Zbigniew Grande, Institute of Mathematics, Pedagogical University, plac Weyssenhoffa 11, 85-072, Bydgoszcz, Poland e-mail: grande@wsp.bydgoszcz.pl

ON SEQUENCES OF MONOTONE FUNCTIONS

Abstract

Several kinds of convergence (including pointwise, monotone, a.c., uniform, ...) in the family of monotone functions are investigated.

Let \mathcal{R} denote the set of all reals. Observe that the limit f of a converging sequence of monotone functions $f_n: I \to \mathcal{R}$, where I is a nondegenerate interval, is a monotone function. Of course, there is a subsequence $(f_{n_k})_k$, where all functions f_{n_k} are decreasing or increasing and consequently, the function f is decreasing or respectively increasing as the limit of the subsequence $(f_{n_k})_k$.

Theorem 1. If $f:[a,b] \mapsto \mathcal{R}$ is an increasing function (i.e. nondecreasing) then there are continuous increasing functions $f_n:[a,b] \mapsto \mathcal{R}$, $n=1,2,\ldots$, such that $f_n(a)=f(a)$, $f_n(b)=f(b)$ for $n \geq 1$ and $\lim_{n\to\infty} f_n=f$.

PROOF. Fix a positive integer n and observe that the set

$$A = \left\{ x \in [a, b]; \operatorname{osc} f(x) \ge \frac{1}{n} \right\}$$

is empty or finite. We can assume that A is nonempty. Let

$$A = \{x_1, \dots, x_k\}, \quad x_1 < \dots < x_k.$$

There are closed intervals $I_i = [a_i, b_i], i \leq k$, such that

$$b_{i-1} < a_i < x_i < b_i < a_{i+1}$$
 for $i = 2, ..., k-1$;

if $a < x_1$ then $a < a_1 < x_1 < b_1$;

Mathematical Reviews subject classification: Primary: 26A15, 26A21, 26A48 Received by the editors January 18, 1998

 $^{\ \, \}text{Key Words: continuity, monotone functions, convergence, monotone convergence, transfinite convergence, variation} \,$

if
$$a = x_1$$
 then $a = a_1 = x_1 < b_1$;

if
$$x_k < b$$
 then $a_k < x_k < b_k < b$;

if
$$x_k = b$$
 then $a_k < x_k = b_k = b$;

$$b_i - a_i < \frac{1}{n}$$
 for $i \leq k$;

$$f(b_i) - f(a_i) < \operatorname{osc} f(x_i) + \frac{1}{n} \text{ for } i \le k.$$

Since osc $f(x) < \frac{1}{n}$ for each point $x \in [a, b] \setminus A$, there are points $c_{i,j} \in (b_{i-1}, a_i)$, $i = 2, \ldots, k, j \leq j(i)$, such that

$$b_{i-1} = c_{i,1} < c_{i,2} < \dots < c_{i,j(i)-1} < c_{i,j(i)} = a_i \text{ for } i = 2,\dots,k;$$

$$f(c_{i,j+1}) - f(c_{i,j}) < \frac{1}{n} \text{ for } i = 2,\dots,k.$$

Analogously, if $a < a_1$ $(b_k < b)$ there are points $c_{1,j}$, $j \le j(1)$, $(c_{k+1,j}, j \le j(k+1))$, such that

$$a = c_{1,1} < \dots < c_{1,j(1)} = a_1$$

$$(b_k = c_{k+1,1} < \dots < c_{k+1,j(k+1)} = b) \text{ for } j \le j(1) \quad (j \le j(k+1));$$

$$f(c_{1,j+1}) - f(c_{1,j}) < \frac{1}{n}$$

$$\left(f(c_{k+1,j+1}) - f(c_{k+1,j}) < \frac{1}{n}\right) \text{ for } j \le j(1) \quad (j \le j(k+1)).$$

Define on the interval [a, b] the following continuous increasing function

$$f_n(x) = \begin{cases} f(x) & \text{for} & x \in \{a, b, c_{i,j}\}, \ i \le k+1, \ j \le j(i) \\ f(x) & \text{for} & x = x_i, \ i \le k \\ \text{linear otherwise on} & [a, b]. \end{cases}$$

We will prove that $\lim_{n\to\infty} f_n = f$.

