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ON SEQUENCES OF MONOTONE
FUNCTIONS

Abstract

Several kinds of convergence (including pointwise, monotone, a.c.,
uniform, ...) in the family of monotone functions are investigated.

Let R denote the set of all reals. Observe that the limit f of a converging
sequence of monotone functions f, : I — R, where [ is a nondegenerate inter-
val, is a monotone function. Of course, there is a subsequence (f,, )i, where
all functions f,,, are decreasing or increasing and consequently, the function f
is decreasing or respectively increasing as the limit of the subsequence (fy, ).

Theorem 1. If f : [a,b] — R is an increasing function (i.e. nondecreasing)
then there are continuous increasing functions f, : [a,b] — R, n = 1,2,...,

such that f,(a) = f(a), fn(b) = f(b) forn>1 and lim, 00 fr, = f-

Proor. Fix a positive integer n and observe that the set

A= {:z: € [a,b]; 0sc f(z) > 1}

n
is empty or finite. We can assume that A is nonempty. Let
A={xy,..., 2}, 1< <z
There are closed intervals I; = [a;, b;], @ < k, such that
bic1<a; <z <b <ajprfori=2,...)k—1,

if a < x1 then a < a; < x1 < by;
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if a = 21 then a = a1 = x1 < by;
if x; < b then ap < xp < by < b;
if z = b then ap < xp = by, = b;
bi—ai<lf0ri§k;

(b

i) —
Since osc f(x) < 1 for each point x € [a,b]\ A, there are points ¢; ; € (bi—1,a;),
i=2,...,k j< () such that

f(a;) < osc f(z;) + L for i < k.

b1 = Cis1 < G2 < < Gji)—1 < Cij(i) = Qi fori=2,.. . k;
1 .
flcijt1) — fleiy) < - fori=2,... k.

Analogously, if a < a1 (b < b) there are points ¢1 5, j < j(1), (crht1,4, § <
j(k 4+ 1),) such that
a4 =C1,1 < < Cl,j(l) = ax
(br = cry1,1 < -+ < Cpyrjetr) = ) for j < (1) (5 <j(k+1));

1
Flergn) = fleg) <
1 . .
(Flevrrien) = flerrrg) < =) for j < j(1) (G < j(k+1).
Define on the interval [a, b] the following continuous increasing function

f(z) for zef{abe }, i<k+1, j<ji)
fulz) =< f(z) for r=umx;, i<k

linear otherwise on [a, b].

We will prove that lim,, o fr, = f.
Ifx € {a,b, ;i < k} then f,,(z) = f(x). Moreover, if x € [¢; ;,¢; j+1] then
|[fulz) = f(2)] < 5. So, if

z€la,b] A dist(z,A) =inf{|lu—zljuec A} > 1
n

then
1

fule) = £l <~
For each point x € [a,b] which is a discontinuity point of the function f

there is a positive integer n such that osc f(z) > % Consequently, for every
k > n we have fi(x) = f(z).



ON SEQUENCES OF MONOTONE FUNCTIONS 459

Now we suppose that « € [a,b] is a continuity point of the function f. Fix
a positive real n and a positive integer n with % < n. Let

B= {x € [a,b]; 08¢ f(x) = 1}.

n

Since z € [a,b] \ B and B is a closed set, there is a positive integer k& > n with

1 1
- — —)nB=40.
(x k,x+k>m 0

Fix an integer m > k. If

Ez{ye[a,b};oscf(wz;}

then 1
@) = $@) < = <

if dist (z, E) > =+ and

1
m

1 1 1 2
|fm(2) = f(z)| <oscf(y) + — < —+—<—<n
m n m n
for some y € E\ B, if dist (z, E) < L.
So, limy, 00 fn(z) = f(x) and the proof is completed. O

It is well known that the limit of a decreasing (increasing) sequence of
continuous functions is upper (lower) semicontinuous.

