Eric S. Key, Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA, e-mail:

SYMMETRIC MEASURE-PRESERVING SYSTEMS

Abstract

A symmetric measure-preserving system is one where the measure Pr is preserved by two maps T and R where R is self-inverse and $T \circ R=T$. We discuss the existence of such systems and some consequences, including when unimodal maps are conjugate to the symmetric tent map.

1 Introduction

A continuous map $T:[0,1] \rightarrow[0,1]$ is called unimodal with turning point m if $m \in(0,1)$ and T is continuous, strictly increasing on $[0, m]$ and strictly decreasing on $[m, 1]$. For the moment, let us call a unimodal map two-to-one if $T(0)=T(1)=0$ and $T(m)=1$. To each two-to-one map we can associate a unique continuous map $R:[0,1] \rightarrow[0,1]$ such that R is not the identity and $T \circ R=T$. The most well-known such pair of maps is $\tau(x)=\min (2 x, 2(1-x))$ and $\rho(x)=1-x$.

For each probability measure Pr on the Borel subsets of $[0,1]$ we may define the function $F:[0,1] \rightarrow[0,1]$ defined by $F(t)=\operatorname{Pr}([0, t])$. We will call F the distribution function associated with Pr.

Given a two-to-one map T one problem of interest is to characterize the probability measures Pr which are preserved by T. It is well-known that such measures exist. In the case of τ we know that Lebesgue measure on $[0,1]$ is one such probability measure. We also note that this measure is preserved by ρ.

Suppose for a moment that given a two-to-one map T with turning point m and its associated map R that we can find a probability measure Pr which

[^0]is preserved by both T and R. Let F be the distribution function associated with Pr. Since R preserves Pr we have
$$
F(R(t))=1-F(t)=\rho(F(t))
$$
and since T preserves Pr, for $x \in[0, m]$ we have
$$
F(T(x))=F(x)+1-F(R(x))=2 F(x)=\tau(F(x))
$$
while for $x \in[m, 1]$ we have
$$
F(T(x))=F(T(R(x)))=\tau(F(R(x))=\tau(\rho(F(x)))=\tau(F(x))
$$

Thus we have

$$
\begin{aligned}
& F \circ R=\rho \circ F \\
& F \circ T=\tau \circ F
\end{aligned}
$$

Note that to this point we only use symmetry. Suppose in addition we know that F is strictly increasing and continuous. Such would be the case if the probability measure was non-atomic and assigned positive probability to all sub-intervals of $[0,1]$. In this case we have

$$
\begin{aligned}
& R=F^{-1} \circ \rho \circ F \\
& T=F^{-1} \circ \tau \circ F,
\end{aligned}
$$

and we would have proven that T and τ (and R and ρ) are topologically conjugate.

Conversely, suppose that T is two-to-one with turning point m, R is the associated map with $T \circ R=T$, and for some homeomorphism $F:[0,1] \rightarrow[0,1]$ we have $F \circ T=\tau \circ F$ and $F \circ R=\rho \circ F$. Then F is the distribution function of a probability measure preserved by both T and R. To see why, let Pr be the probability measure on the Borel subsets of $[0,1]$ whose distribution function is F. Such Pr exists by the Carathéodory extension theorem. It is sufficient to check that the measures of intervals of the form $[0, y]$ are preserved. Since T is two-to-one there is a unique $x \in[0, m]$ with $T(x)=y$, and we have $T^{-1}([0, y])=[0, x] \cup[R(x), 1]$, and $R^{-1}([0, y])=[R(y), 1]$. Note that $R(m)=m$ so that $F(m)=F(R(m))=\rho(F(m))=1-F(m)$ so $F(m)=1 / 2$. Hence

$$
\begin{aligned}
\operatorname{Pr}([0, x] \cup[R(x), 1]) & =F(x)+1-F(R(x))=F(x)+\rho(F(R(x)) \\
& =2 F(x)=\tau(F(x))=F(T(x))=\operatorname{Pr}([0, y])
\end{aligned}
$$

and

$$
\operatorname{Pr}([R(y), 1])=1-F(R(y))=\rho(F(R(y))=F(y)=\operatorname{Pr}([0, y])
$$

In this paper we

1. Generalize the idea of two-to-one maps to abstract measure spaces.
2. In the case where the measure space is a compact metric space, show that there are non-atomic probability measures preserved by two-to-one maps (suitably defined) which are also preserved by the reflection map R.

3 . In the case where the compact metric space is $[0,1]$, give conditions on two-to-one maps which ensure that this measure will give positive probability to any subinterval of $[0,1]$.
4. In the case of $[0,1]$, look at what happens if we have non-atomic probability measures which give probability 0 to some subintervals of $[0,1]$.