If $x \in \{a, b, x_i; i \le k\}$ then $f_n(x) = f(x)$. Moreover, if $x \in [c_{i,j}, c_{i,j+1}]$ then $|f_n(x) - f(x)| < \frac{1}{n}$. So, if

$$x \in [a, b] \land \operatorname{dist}(x, A) = \inf\{|u - x|; u \in A\} \ge \frac{1}{n}$$

then

$$|f_n(x) - f(x)| < \frac{1}{n}.$$

For each point $x \in [a, b]$ which is a discontinuity point of the function f there is a positive integer n such that $\operatorname{osc} f(x) > \frac{1}{n}$. Consequently, for every k > n we have $f_k(x) = f(x)$.

Now we suppose that $x \in [a, b]$ is a continuity point of the function f. Fix a positive real η and a positive integer n with $\frac{2}{n} < \eta$. Let

$$B = \left\{ x \in [a, b]; \operatorname{osc} f(x) \ge \frac{1}{n} \right\}.$$

Since $x \in [a, b] \setminus B$ and B is a closed set, there is a positive integer k > n with

$$\left(x - \frac{1}{k}, x + \frac{1}{k}\right) \cap B = \emptyset.$$

Fix an integer m > k. If

$$E = \left\{ y \in [a, b]; \operatorname{osc} f(y) \ge \frac{1}{m} \right\}$$

then

$$|f_m(x) - f(x)| < \frac{1}{m} < \eta$$

if dist $(x, E) \ge \frac{1}{m}$ and

$$|f_m(x) - f(x)| < \operatorname{osc} f(y) + \frac{1}{m} < \frac{1}{n} + \frac{1}{m} < \frac{2}{n} < \eta$$

for some $y \in E \setminus B$, if dist $(x, E) < \frac{1}{m}$. So, $\lim_{n \to \infty} f_n(x) = f(x)$ and the proof is completed.

It is well known that the limit of a decreasing (increasing) sequence of continuous functions is upper (lower) semicontinuous.

Theorem 2. If $f:[a,b] \mapsto \mathcal{R}$ is an upper semicontinuous increasing function then there are continuous increasing functions $f_n:[a,b]\mapsto \mathcal{R},\ n\geq 1$, such that $f_n \ge f_{n+1} > f$ for $n \ge 1$ and $f = \lim_{n \to \infty} f_n$.

In the proof of the above theorem we apply the following sandwich lemma:

Lemma 1. Let $f:[a,b] \mapsto \mathcal{R}$ be an upper semicontinuous increasing (decreasing) function and let $g:[a,b] \mapsto \mathcal{R}$ be a continuous function such that f(x) < g(x) for each $x \in [a,b]$. Then there is a continuous increasing (decreasing) function $h : [a, b] \mapsto \mathcal{R}$ such that f(x) < h(x) < g(x) for all $x \in [a, b]$.

PROOF OF LEMMA 1. We suppose that the function f is increasing. The proof for a decreasing function f is analogous. From the upper semicontinuity of f follows that f is continuous from the right hand. Let

$$r = \inf \{g(x) - f(x); x \in [a, b]\}.$$

Since the function g-f is positive and lower semicontinuous, the real r is positive. Define the set

$$A = \left\{ x \in [a, b]; \operatorname{osc} f(x) \ge \frac{r}{5} \right\}$$

and we observe that it is empty or finite. We can assume that A is nonempty. Let

$$A = \{x_1, \dots, x_k\}, \quad x_1 < \dots < x_k.$$

There are closed intervals $I_i = [a_i, x_i], i \leq k$, such that

$$a < a_i < x_i < a_{i+1} < x_{i+1} \le b \text{ for } i = 1, \dots, k-1;$$

 $f(x_i) - f(a_i) < \operatorname{osc} f(x_i) + \frac{r}{5} \text{ for } i \le k;$
 $|g(x) - g(x_i)| < \frac{r}{5} \text{ for } x \in I_i, i \le k.$