Theorem 2. If f : [a,b] — R is an upper semicontinuous increasing function
then there are continuous increasing functions fn : [a,b] — R, n > 1, such
that fn > fn+1 > f forn >1 and f = limy 00 .fn

In the proof of the above theorem we apply the following sandwich lemma:

Lemma 1. Let f : [a,b] — R be an upper semicontinuous increasing (de-
creasing) function and let g : [a,b] — R be a continuous function such that
f(z) < g(z) for each x € [a,b]. Then there is a continuous increasing (decreas-
ing) function h : [a,b] = R such that f(z) < h(x) < g(x) for all x € [a,b].

PrOOF OF LEMMA 1. We suppose that the function f is increasing. The
proof for a decreasing function f is analogous. From the upper semicontinuity
of f follows that f is continuous from the right hand. Let

r = inf{g(z) — f(z);x € [a,b]}.
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Since the function g — f is positive and lower semicontinuous, the real r is
positive. Define the set

A= {x € [a,b];0sc f(z) > g}

and we observe that it is empty or finite. We can assume that A is nonempty.
Let
A={zxy,..., 2}, 1< <z

There are closed intervals I; = [a;, z;], © < k, such that
a<a; <x;<aj41 <xip1 <bfori=1,...;k—1;
f(z) — f(a;) <osc fx;) + g for i < k;
lg(z) — g(z:)| < g forx € I;,i < k.

Let xo = a. Since osc f(x) < £ for each point x € [a,b] \ A, there are points
Cij € lrim1,ai], i =1,...,k, j <j(i), such that

Ti1 = ¢ < Cip <o < Ciy—1 < Cigeiy = a; for i =1,... k;

f(Ci,j+1) - f(Ci,j) < g fori=1,...;kand j < ](Z) —1.

Analogously, if x;, < b there are points cx41,5, j < j(k + 1), such that

T = k11 < 0 < Cpgtjk1) = 05
r o
flersrr) = flersy) < 5 for j < j(k+1).

Define on the interval [a,b] a continuous increasing function in the following
way:

f(z) for ze{a,b,c i}, i<k+1, j<j()
gi(x)=<¢ f(z) for r=uax; 1<k
linear otherwise on [a, b].

If x € {a,b,z;;i < k} then g1 (z) = f(x). Moreover, if z € [¢; ;, ¢; j4+1] then

g1 (2) = f(2)| < 3.
Let r
W) = 1)+

Then A is a continuous increasing function and for

xe[a,b]\UIi

i<k

x € [a,b].
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the inequalities

J(@) < g1(@) + £ < hla) < [(@) +7 < g(a)

are true. If x € I; for some i < k then

f(@) < floi—) = flai) + Z< g1(as) + L h(a;) < h(x)

5 4
r r r
= flzi) + 5 <g(zg) —r+ - <g(z:) — £ <g(z).
4 4 )
So, the function h satisfies to all requirements. O

PROOF OF THEOREM 2. Since the function f is upper semicontinuous, there
are continuous functions g, : [a,b] — R such that

f(@) < gnia(2) < gn(x), z€la,b], n>1,

and f = lim, oo gn ([1]).

By Lemma 1 there is a continuous increasing function f : [a,b] — R
with f < f1 < ¢g1. Let ho = min(f1,g2). By Lemma 2 there is a continuous
increasing function fs : [a,b] — R with f < fo < hy = min(f1,g2). Next
by induction, for each positive integer n > 2 there is a continuous increasing
function f, : [a,b] — R with f < f, < min(f,_1,9n). Consequently, the
sequence (f,), satisfies all requirements and the proof is completed. O

Remark 1. If the function f is upper semicontinuous and increasing (decreas-
ing) then there are continuous increasing (decreasing) functions g, : [a,b] — R
such that gn<a‘) = f(a’>7 gn(b) = f(b)a Gn = gnt1 forn > 1 and lim,_ o0 gn =
f-

Without loss of the generality we can suppose that

b=u=inf{z € [a,b]; f(z) = f(b)}

and
a=v=sup{z € [a,b]; f(z) = f(a)},

since in the contrary case we can consider the reduced function f/[u,v].

