conjunction with
Lemma 3.2, we obtain the next lemma.

Lemma 3.3. Assume that K = (a, b) is a bounded connected component

of U1(f) such that K ∩
(⋃

I∈I bd I
)′

= ∅ and f(a)f(b) > 0. For each ε > 0,
there are functions g, h : clK → R such that
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• f = gh on clK,

• h =
√
|f | on bdK,

• g� clK \ U0(g) and h� clK \ U0(h) are continuous,

• |g− g(a)| ≤ θw(a,K)/
√
|f(a)|+ (θ2 + θ− 2)

√
|f(a)|+ ε on clK \U0(g),

where
θ

df
= max

{√
f(a)/f(b),

√
f(b)/f(a)

}
≥ 1,

• |h− h(a)| ≤ θw(a,K)/
√
|f(a)|+ (θ2 + θ− 2)

√
|f(a)|+ ε on clK \U0(h).

Proof. If K ⊂ U0(f), then we can define g
df
=
√
|f | · (sgn ◦f) and h

df
=
√
|f |.

In the opposite case take any c ∈ K ∩ Ũ1(f) and use Lemma 3.2 or its

analogue to define functions ḡ, h̄ : [a, c]→ R and ĝ, ĥ : [c, b]→ R such that

• f = ḡh̄ on [a, c], f = ĝĥ on [c, b],

• h̄(a) = h̄(c) =
√
|f(a)|, ĥ(c) = ĥ(b) =

√
|f(b)|,

• ḡ�[a, c] \ U0(ḡ), h̄�[a, c] \ U0(h̄), ĝ�[c, b] \ U0(ĝ), and ĥ�[c, b] \ U0(ĥ) are
continuous,

• |ḡ − ḡ(a)| ≤ w(a, (a, c])/
√
|f(a)|+ ε/θ on [a, c] \ U0(ḡ),

• |h̄− h̄(a)| ≤ w(a, (a, c])/
√
|f(a)|+ ε/θ on [a, c] \ U0(h̄),

• |ĝ − ĝ(b)| ≤ w(b, [c, b))/
√
|f(b)|+ ε on [c, b] \ U0(ĝ),

• |ĥ− ĥ(b)| ≤ w(b, [c, b))/
√
|f(b)|+ ε on [c, b] \ U0(ĥ).

Let ϕ : [a, c]→ [1/θ, θ] be the linear function such that

ϕ(a) = 1, ϕ(c) = ĥ(c)/h̄(c) =
√
f(b)/f(a).

Observe that then for each x ∈ [a, c],

θ − 1 ≥ 1

ϕ(x)
− 1 ≥ 1

θ
− 1 =

1− θ
θ
≥ 1− θ,

so |1/ϕ(x)− 1| ≤ θ − 1.

Define

g(x)
df
=

{
ḡ(x)/ϕ(x) if x ∈ [a, c],

ĝ(x) if x ∈ [c, b],
h(x)

df
=

{
h̄(x) · ϕ(x) if x ∈ [a, c],

ĥ(x) if x ∈ [c, b].
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Then g and h are well-defined. Clearly f = gh on clK, h =
√
|f | on bdK,

and g� clK \ U0(g) and h� clK \ U0(h) are continuous.

Fix an x ∈ clK \ U0(g). If x ∈ [a, c] \ U0(g), then

|g(x)− g(a)| ≤ |ḡ(x)− ḡ(a)|
ϕ(x)

+
∣∣∣ 1

ϕ(x)
− 1
∣∣∣|g(a)|

≤ θw(a, (a, c])√
|f(a)|

+ ε+ (θ − 1)
√
|f(a)|

≤ θw(a,K)√
|f(a)|

+ (θ2 + θ − 2)
√
|f(a)|+ ε.

(Notice that ḡ(a) = g(a).) If x ∈ [c, b] \ U0(g), then

|g(x)− g(a)| ≤ |ĝ(x)− ĝ(b)|+ |g(b)− g(a)|

≤ w(b, [c, b))√
|f(b)|

+ ε+ (θ − 1)
√
|f(a)|

≤ w(a,K) + |f(b)− f(a)|√
|f(b)|

+ (θ − 1)
√
|f(a)|+ ε

≤ θw(a,K)√
|f(a)|

+ (θ2 − 1)
√
|f(a)|+ (θ − 1)

√
|f(a)|+ ε

=
θw(a,K)√
|f(a)|

+ (θ2 + θ − 2)
√
|f(a)|+ ε.

Similarly we can show that for each x ∈ clK \ U0(h),

|h(x)− h(a)| ≤ θw(a,K)√
|f(a)|

+ (θ2 + θ − 2)
√
|f(a)|+ ε.

The next two lemmas allow us to change a bit the constructed functions.
Lemma 3.4 enables joining constructed functions, while Lemma 3.5 helps us
diminish the maximal values taken by each of the constructed functions on its
set of points of discontinuity.

Lemma 3.4. Assume g, h : [c, d] → R are continuous. There are continuous

functions ḡ, h̄, ĝ, ĥ : [c, d] → R such that ḡh̄ = ĝĥ = gh on [c, d], ḡ(c) = g(c),

h̄(c) = h(c), |ḡ(d)| = 1, |ĝ(c)| = 1, ĝ(d) = g(d), and ĥ(d) = h(d).