Let $x_0 = a$. Since $\operatorname{osc} f(x) < \frac{r}{5}$ for each point $x \in [a, b] \setminus A$, there are points $c_{i,j} \in [x_{i-1}, a_i], i = 1, \ldots, k, j \leq j(i)$, such that

$$x_{i-1} = c_{i,1} < c_{i,2} < \dots < c_{i,j(i)-1} < c_{i,j(i)} = a_i \text{ for } i = 1,\dots,k;$$

 $f(c_{i,j+1}) - f(c_{i,j}) < \frac{r}{5} \text{ for } i = 1,\dots,k \text{ and } j \le j(i) - 1.$

Analogously, if $x_k < b$ there are points $c_{k+1,j}$, $j \leq j(k+1)$, such that

$$x_k = c_{k+1,1} < \dots < c_{k+1,j(k+1)} = b;$$

 $f(c_{k+1,j+1}) - f(c_{k+1,j}) < \frac{r}{5} \text{ for } j < j(k+1).$

Define on the interval [a, b] a continuous increasing function in the following wav:

$$g_1(x) = \begin{cases} f(x) & \text{for} & x \in \{a, b, c_{i,j}\}, \ i \le k+1, \ j \le j(i) \\ f(x) & \text{for} & x = x_i, \ i \le k \\ \text{linear otherwise on} \ [a, b]. \end{cases}$$

If $x \in \{a, b, x_i; i \le k\}$ then $g_1(x) = f(x)$. Moreover, if $x \in [c_{i,j}, c_{i,j+1}]$ then $|g_1(x) - f(x)| < \frac{r}{5}$. Let

$$h(x) = g_1(x) + \frac{r}{4}, \quad x \in [a, b].$$

Then h is a continuous increasing function and for

$$x \in [a, b] \setminus \bigcup_{i \le k} I_i$$

the inequalities

$$f(x) < g_1(x) + \frac{r}{5} < h(x) < f(x) + r \le g(x)$$

are true. If $x \in I_i$ for some $i \leq k$ then

$$f(x) \le f(x_i) = f(a_i) + \frac{r}{5} < g_1(a_i) + \frac{r}{4} = h(a_i) \le h(x)$$
$$= f(x_i) + \frac{r}{4} \le g(x_i) - r + \frac{r}{4} < g(x_i) - \frac{r}{5} < g(x).$$

So, the function h satisfies to all requirements.

PROOF OF THEOREM 2. Since the function f is upper semicontinuous, there are continuous functions $g_n : [a, b] \mapsto \mathcal{R}$ such that

$$f(x) < g_{n+1}(x) < g_n(x), x \in [a, b], n \ge 1,$$

and $f = \lim_{n \to \infty} g_n$ ([1]).

By Lemma 1 there is a continuous increasing function $f_1:[a,b] \mapsto \mathcal{R}$ with $f < f_1 < g_1$. Let $h_2 = \min(f_1, g_2)$. By Lemma 2 there is a continuous increasing function $f_2:[a,b] \mapsto \mathcal{R}$ with $f < f_2 < h_2 = \min(f_1, g_2)$. Next by induction, for each positive integer n > 2 there is a continuous increasing function $f_n:[a,b] \mapsto \mathcal{R}$ with $f < f_n < \min(f_{n-1},g_n)$. Consequently, the sequence $(f_n)_n$ satisfies all requirements and the proof is completed.

Remark 1. If the function f is upper semicontinuous and increasing (decreasing) then there are continuous increasing (decreasing) functions $g_n : [a,b] \mapsto \mathcal{R}$ such that $g_n(a) = f(a)$, $g_n(b) = f(b)$, $g_n \geq g_{n+1}$ for $n \geq 1$ and $\lim_{n \to \infty} g_n = f$.

Without loss of the generality we can suppose that

$$b = u = \inf \big\{ x \in [a,b]; f(x) = f(b) \big\}$$

and

$$a = v = \sup\{x \in [a, b]; f(x) = f(a)\},\$$

since in the contrary case we can consider the reduced function f/[u,v].