We will prove the remark for the case of an increasing function f, because
the case of a decreasing f is analogous. Let (a,, ), and (b,), be sequences such
that

a<apy1 <ap<---<ap<b <---<by, <bpy1 <V,

and

a= lim a,,; b= lim b,.
n— oo n—oo
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By Theorem 2, there is a decreasing sequence of continuous increasing func-
tions f, : [a,b] — R with f =lim, o fn and f, > f forn=1,2,.... Find a
strictly increasing sequence (ny )y of positive integers such that

lim njg = oc;

k—o0
Fuslo) = fla) _ - fulo) ~ fla)
ar —a i<k k(a; —a) ’
For k > 1 let
hi(z) = M(x —a) for z € [a,ay],
ar —a
hi(a) = IO =IO oy g e [yt
b— by
and

f(x)+ hi(x) for z € [a,ax]
g(x) = ¢ fn,(x) for € [ay, by
f(z) + hi(x) for x € [b,b].

The sequence (g ), satisfies all requirements and the proof is completed. [

Remark 2. If a function f : [a,b] — R is increasing (decreasing) and lower
semicontinuous then there is a increasing sequence of continuous increasing
(decreasing) functions fy, : [a,b] — R such that fr(a) = f(a), fn(b) = f(b) for
n>1andlim, o fn=f.

Proor. It suffices to apply Remark 1 to the function (—f). O

We will write that a.c.lim, o fr = f ([2, 3]) if for each point x there is a
positive integer n(x) such that for n > n(z) the equality f,(x) = f(z) is true.

Since monotone functions have only countable sets of discontinuity points,
we prove the following theorem:

Theorem 3. Suppose that functions f, fn : [a,b] — R satisfy the following
conditions:

o f=aclim, o fr;

e for each integer n > 1 the set D(f,) of all discontinuity points of the
function f, is countable.
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Then for each nonempty closed set F' C [a, b] there are an open interval I and a
positive integer k such that INE # 0 and for each point x € (FNI)\U,, D(fn)
and for each integer n > k the equality f(x) = fn(z) is true.

PROOF. Since a.c.lim,,_, f, = f, for each point = € [a, b] there is a positive
integer n(z) such that f(z) = f,(x) for all integers n > n(x). For each integer
m > 1 let

Ay ={x € [a,b];n(z) =m}.

Let F' C [a,b] be a nonempty closed set. If the set F' has an isolated point
then the condition of our theorem is satisfied. So, we can assume that F is a
perfect set. Since

F={JAnnF),

by the Baire category theorem there is an integer k& > 1 such that the set
AN F is of the second category in F. Consequently, there is an open interval
I such that I N F # () and for every open interval J C I with J N F # () the
set J N F N Ag is of the second category in F'. Since the set

is countable, the set
B=(INFnNnA;)\E

is dense in INF. The restricted functions f,/([a,b]\ E), n > 1, are continuous
and for m,n > k and = € B the equalities

fo(@) = fim(z) = f(2)

are true. So, for m,n > k and for z € (INF)\ E we obtain f,(z) = fn(z) =
f(z) and the proof is finished. O

Corollary 1. If functions f, : [a,b] — R are continuous and increasing (de-
creasing) and a.c.lim,_,~ fn, = f then the function f is increasing (decreasing)
and in the class By (i.e. for every nonempty closed set F C [a,b] there is an
open interval I such that I N F # O and the restricted function f/(FN1I) is
continuous [2, 3]).