Proof. If g(e) 6= 0 for some e ∈ [c, d), then define

ḡ(x)
df
=


g(x) if x ∈ [c, e],

sgn g(e) if x = d,

linearly in [e, d],

h̄(x)
df
=

h(x) if x ∈ [c, e],
g(x)h(x)

ḡ(x)
if x ∈ [e, d].
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In the opposite case notice that g = 0 on [c, d]. Take any e ∈ (c, d) and define

ḡ(x)
df
=


0 if x ∈ [c, e],

1 if x = d,

linearly in [e, d],

h̄(x)
df
=


h(c) if x = c,

0 if x ∈ [e, d],

linearly in [c, e].

Clearly in both cases the functions ḡ and h̄ fulfill the claimed conditions.

Analogously we can construct the functions ĝ and ĥ.

Lemma 3.5. Assume that L = (a, b) ⊂ U1(f) is bounded and bdL ⊂ U0(f).
For each ε > 0, there is a continuous function g : clL → (0,∞) such that
g = 1 on bdL and |f/g| ≤ ε on L \ U0(f).

Proof. Notice that C
df
= [a, b] \ U0(f) ⊂ L is compact. So, since C ⊂ Ũ1(f),

the restriction f�C is continuous and bounded. Put

a′
df
= minC > a, b′

df
= maxC < b, T

df
= max |f |[C].

Define

g(x)
df
=


1 if x ∈ bdL,

T/ε if x ∈ [a′, b′],

linearly in the intervals [a, a′] and [b′, b].

Clearly g has all required properties.

Now we turn to arbitrary connected components of U1(f).

Lemma 3.6. Assume that J is a connected component of U1(f) (J need not
be bounded). For each ε > 0, there are functions g, h : cl J → R such that

• f = gh on cl J ,

• |g| = |h| =
√
|f | on bd J ,

• g� cl J \ U0(g) and h� cl J \ U0(h) are continuous,

• |g| ≤
√

sup |f |[bd J ] + ε on J \ U0(g),

• |h| ≤
√

sup |f |[bdJ ] + ε on J \ U0(h).

Proof. Put a
df
= inf J and b

df
= sup J . We consider several cases.

Case 1. (J ∩ Ũ1(f))′ ∩ bd J ⊂ [f = 0].
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Choose a strictly increasing sequence (az)z∈Z ⊂ J∩U0(f) with limit points
a and b. For each z ∈ Z, use Lemma 3.5 to define a continuous function
gz : [az, az+1]→ (0,∞) such that

gz = 1 on {az, az+1}, |f/gz| ≤
ε

|z|+ 1
on (az, az+1) \ U0(f).

Define

g(x)
df
=

{√
|f(x)| · sgn f(x) if x ∈ bd J ,

gz(x), if x ∈ [az, az+1], z ∈ Z,

h(x)
df
=

{√
|f(x)|, if x ∈ bd J .

f(x)/g(x) otherwise.

Then evidently f = gh on cl J , |g| = |h| =
√
|f | on bdJ , and g�J is continuous.

Clearly J ∩ U0(h) = J ∩ U0(f). Since

J \ U0(h) =
⋃
n∈Z

(
[az, az+1] \ U0(h)

)
,

h�J \U0(h) is continuous. If x ∈ bd J ∩ (J ∩ Ũ1(f))′, then using the properties
of gz, we obtain

lim
t→x,t∈J\U0(h)

|h(t)| ≤ lim
z→±∞

ε

|z|+ 1
= 0 = h(x).

Finally if x ∈ bd J \ (J ∩ Ũ1(f))′, then x is isolated in cl J \ U0(h). Clearly
the other requirements of our lemma are also fulfilled.

Case 2. a ∈ [f 6= 0] ∩ (J ∩ Ũ1(f))′ and b /∈ (J ∩ Ũ1(f))′ or b ∈ [f = 0].
Recall that a /∈ U1(f). Using (2.1) and (2.2) we can find a δ > 0 such that

(a, a+ δ) ∩
(⋃

I∈I bd I
)′

= ∅, w(a, (a, a+ δ)) < ε
√
|f(a)|/2.

By our assumption, there is a b′ ∈ (a, a + δ) \ U0(f). Use Lemma 3.2 to
construct functions ḡ, h̄ : [a, b′]→ R such that

• f = ḡh̄ on [a, b′],

• h̄(a) = h̄(b′) =
√
|f(a)|,

• ḡ�[a, b′] \ U0(ḡ) and h̄�[a, b′] \ U0(h̄) are continuous,

• |ḡ − ḡ(a)| ≤ ε on [a, b′] \ U0(ḡ),
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• |h̄− h̄(a)| ≤ ε on [a, b′] \ U0(h̄).

Since ḡ and h̄ are Baire one star functions, we can find a closed interval

[c, d] ⊂ (a, b′) ∩ U0(ḡ) ∩ U0(h̄).

From Lemma 3.4 we conclude that we may assume |ḡ(d)| = 1.