We will prove the remark for the case of an increasing function f, because the case of a decreasing f is analogous. Let $(a_n)_n$ and $(b_n)_n$ be sequences such that

$$a < a_{n+1} < a_n < \dots < a_1 < b_1 < \dots < b_n < b_{n+1} < b$$

and

$$a = \lim_{n \to \infty} a_n$$
; $b = \lim_{n \to \infty} b_n$.

By Theorem 2, there is a decreasing sequence of continuous increasing functions $f_n : [a, b] \mapsto \mathcal{R}$ with $f = \lim_{n \to \infty} f_n$ and $f_n > f$ for $n = 1, 2, \ldots$ Find a strictly increasing sequence $(n_k)_k$ of positive integers such that

$$\lim_{k \to \infty} n_k = \infty;$$

$$\frac{f_{n_k}(a_k) - f(a_k)}{a_k - a} < \min_{i < k} \frac{f_{n_i}(a_i) - f(a_i)}{k(a_i - a)} \text{ for } k > 1;$$

$$\frac{f_{n_k}(b_k) - f(b_k)}{b - b_k} < \min_{i < k} \frac{f_{n_i}(b_i) - f(b_i)}{k(b - b_i)} \text{ for } k > 1.$$

For $k \ge 1$ let

$$h_k(x) = \frac{f_{n_k}(a_k) - f(a_k)}{a_k - a} (x - a) \text{ for } x \in [a, a_k],$$

$$h_k(x) = \frac{f_{n_k}(b_k) - f(b_k)}{b - b_k} (b - x) \text{ for } x \in [b_k, b]$$

and

$$g_k(x) = \begin{cases} f(x) + h_k(x) & \text{for } x \in [a, a_k] \\ f_{n_k}(x) & \text{for } x \in [a_k, b_k] \\ f(x) + h_k(x) & \text{for } x \in [b_k, b]. \end{cases}$$

The sequence $(g_k)_k$ satisfies all requirements and the proof is completed. \square

Remark 2. If a function $f:[a,b] \mapsto \mathcal{R}$ is increasing (decreasing) and lower semicontinuous then there is a increasing sequence of continuous increasing (decreasing) functions $f_n:[a,b]\mapsto \mathcal{R}$ such that $f_n(a)=f(a)$, $f_n(b)=f(b)$ for $n\geq 1$ and $\lim_{n\to\infty} f_n=f$.

PROOF. It suffices to apply Remark 1 to the function (-f).

We will write that a.c. $\lim_{n\to\infty} f_n = f([2, 3])$ if for each point x there is a positive integer n(x) such that for n > n(x) the equality $f_n(x) = f(x)$ is true.

Since monotone functions have only countable sets of discontinuity points, we prove the following theorem:

Theorem 3. Suppose that functions $f, f_n : [a, b] \mapsto \mathcal{R}$ satisfy the following conditions:

- $f = \text{a.c. } \lim_{n \to \infty} f_n$;
- for each integer $n \ge 1$ the set $D(f_n)$ of all discontinuity points of the function f_n is countable.

Then for each nonempty closed set $F \subset [a,b]$ there are an open interval I and a positive integer k such that $I \cap F \neq \emptyset$ and for each point $x \in (F \cap I) \setminus \bigcup_n D(f_n)$ and for each integer n > k the equality $f(x) = f_n(x)$ is true.

PROOF. Since a.c. $\lim_{n\to\infty} f_n = f$, for each point $x \in [a,b]$ there is a positive integer n(x) such that $f(x) = f_n(x)$ for all integers n > n(x). For each integer $m \ge 1$ let

$$A_m = \{x \in [a, b]; n(x) = m\}.$$

Let $F \subset [a,b]$ be a nonempty closed set. If the set F has an isolated point then the condition of our theorem is satisfied. So, we can assume that F is a perfect set. Since