Proor. This corollary is an evident consequence of the last theorem. O

Theorem 4. Suppose that the function f : [a,b] — R is increasing (decreas-
ing) and in the class Bf. Then there is a sequence of continuous increasing
(decreasing) functions f, : [a,b] — R with f = a.c.lim, o0 fn-
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PROOF. Observe that there are nonempty closed sets F,, n > 1, such that
[a,b] = U F,,
n

FnCFn—i-la NZL

and the restricted functions f/F,, are continuous ([2]). For each integer n > 1
the functions f/F, can be extended to a continuous increasing (decreasing)
function f, : [a,b] — R such that f,(a) = f(a) and f,(b) = f(b). Evidently,

f=ac. lim f,
n—roo
and the proof is completed. O

Theorem 5. Let f : [a,b] — R be a function. The following conditions are
equivalent:

(a) f is increasing (decreasing);

(b) There are increasing (decreasing) functions fy : [a,b] — R such that
fnla) = f(a), fu(b) = f(b) and the sets D(fy,) of all discontinuity points
of fn, n > 1, are finite and lim,,—oo V(fn, — f,a,b) = 0, where V(f, —
f,a,b) denotes the total variation of fn, — f on [a,b];

(c) There is a sequence of increasing (decreasing) functions fy, : [a,b] — R
which uniformly converges to f on [a,b] and for which f,(a) = f(a),
fn(b) = f(b) and the sets D(f,), n > 1, are finite.

PRrROOF. The implication (¢) = (a) is evident. Since for each point x € [a, D]
we have

we obtain the implication (b) = (c). So, it suffices to prove the implication
(a) = (b). Fix an increasing function f and a positive real . Observe that
the set D(f) is countable. We may assume that D(f) is nonempty. Let

D(f) = {al,...,ak7...}.
Define g(a) = 0 and for = € (a, ] let
g(x) =" osc f(a:) + (f(z) — f(z—)).

Put
h(z) = f(x) — g(z) for x € [a,].
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Then the function A is increasing and continuous and f = h + g. Since
S osc flar) < £(b) - f(a) < o0,

there is a positive integer k with

Z osc f(a;) <

i>k

o3

Put g1(a) =0, g1(b) = g(b) and for = € (a,b) let

gi(@)= Y oscfla)+ (fx) = flz—)).
a;<x;i<k
If
fi(x) = h(z) + g1(z) for x € [a,b],

then the function f; is increasing and

fila) = f(a), f1(b) = f(b),
the set D(f1) C {a1,...,ax,b} is finite, and

V(fi—f.a.b) =23 ose f(a;) < 25 =,
i>k
This completes the proof for the increasing functions. If f is a decreasing
function on [a, b] then we can use the proved part to the function (—f). So,
the proof is completed. O

Now, denote by w; the first uncountable ordinal number and consider a
transfinite sequence of monotone functions f, : [a,b] —» R, a < w;. We
will say that the sequence (fy)a<w, converges to a function f (then we write
lim, fo = f) if for each point = € [a,b] there is a countable ordinal a(z) such
that f(z) = fo(z) for a > a(z) ([4]).

Theorem 6. If a function f : [a,b] — R is the limit of a transfinite sequence
of monotone functions fo, a < wy, then there is a countable ordinal 5 such

that f = fo for a > .

Proor. The assumptions imply the monotonicity of the function f. Let
A C [a,b] be a countable set containing D(f) U {a, b} which is dense in [a, b].
There is a countable ordinal 8 such that

falz) = f(z), z€ A, a>p.



466 ZBIGNIEW GRANDE

If &« > (B is a countable ordinal then f, = f. Of course, if there is a point
x € [a,b] with f,(z) # f(z) then x € [a,b] \ A. Consequently, f is continuous
at x and there is a positive real r such that f,(x) is not in the interval (f(z)—
r, f(z) + r). Since the graph of the restricted function f/A is dense in the
graph of f, there are points u,v € A with

fl@) —r < f(u) < f(z) < fv) < fz) +
But
fa(u) = f(u)’ foz(v) = f(’U)
and f, is monotone, so
fa(x) € (f(x) - ’I",f(iL‘) + T)v
a contrary. This completes the proof. O

Since each nondegenerate interval I is the union of closed intervals I,
n > 1, such that int (I,,) Nint (I,,,) = @ for n # m, we obtain that

Remark 3. Theorems 1, 4, 5 and 6 and Remarks 1 and 2 are true for mono-

tone functions f : I — R with f,(a+) = f(a+) and fr(b—) = f(b—).
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