Take a sequence (bn) ⊂ J∩U0(f) such that b0 = d and bn ↗ b. For each n,
use Lemma 3.5 to construct a continuous function gn : [bn, bn+1]→ (0,∞) such
that gn(bn) = gn(bn+1) = 1 and |f/gn| ≤ ε/(n+ 1) on (bn, bn+1) \ U0(f).

Define

g(x)
df
=


ḡ(d) · ḡ(x) if x ∈ [a, d],

gn(x) if x ∈ [bn, bn+1], n ∈ N,√
|f(x)| · sgn f(x) if x = b ∈ R,

h(x)
df
=


ḡ(d) · h̄(x) if x ∈ [a, d],

f(x)/gn(x) if x ∈ [bn, bn+1], n ∈ N,√
|f(x)| if x = b ∈ R.

Then clearly f = gh on cl J , |g| = |h| =
√
|f | on bd J , and g�[a, c] \ U0(g),

h�[a, c]\U0(h), g�[c, b), and h�[c, b)\U0(h) are continuous. Similarly to Case 1
we can prove that if b ∈ R, then g� cl J\U0(g) and h� cl J\U0(h) are continuous
at b. The other two requirements of our lemma are evident.

Case 3. b ∈ [f 6= 0] ∩ (J ∩ Ũ1(f))′ and a /∈ (J ∩ Ũ1(f))′ or a ∈ [f = 0].
We proceed analogously to Case 2, using an analog of Lemma 3.2.

Case 4. a, b ∈ [f 6= 0] ∩ (J ∩ Ũ1(f))′.

Choose b′, a′ ∈ J ∩ Ũ1(f) such that b′ < a′ and

(a, b′) ∩
(⋃

I∈I bd I
)′

= ∅, w(a, (a, b′)) < ε
√
|f(a)|/2,

(a′, b) ∩
(⋃

I∈I bd I
)′

= ∅, w(b, (a′, b)) < ε
√
|f(b)|/2.

Proceeding similarly to Case 2, we can construct functions ḡ, h̄ : [a, b′] → R
and ĝ, ĥ : [a′, b]→ R such that

• f = ḡh̄ on [a, b′],

• h̄(a) = h̄(b′) =
√
|f(a)|,

• ḡ�[a, b′] \ U0(ḡ) and h̄�[a, b′] \ U0(h̄) are continuous,

• |ḡ − ḡ(a)| ≤ ε on [a, b′] \ U0(ḡ),
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• |h̄− h̄(a)| ≤ ε on [a, b′] \ U0(h̄),

• f = ĝĥ on [a′, b],

• ĥ(a′) = ĥ(b) =
√
|f(b)|,

• ĝ�[a′, b] \ U0(ĝ) and ĥ�[a′, b] \ U0(ĥ) are continuous,

• |ĝ − ĝ(b)| ≤ ε on [a′, b] \ U0(ĝ),

• |ĥ− ĥ(b)| ≤ ε on [a′, b] \ U0(ĥ).

Take any closed intervals

[c′, d] ⊂ (a, b′) ∩ U0(ḡ) ∩ U0(h̄), [c, d′] ⊂ (a′, b) ∩ U0(ĝ) ∩ U0(ĥ).

From Lemma 3.4 we conclude that we may assume |ḡ(d)| = |ĝ(c)| = 1. Use
Lemma 3.5 to construct a continuous function g̃ : [d, c] → (0,∞) such that
g̃(d) = g̃(c) = 1 and |f/g̃| ≤ ε on (d, c) \ U0(f). Define

g(x)
df
=


ḡ(d) · ḡ(x) if x ∈ [a, d],

g̃(x) if x ∈ [d, c],

ĝ(c) · ĝ(x) if x ∈ [c, b],

h(x)
df
=


ḡ(d) · h̄(x) if x ∈ [a, d],

f(x)/g̃(x) if x ∈ [d, c],

ĝ(c) · ĥ(x) if x ∈ [c, b].

It is easy to verify that the requirements of our lemma are fulfilled.

Before we state the next lemma, notice that since f ∈ S2, the restriction
of f to the closed set Ũ2(f) = R \ U1(f) is continuous. So, the set

F0
df
= [f = 0] ∩ Ũ2(f)

is closed. We will construct the functions g and h on connected components
of its complement. Lemma 3.7 is the key to the construction of functions g
and h on R.

Lemma 3.7. Assume that P is a connected component of R \ F0. For each
ε > 0, there are g, h : clP → R such that

• f = gh on P ,

• g = h = 0 on bdP ,

• g� clP \ U0(g) and h� clP \ U0(h) are continuous,

• |g| < 2
√

2
√

sup |f |[clP ∩ Ũ2(f)] + ε on P \ U0(g),
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• |h| < 2
√

2
√

sup |f |[clP ∩ Ũ2(f)] + ε on P \ U0(h).

Proof. Let J be the family of all connected components of P ∩U1(f). Take
any M ∈ J and let J ′ be the family of all intervals J = (a, b) ∈ J which
satisfy at least one of the following conditions:

• J is unbounded,

• J = M ,

• J ∩
(⋃

I∈I bd I
)′ 6= ∅,

• f(a) = 0 or f(b)/f(a) /∈ (1/2, 2),

• w(a, J) ≥ |f(a)|.