$$F = \bigcup_{m} (A_m \cap F),$$

by the Baire category theorem there is an integer $k \geq 1$ such that the set $A_k \cap F$ is of the second category in F. Consequently, there is an open interval I such that $I \cap F \neq \emptyset$ and for every open interval $J \subset I$ with $J \cap F \neq \emptyset$ the set $J \cap F \cap A_k$ is of the second category in F. Since the set

$$E = \bigcup_{n} D(f_n)$$

is countable, the set

$$B = (I \cap F \cap A_k) \setminus E$$

is dense in $I \cap F$. The restricted functions $f_n/([a,b] \setminus E)$, $n \ge 1$, are continuous and for m, n > k and $x \in B$ the equalities

$$f_n(x) = f_m(x) = f(x)$$

are true. So, for m, n > k and for $x \in (I \cap F) \setminus E$ we obtain $f_m(x) = f_n(x) = f(x)$ and the proof is finished.

Corollary 1. If functions $f_n : [a,b] \mapsto \mathcal{R}$ are continuous and increasing (decreasing) and a.c. $\lim_{n\to\infty} f_n = f$ then the function f is increasing (decreasing) and in the class B_1^* (i.e. for every nonempty closed set $F \subset [a,b]$ there is an open interval I such that $I \cap F \neq \emptyset$ and the restricted function $f/(F \cap I)$ is continuous [2,3]).

PROOF. This corollary is an evident consequence of the last theorem. \Box

Theorem 4. Suppose that the function $f:[a,b] \mapsto \mathcal{R}$ is increasing (decreasing) and in the class B_1^* . Then there is a sequence of continuous increasing (decreasing) functions $f_n:[a,b] \mapsto \mathcal{R}$ with $f=\text{a.c.} \lim_{n\to\infty} f_n$.

PROOF. Observe that there are nonempty closed sets F_n , $n \geq 1$, such that

$$[a,b] = \bigcup_{n} F_n,$$

$$F_n \subset F_{n+1}, \quad n \ge 1,$$

and the restricted functions f/F_n are continuous ([2]). For each integer $n \ge 1$ the functions f/F_n can be extended to a continuous increasing (decreasing) function $f_n : [a, b] \mapsto \mathcal{R}$ such that $f_n(a) = f(a)$ and $f_n(b) = f(b)$. Evidently,

$$f = \text{a.c.} \lim_{n \to \infty} f_n$$

and the proof is completed.

Theorem 5. Let $f:[a,b] \mapsto \mathcal{R}$ be a function. The following conditions are equivalent:

- (a) f is increasing (decreasing);
- (b) There are increasing (decreasing) functions $f_n: [a,b] \mapsto \mathcal{R}$ such that $f_n(a) = f(a)$, $f_n(b) = f(b)$ and the sets $D(f_n)$ of all discontinuity points of f_n , $n \geq 1$, are finite and $\lim_{n \to \infty} V(f_n f, a, b) = 0$, where $V(f_n f, a, b)$ denotes the total variation of $f_n f$ on [a, b];
- (c) There is a sequence of increasing (decreasing) functions $f_n : [a,b] \to \mathcal{R}$ which uniformly converges to f on [a,b] and for which $f_n(a) = f(a)$, $f_n(b) = f(b)$ and the sets $D(f_n)$, $n \ge 1$, are finite.

PROOF. The implication $(c) \Rightarrow (a)$ is evident. Since for each point $x \in [a, b]$ we have

$$|f_n(x) - f(x)| \le V(f_n - f, a, b),$$

we obtain the implication $(b) \Rightarrow (c)$. So, it suffices to prove the implication $(a) \Rightarrow (b)$. Fix an increasing function f and a positive real η . Observe that the set D(f) is countable. We may assume that D(f) is nonempty. Let