(Notice that in particular, if J ∈ J and bd J ∩ bdP 6= ∅, then J ∈ J ′, since
bdP ⊂ [f = 0].) Define

F
df
=
⋃
J∈J ′

bd J ∪ bdP ⊂ Ũ2(f).

In the rest of the proof, we will mark several parts as claims. We will use the
symbol C to denote the end of the proof of such a claim.

Claim 3.1. F ′ ⊂ bdP .

Indeed, take any one-to-one sequence (xk) ⊂ F convergent to some x ∈ R.

Then clearly x ∈ Ũ2(f). Without loss of generality, we may assume that for
each k ∈ N, there is an interval Jk ∈ J ′ such that xk ∈ bd Jk, and that the
sequence (Jk) is one-to-one.

Toward a contradiction, suppose that x /∈ bdP . Then f(x) 6= 0, since
x /∈ F0. By (2.1) and (2.2), there is a δ > 0 such that

(x− δ, x+ δ) ∩
(⋃

I∈I bd I
)′ ∩ U1(f) = ∅, (3.8)

w(x, (x− δ, x+ δ)) <
|f(x)|

3
. (3.9)

Recall that f�Ũ2(f) is continuous. So, we may assume that

(∀t ∈ Ũ2(f))
(
|t− x| ≤ δ ⇒ |f(t)− f(x)| < |f(x)|

3

)
. (3.10)

Since the sequence (Jk) is one-to-one and xk → x, there is a k ∈ N such that
Jk ⊂ P ∩ (x − δ, x + δ) and Jk 6= M . We will show that Jk /∈ J ′, which is a
contradiction.
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Clearly Jk is bounded, and by (3.8), Jk ∩
(⋃

I∈I bd I
)′

= ∅. Put a
df
= inf Jk

and b
df
= supJk. By (3.10), f(a)f(x) > 0 and f(b)f(x) > 0. Hence also

f(b)/f(a) > 0 and

1

2
=

2|f(x)|
3

/4|f(x)|
3

< f(b)/f(a) <
4|f(x)|

3

/2|f(x)|
3

= 2.

Moreover by (3.10) and (3.9),

w(a, Jk) ≤ |f(a)− f(x)|+ w(x, Jk) <
|f(x)|

3
+
|f(x)|

3
=

2|f(x)|
3

< |f(a)|.

It follows that Jk /∈ J ′, a contradiction which completes the proof of Claim 3.1.
C

Claim 3.2. If L ⊂ P is an open interval disjoint from
⋃
J ′, then f(t)f(u) > 0

for all t, u ∈ L ∩ Ũ2(f).

Toward a contradiction suppose there are t, u ∈ L ∩ Ũ2(f) with t < u
such that f(t)f(u) ≤ 0. Then t, u /∈ F0, whence f(t)f(un) < 0. Let, e.g.,

f(t) < 0 < f(u). (The other case is analogous.) Since f�Ũ2(f) is continuous,

the sets Ũ2(f) ∩ [f ≤ 0] and Ũ2(f) ∩ [f ≥ 0] are closed. Put

t′
df
= max

(
[t, u] ∩ Ũ2(f) ∩ [f ≤ 0]

)
,

u′
df
= min

(
[t′, u] ∩ Ũ2(f) ∩ [f ≥ 0]

)
.

Observe that f(t′) < 0 (because t′ ∈ Ũ2(f) \F0), whence t′ < u, and similarly

f(u′) > 0 and u′ > t′. Since (t′, u′) ∩ Ũ2(f) = ∅, we have (t′, u′) ∈ J . The
relation f(t′)f(u′) /∈ (1/2, 2) yields (t′, u′) ∈ J ′. But (t′, u′) ⊂ (t, u), contrary
to our assumption. C

Claim 3.3. If L ⊂ P is an open interval disjoint from
⋃
J ′ and u ∈ L∩Ũ2(f),

then |f(t)| sgn f(u) = f(t) for each t ∈ clL ∩ Ũ2(f).

Toward a contradiction suppose there is a t ∈ clL ∩ Ũ2(f) such that
|f(t)| sgn f(u) 6= f(t). Then sgn f(t) = − sgn f(u). (Notice that by Claim 3.2,
sgn f(u) 6= 0.) So by Claim 3.2, t /∈ L. Let, e.g., t = inf L. (The other case is

analogous.) Put z
df
= inf

(
(t, u]∩Ũ2(f)

)
. Since (t, u]∩Ũ2(f) ⊂ [f ·f(u) > 0] (cf.

Claim 3.2) and the restriction f�Ũ2(f) is continuous, f(z)f(u) ≥ 0, whence
z > t. It follows that (t, z) ∈ J ′, contrary to our assumption. C

Arrange all elements of J ′ in a sequence 〈Jm ; m < ξ0〉, where ξ0 ≤ ω0.
For each m < ξ0, use Lemma 3.6 to construct functions ḡm, h̄m : clJm → R
such that
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• f = ḡmh̄m on cl Jm,

• |ḡm| = |h̄m| =
√
|f | on bd Jm,

• ḡm� cl Jm \ U0(ḡm) and h̄m� cl Jm \ U0(h̄m) are continuous,

• |ḡm| ≤
√

sup |f |[bdJm] + ε/(m+ 2) on Jm \ U0(ḡm),

• |h̄m| ≤
√

sup |f |[bdJm] + ε/(m+ 2) on Jm \ U0(h̄m).

Similarly arrange all elements of J \J ′ in a sequence 〈Kp ; p < ξ1〉, where

ξ1 ≤ ω0. For each p < ξ1, define ap
df
= inf Kp and bp

df
= supKp, observe that

f(ap)f(bp) > 0 (cf. Claim 3.2), and use Lemma 3.3 to construct functions

ĝp, ĥp : clKp → R such that

• f = ĝpĥp on clKp,

• ĥp =
√
|f | on bdKp,

• ĝp� clKp \ U0(ĝp) and ĥp� clKp \ U0(ĥp) are continuous,

• |ĝp− ĝp(ap)| ≤ θpw(ap,Kp)/
√
|f(ap)|+ (θ2p + θp− 2)

√
|f(ap)|+ ε/(p+ 2)

on clKp \ U0(ĝp), where

θp
df
= max

{√
f(ap)/f(bp),

√
f(bp)/f(ap)

}
∈ [1,

√
2),

• |ĥp− ĥp(ap)| ≤ θpw(ap,Kp)/
√
|f(ap)|+ (θ2p + θp− 2)

√
|f(ap)|+ ε/(p+ 2)

on clKp \ U0(ĥp).

By induction on n ∈ N we will choose an interval Ln = (un, vn) ⊂ P and
define functions gn, hn : clLn → R so that:

• bdLn ⊂ F ,

• if n > 0 and inf P < un−1, then un < un−1,

• if n > 0 and supP > vn−1, then vn > vn−1,

• if n > 0, then gn� clLn−1 = gn−1 and hn� clLn−1 = hn−1,

• f = gnhn on clLn,

• |gn| = |hn| =
√
|f | on bdLn,
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• for each m < ξ0, if Jm ⊂ Ln, then

|gn(x)| = |ḡm(x)|, |hn(x)| = |h̄m(x)|

for all x ∈ cl Jm,

• for each m < ξ0, if Kp ⊂ Ln, then

|gn(x)| = |ĝp(x)|, |hn(x)| = |ĥp(x)|

for all x ∈ clKp,

• gn� clLn \ U0(gn) and hn� clLn \ U0(hn) are continuous.

First put L0
df
= M . For all x ∈ clL0, let g0(x)

df
= ḡ0(x) and h0(x)

df
= h̄0(x).

Then clearly the above conditions hold for n = 0.

Assume that for some n ∈ N we have already chosen the interval Ln and
defined the functions gn and hn according to the induction hypothesis. Put

un+1
df
=


inf Jm if un = sup Jm for some m < ξ0,

inf P if (inf P, un) ∩
⋃
J ′ = ∅,

sup
(
(inf P, un) ∩

⋃
J ′
)

otherwise,

vn+1
df
=


sup Jm if vn = inf Jm for some m < ξ0,

supP if (vn, supP ) ∩
⋃
J ′ = ∅,

inf
(
(vn, supP ) ∩

⋃
J ′
)

otherwise,

and let Ln+1
df
= (un+1, vn+1).

If inf P < un, then

• either un = supJm for some m < ξ0—then un+1 = inf Jm < un,

• or (inf P, un) ∩
⋃
J ′ = ∅—then un+1 = inf P < un,

• or neither of the above cases holds—then by Claim 3.1, there is anm < ξ0
such that un+1 = sup

(
(inf P, un) ∩

⋃
J ′
)

= sup Jm < un.

Notice that in all the above cases un+1 ∈ F . Similarly we can show that if
supP > vn, then vn+1 > vn and that vn+1 ∈ F . So, bdLn+1 ⊂ F .

For each x ∈ clLn, define gn+1(x)
df
= gn(x) and hn+1(x)

df
= hn(x). Next we

will define the functions gn+1 and hn+1 on cl(un+1, un). We may assume that
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inf P < un, since otherwise cl(un+1, un) = ∅. If un = sup Jm for some m < ξ0,
then notice that since un /∈ F0, we have f(un) 6= 0 and

τ
df
= sgnhn(un) · sgn h̄m(un) ∈ {−1, 1}.

Moreover:

τ ḡm(un) =
|hn(un)|
hn(un)

· h̄m(un)ḡm(un)

|h̄m(un)|
=

f(un)

hn(un)
= gn(un),

τ h̄m(un) = sgnhn(un) · |h̄m(un)| = sgnhn(un) · |hn(un)| = hn(un).

(Recall that |hn(un)| = |h̄m(un)| =
√
|f(un)|.) So, if we define

gn+1(x)
df
= τ ḡm(x), hn+1(x)

df
= τ h̄m(x)

for x ∈ cl(un+1, un) = clJm, then gn+1 and hn+1 are well-defined. Evidently

f = gn+1hn+1, |gn+1| = |ḡm|, |hn+1| = |h̄m| on cl Jm,

and
|gn+1(inf Ln+1)| = |hn+1(inf Ln+1)| =

√
|f(inf Ln+1)|.