$$D(f) = \{a_1, \dots, a_k, \dots\}.$$

Define g(a) = 0 and for $x \in (a, b]$ let

$$g(x) = \sum_{a_i < x} \operatorname{osc} f(a_i) + (f(x) - f(x-)).$$

Put

$$h(x) = f(x) - g(x) \text{ for } x \in [a, b].$$

Then the function h is increasing and continuous and f = h + g. Since

$$\sum_{i} \operatorname{osc} f(a_i) \le f(b) - f(a) < \infty,$$

there is a positive integer k with

$$\sum_{i>k} \operatorname{osc} f(a_i) < \frac{\eta}{2}.$$

Put $g_1(a) = 0$, $g_1(b) = g(b)$ and for $x \in (a, b)$ let

$$g_1(x) = \sum_{a_i < x; i \le k} \operatorname{osc} f(a_i) + (f(x) - f(x-)).$$

If

$$f_1(x) = h(x) + g_1(x)$$
 for $x \in [a, b]$,

then the function f_1 is increasing and

$$f_1(a) = f(a), \quad f_1(b) = f(b),$$

the set $D(f_1) \subset \{a_1, \ldots, a_k, b\}$ is finite, and

$$V(f_1 - f, a, b) = 2 \sum_{i > k} \operatorname{osc} f(a_i) < 2 \frac{\eta}{2} = \eta.$$

This completes the proof for the increasing functions. If f is a decreasing function on [a,b] then we can use the proved part to the function (-f). So, the proof is completed.

Now, denote by ω_1 the first uncountable ordinal number and consider a transfinite sequence of monotone functions $f_{\alpha}:[a,b]\mapsto \mathcal{R}, \ \alpha<\omega_1$. We will say that the sequence $(f_{\alpha})_{\alpha<\omega_1}$ converges to a function f (then we write $\lim_{\alpha} f_{\alpha} = f$) if for each point $x \in [a,b]$ there is a countable ordinal $\alpha(x)$ such that $f(x) = f_{\alpha}(x)$ for $\alpha > \alpha(x)$ ([4]).

Theorem 6. If a function $f:[a,b] \to \mathcal{R}$ is the limit of a transfinite sequence of monotone functions f_{α} , $\alpha < \omega_1$, then there is a countable ordinal β such that $f = f_{\alpha}$ for $\alpha > \beta$.

PROOF. The assumptions imply the monotonicity of the function f. Let $A \subset [a,b]$ be a countable set containing $D(f) \cup \{a,b\}$ which is dense in [a,b]. There is a countable ordinal β such that

$$f_{\alpha}(x) = f(x), \quad x \in A, \quad \alpha > \beta.$$

466 Zbigniew Grande

If $\alpha > \beta$ is a countable ordinal then $f_{\alpha} = f$. Of course, if there is a point $x \in [a,b]$ with $f_{\alpha}(x) \neq f(x)$ then $x \in [a,b] \setminus A$. Consequently, f is continuous at x and there is a positive real r such that $f_{\alpha}(x)$ is not in the interval (f(x) - r, f(x) + r). Since the graph of the restricted function f/A is dense in the graph of f, there are points $u, v \in A$ with

$$f(x) - r < f(u) < f(x) < f(v) < f(x) + r.$$

But

$$f_{\alpha}(u) = f(u), \quad f_{\alpha}(v) = f(v)$$

and f_{α} is monotone, so

$$f_{\alpha}(x) \in (f(x) - r, f(x) + r),$$

a contrary. This completes the proof.

Since each nondegenerate interval I is the union of closed intervals I_n , $n \ge 1$, such that int $(I_n) \cap \text{int } (I_m) = \emptyset$ for $n \ne m$, we obtain that

Remark 3. Theorems 1, 4, 5 and 6 and Remarks 1 and 2 are true for monotone functions $f: I \mapsto \mathcal{R}$ with $f_n(a+) = f(a+)$ and $f_n(b-) = f(b-)$.

References

- [1] A. M. Bruckner, J. B. Bruckner and B. S. Thomson, *Real Analysis*, Prentice-Hall, New Jersey, 1994.
- [2] A. Császár and M. Laczkovich, *Discrete and equal convergence*, Studia Sci. Math. Hungar. **10** (1975), 463–472.
- [3] R. J. O'Malley, Approximately differentiable functions. The r topology, Pacific J. Math. **72** (1977), 207–222.
- [4] W. Sierpiński, Sur les suites transfinies convergentes de fonctions de Baire,
 Fund. Math. 1 (1920), 132–141.