By definition, gn+1� cl(un+1, vn) \U0(gn+1) and hn+1� cl(un+1, vn) \U0(hn+1)
are continuous.

Now assume that un /∈ {sup Jm ; m < ξ0}. Then either un+1 = inf P or
un+1 = sup Jm for some m < ξ0. For each x ∈ cl(un+1, un), define

gn+1(x)
df
= sgnhn(un) ·

{
ĝp(x) if x ∈ Kp ⊂ (un+1, un), p < ξ1,√
|f(x)| · sgn f(un) if x ∈ cl(un+1, un) \

⋃
J ,

hn+1(x)
df
= sgnhn(un) ·

{
ĥp(x) if x ∈ Kp ⊂ (un+1, un), p < ξ1,√
|f(x)| if x ∈ cl(un+1, un) \

⋃
J .

Since |gn(un)| = |hn(un)| =
√
|f(un)|,

sgnhn(un) ·
√
|f(un)| · sgn f(un) = sgn gn(un) · |gn(un)| = gn(un),

sgnhn(un) ·
√
|f(un)| = sgnhn(un) · |hn(un)| = hn(un).

It follows that the functions gn+1 and hn+1 are well-defined. By Claim 3.3,
f = gn+1hn+1 on cl(un+1, un). It is evident that if Kp ⊂ (un+1, un) for some

p < ξ1, then |gn+1| = |ĝp| and |hn+1| = |ĥp| on Kp, and that |gn+1(un+1)| =

|hn+1(un+1)| =
√
|f(un+1)|.
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Claim 3.4. gn+1� cl(un+1, vn) \ U0(gn+1) and hn+1� cl(un+1, vn) \ U0(hn+1)
are continuous.

Fix an x ∈ cl(un+1, vn) \ U0(gn+1). Let (xk) ⊂ cl(un+1, vn) \ U0(gn+1)
be any sequence convergent to x such that gn+1(xk) → y ∈ [−∞,∞]. We
consider several cases.

Case 1. If there is a subsequence (xks) ⊂ Ũ2(f) \ clLn, then x ∈ Ũ2(f) as

well. Using the continuity of f�Ũ2(f) we conclude that

y = lim
s→∞

gn+1(xks) = lim
s→∞

sgnhn(un) ·
√
|f(xks)| · sgn f(un)

= sgnhn(un) ·
√
|f(x)| · sgn f(un) = gn+1(x).

Case 2. If there is a subsequence (xks) ⊂ clLn, then by induction assump-
tion, y = lims→∞ gn(xks) = gn(x) = gn+1(x).

Case 3. If none of the above cases holds, then we may assume that for
each k ∈ N, there is a pk < ξ1 with xk ∈ Kpk .

Case 3.a) If pk →∞, then apk → x and bpk → x, whence x ∈ Ũ2(f). Using

the continuity of f�Ũ2(f), Case 1, and the properties of ĝp, we conclude that

|y − gn+1(x)| = lim
k→∞

|gn+1(xk)− gn+1(apk)| = lim
k→∞

|ĝpk(xk)− ĝpk(apk)|

≤ lim
k→∞

(θpkw(apk ,Kpk)√
|f(apk)|

+ (θ2pk + θpk − 2)
√
|f(apk)|+ ε

pk + 1

)
.

If f(x) = 0 (which is possible if x = inf P ), then since each Kpk /∈ J ′,

θpkw(apk ,Kpk)√
|f(apk)|

+ (θ2pk + θpk − 2)
√
|f(apk)|

≤
√

2 |f(apk)|√
|f(apk)|

+ (
√

2
2

+
√

2− 2)
√
|f(apk)| → 2

√
2 ·
√
|f(x)| = 0.

If f(x) 6= 0, then θpk → 1 (because f(apk) → f(x) and f(bpk) → f(x)).
For each k, let

δk
df
= max{|x− ak|, |x− bk|}.
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Since each Kpk /∈ J ′, by (2.2), we obtain

lim
k→∞

( θpkw(apk ,Kpk)√
|f(apk)|

+ (θ2pk + θpk − 2)
√
|f(apk)|

)
≤ lim
k→∞

√
w(apk ,Kpk) + (12 + 1− 2)

√
|f(x)|

≤ lim
k→∞

√
w(apk , (x− δk, x+ δk))

≤ lim
k→∞

√
|f(apk)− f(x)|+ w(x, (x− δk, x+ δk)) = 0.

Case 3.b) Now assume that pk 6→ ∞. There are a p < ξ1 and a subsequence
(xks) such that pks = p for each s. Since gn+1� clKp = sgnhn(un) · ĝp,

y = lim
s→∞

gn+1(xks) = sgnhn(un) lim
s→∞

ĝp(xks) = sgnhn(un) · ĝp(x) = gn+1(x).

In all cases we conclude that y = gn+1(x). So, gn+1� cl(un+1, vn)\U0(gn+1)
is continuous. Similarly we can prove that hn+1� cl(un+1, vn) \ U0(hn+1) is
continuous. C

Proceeding analogously we can define the functions gn+1 and hn+1 on
cl(vn, vn+1). This completes the induction procedure.

By Claim 3.1, un → inf P and vn → supP . Define

g(x)
df
=

{
gn(x) if x ∈ clLn, n ∈ N,

0 otherwise,
h(x)

df
=

{
hn(x) if x ∈ clLn, n ∈ N,

0 otherwise.

Then clearly f = gh on P and g = h = 0 on bdP .

Claim 3.5. The restrictions g� clP \U0(g) and h� clP \U0(h) are continuous.

By construction, the restrictions g�P \ U0(g) and h�P \ U0(h) are contin-
uous. If inf P ∈ R \

⋃
n∈N clLn, then take any sequence (xk) ⊂ P \ U0(g)

convergent to inf P . Fix an η > 0 and choose an n ∈ N so that

(inf P, un) ∩
⋃

m<2ε/η

Jm = (inf P, un) ∩
⋃

p<3ε/η

Kp = ∅,

|f | < η2/18 on (inf P, un) ∩ Ũ2(f).

(The latter can be required since f�Ũ2(f) is continuous and f(inf P ) = 0.)
Then for each p < ξ1, if Kp ⊂ (inf P, un), then since w(ap,Kp) < |f(ap)|,

w(ap,Kp)√
|f(ap)|

<
√
|f(ap)| <

η

3
√

2
.
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Hence if x ∈ (inf P, un) \U0(g), then by definition of g on Jm, Kp, and Ũ2(f),
respectively, we have

|g(x)| ≤ max
{

sup
{√

sup |f |[bdJm] +
ε

m+ 2
; m ≥ 2ε/η

}
,

sup
{√2 · w(ap,Kp)√

|f(ap)|
+ (
√

2
2

+
√

2− 2)
√
|f(ap)|+

ε

p+ 2
;

p ≥ 3ε/η,Kp ⊂ (inf P, un)
}
,√

sup |f |[(inf P, un) ∩ Ũ2(f)]
}
< η.

So, limt→inf P, t∈P\U0(g) g(t) = 0 = g(inf P ).

Analogously we can prove that

if supP ∈ R \
⋃
n∈N clLn, then limt→supP, t∈P\U0(g) g(t) = 0 = g(supP ),

and that limt→x, t∈P\U0(h) h(t) = 0 = h(x) for each x ∈ bdP . C

It is easy to verify that |g| < 2
√

2
√

sup |f |[clP ∩ Ũ2(f)] + ε on P \ U0(g)

and |h| < 2
√

2
√

sup |f |[clP ∩ Ũ2(f)] + ε on P \ U0(h).

4 Proof of Theorem 2.1

ii)⇒ i).
Arrange all connected components of R \ F0 in a sequence 〈Pn ; n < ξ〉,

where ξ ≤ ω0. For x ∈ F0, define g(x)
df
= 0 and h(x)

df
= 0. For each n < ξ, use

Lemma 3.7 to construct functions g and h on Pn so that

• f = gh on Pn,

• g� clPn \ U0(g) and h� clPn \ U0(h) are continuous,

• |g| < 2
√

2
√

sup |f |[clPn ∩ Ũ2(f)] + 1/(n+ 1) on Pn \ U0(g),

• |h| < 2
√

2
√

sup |f |[clPn ∩ Ũ2(f)] + 1/(n+ 1) on Pn \ U0(h).

Then clearly f = gh on R. We will prove that g, h ∈ S1, showing that the
restrictions g�R \ U0(g) and h�R \ U0(h) are continuous.

Take any sequence (xk) ⊂ R \ U0(g) convergent to some x ∈ R such that
g(xk) → y ∈ [−∞,∞]. If there is a subsequence (xks) ⊂ F0, then x ∈ F0 as
well and

y = lim
s→∞

g(xks) = 0 = g(x).
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So, assume that (xk) ⊂ R \ F0. For each k, choose an nk < ξ such that
xk ∈ Pnk

. If there is an n < ξ such that xk ∈ Pn for infinitely many k, then
x ∈ clPn and y = g(x) by continuity of g on clPn \ U0(g).

In the opposite case nk → ∞. For each k, choose a tk ∈ clPnk
∩ Ũ2(f)

such that
|g(xk)| < 2

√
2
√
|f(tk)|+ 1/(nk + 1).

Notice that in the present case x ∈ F0. Since tk → x and f�Ũ2(f) is continu-
ous,

|y| = lim
k→∞

|g(xk)| ≤ lim
k→∞

2
√

2
√
|f(tk)|+ lim

k→∞
1/(nk + 1) = 0 = g(x).

It follows that g is continuous at x. So, U1(g) = R and, by definition, g ∈ S1.
Analogously we can show that h ∈ S1.

i)⇒ ii).
Proceeding as in the proof of [2, Theorem 7], we can prove that f ∈ S2.
Fix an x ∈ [f 6= 0] \ U1(f). First we will prove that (2.1) holds.
Suppose toward a contradiction that there is a sequence

(xk) ⊂
(⋃

I∈I bd I
)′ ∩ U1(f)

convergent to x. Fix a k ∈ N.

Claim 4.1. xk ∈
(
[g = 0] \ U0(g)

)
∪
(
[h = 0] \ U0(h)

)
.

Indeed, since xk is an accumulation point of
⋃
I∈I bd I, there is a one-to-

one sequence (Ik,n) ⊂ I such that

xk = lim
n→∞

inf Ik,n = lim
n→∞

sup Ik,n.

We may assume that bd Ik,n ⊂ U1(f) (in fact, bd Ik,n ⊂ Ũ1(f)) for each n.
(Recall that xk ∈ U1(f).) Since Ik,n ∈ I, f(inf Ik,n)f(sup Ik,n) < 0. Using

the continuity of f�Ũ1(f) we conclude that

(f(xk))2 = lim
n→∞

f(inf Ik,n) · lim
n→∞

f(sup Ik,n) ≤ 0

and finally f(xk) = 0. So by assumption, g(xk) = 0 or h(xk) = 0. Without
loss of generality we may assume that the first case holds.

If xk /∈ U0(g), then we are done. So, assume that xk ∈ U0(g). Let
m ∈ N be such that for all n > m, we have cl Ik,n ⊂ U0(g); then since
cl Ik,n ⊂ [f 6= 0] ⊂ [g 6= 0], we obtain g(inf Ik,n)g(sup Ik,n) > 0.
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For all n > m, we have bd Ik,n ⊂ R \U0(f) ⊂ Ũ1(g)∪ Ũ1(h). Since h ∈ S1,

the set Ũ1(h) is closed. Hence xk = limn→∞ inf Ik,n ∈ Ũ1(h). Using the

continuity of h�Ũ1(h) and the definition of I, we conclude that

(h(xk))2 = lim
n→∞

(
h(inf Ik,n)h(sup Ik,n)

)
= lim
n→∞

f(inf Ik,n)f(sup Ik,n)

g(inf Ik,n)g(sup Ik,n)
≤ 0,

whence h(xk) = 0. C

By Claim 4.1, we may assume that there exists a subsequence (xks) such

that xks ∈ [g = 0]\U0(g) for each s. However this implies that x ∈ Ũ1(g) (since

Ũ1(g) is closed). Hence g(x) = lims→∞ g(xks) = 0 and f(x) = g(x)h(x) = 0,
a contradiction. This proves (2.1).

Now we will prove that (2.2) holds.
Fix an ε > 0. Since x /∈ U1(f) and g, h ∈ S1, we have x /∈ U0(g) ∪ U0(h).

Choose a δ > 0 such that(
∀t ∈ [x− δ, x+ δ] \ U0(g)

)
|g(t)− g(x)| < min

{ ε

3|h(x)|+ 1
, |g(x)|

}
, (4.1)(

∀t ∈ [x− δ, x+ δ] \ U0(h)
)
|h(t)− h(x)| < min

{ ε

3|g(x)|+ 1
, |h(x)|

}
. (4.2)

(We can find such a δ since g�R\U0(g) and h�R\U0(h) are continuous.) Take
I = (a, b) ∈ I such that I ⊂ [f · f(x) > 0] ∩ (x− δ, x+ δ). Assume that

f(a)f(x) < 0 < f(b)f(x). (4.3)

(The other case is analogous.) Since f(a)f(x) = g(a)g(x)h(a)h(x) < 0, we
may assume that g(a)g(x) < 0 and h(a)h(x) > 0. By (4.1), we have a ∈ U0(g).

Let C be the connected component of U0(g) to which a belongs, and let

c
df
= sup(C ∩ [a, b]). Clearly c > a. Notice that since [a, b] ⊂ [f 6= 0] ⊂ [g 6= 0],

we have [a, c) ⊂ [g · g(x) < 0].

Claim 4.2. c /∈ U0(g) ∪ U0(h).

First assume toward a contradiction that c ∈ U0(g). Then c = b. Hence
b /∈ U0(h) (otherwise b ∈ U0(f)). Since f(b) 6= 0, we have g(b)g(x) < 0 and
by (4.3),

h(b)h(x) =
f(b)f(x)

g(b)g(x)
< 0,

contrary to (4.2). So, c /∈ U0(g) and by (4.1), g(c)g(x) > 0.
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Since (a, c) ⊂ [f · f(x) > 0]∩ [g · g(x) < 0], we obtain (a, c) ⊂ [h ·h(x) < 0].
Notice that f(c)f(x) > 0: either by assumption (if c < b) or by (4.3) (if c = b).
So,

h(c)h(x) =
f(c)f(x)

g(c)g(x)
> 0,

whence c /∈ U0(h). C

By Claim 4.2, (4.1), and (4.2), we finally conclude that

%(f(x), f [cl I]) ≤ |f(x)− f(c)| = |g(x)h(x)− g(c)h(c)|
≤ |g(x)||h(x)− h(c)|+ |h(c)||g(x)− g(c)|

< |g(x)| ε

3|g(x)|+ 1
+ 2|h(x)| ε

3|h(x)|+ 1
< ε.
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