2 Some Additional Definitions and Examples

We will call the quintuple $(\Omega, \mathcal{F}, \operatorname{Pr}, T, R)$ a symmetric measure-preserving system if

P0: $(\Omega, \mathcal{F}, \operatorname{Pr})$ is a probability space;
P1: $(\Omega, \mathcal{F}, \operatorname{Pr}, T)$ is a measure-preserving system;
P2: $(\Omega, \mathcal{F}, \operatorname{Pr}, R)$ is a measure-preserving system;
P3: $\{\omega \in \Omega: R(\omega) \neq \omega\} \in \mathcal{F}$ and $\operatorname{Pr}(\{\omega \in \Omega: R(\omega) \neq \omega\})>0$;
P4: $R(R(\omega))=\omega$ for all $\omega \in \Omega$;
P5: $T \circ R=T$.
We shall call a measurable map R of $(\Omega, \mathcal{F}, \operatorname{Pr})$ a reflection of $(\Omega, \mathcal{F}, \operatorname{Pr})$ if it satisfies (P3) and (P4). If we have no measure in mind, we shall call a measurable map R of (Ω, \mathcal{F}) a reflection of (Ω, \mathcal{F}) if R is not the identity map and $R \circ R$ is the identity map.

Two examples of symmetric measure-preserving systems are

- $\Omega=[0,1]$;
- $\mathcal{F}=$ the Borel subsets of $[0,1]$;
- $\operatorname{Pr}(E)=$ the ordinary Lebesgue measure of E;
- $T(x)=\min (2 x, 2(1-x))$;
- $R(x)=1-x ;$
and
- $\Omega=[0,1] ;$
- $\mathcal{F}=$ the Borel subsets of $[0,1]$;
- $\operatorname{Pr}(E)=\int_{E} \frac{1}{\pi \sqrt{x-x^{2}}} d x^{\prime} ;$
- $T(x)=4 x(1-x)$;
- $R(x)=1-x$.

Note that the probability measure in the second example is non-atomic and gives positive probability to all subintervals of $[0,1]$. This provides one example of the situation discussed in the previous section.

We now proceed to generalize our earlier idea of two-to-one. Note that we drop the requirement that the map be onto.

Suppose that \mathcal{F} is a σ-algebra on the set Ω and that T is a measurable map from Ω to Ω. We shall say that T is two-to-one if there are measurable sets Ω_{l} and Ω_{r} and a reflection R of (Ω, \mathcal{F}) with the properties that

- $\Omega=\Omega_{l} \cup \Omega_{r} ;$
- $\Omega_{l} \cap \Omega_{r}$ is the set of fixed points of R;
- $T \circ R=T$;
- The restriction of T to each of Ω_{l} and Ω_{r} is one-to-one;
- If $F \in \mathcal{F}$ then $T\left(F \cap \Omega_{l}\right) \in \mathcal{F}$ and $T\left(F \cap \Omega_{r}\right) \in \mathcal{F}$.

Since we can show that there is exactly one such R for any two-to-one map T, we will refer to R as the reflection associated with T. Also note that the sets Ω_{l} and Ω_{r} cannot be empty and that R maps each of these sets onto the other. Two-to-one maps are a natural generalization of unimodal maps.

We have seen examples of two-to-one maps on $[0,1]$. Here are some examples on the closed unit disk and on the unit circle in the complex plane.

Suppose that a and b are complex numbers with $|a|^{2}=|b|^{2}+1$. The fractional linear transformation $f(z)=(a z+b) /(\bar{b} z+\bar{a})$ maps the unit disk
onto itself and maps the unit circle onto itself. The map $T(z)=(f(z))^{2}$ maps the unit circle onto itself and maps the unit disk onto itself. In each case T is two-to-one. To see why, take $R(z)=f^{-1}(-f(z))$. R is a fractional linear transformation which maps the unit circle to the unit circle and the unit disk to the unit disk. As a map of the unit disk to itself, R has exactly one fixed point at $z=-b / a$, and this fixed point does not lie on the unit circle. What is interesting about this example is that as a map of the unit circle to itself, R has no fixed points, in contrast with the examples on $[0,1]$.

3 Constructing Symmetric Measures

In this section we assume that T is two-to-one and that R is the reflection associated with T. As we shall not consider more than one two-to-one map at a time, this should cause no confusion. We will give conditions on T which assure the existence of a probability measure Pr such that the system $(\Omega, \mathcal{F}, \operatorname{Pr}, T, R)$ is a symmetric measure-preserving system.

Let \mathcal{I}_{T} denote the invariant σ-algebra of T and let $\mathcal{I}_{T}^{\prime}=\left\{G \in \mathcal{I}_{T}\right.$: $T(G)=G\}$. In some cases, Theorem 3 below can be used to show that \mathcal{I}_{T}^{\prime} only contains the empty set, as we shall see in the next section.

Lemma 1. Suppose that $G \in \mathcal{I}_{T}^{\prime}$ and $G \neq \emptyset$. Let μ be a probability measure on (Ω, \mathcal{F}) and suppose that $\mu(G)=1$. Then the set function ν defined on \mathcal{F} by

$$
\nu(E)=\frac{1}{2} \mu\left(T\left(E \cap G \cap \Omega_{l}\right)\right)+\frac{1}{2} \mu\left(T\left(E \cap G \cap \Omega_{r}\right)\right)
$$

is a probability measure on (Ω, \mathcal{F}) with $\nu(G)=1, \nu \circ T^{-1}=\mu$ and $\nu \circ R^{-1}=\nu$.
Proof. It is clear that ν is well-defined and non-negative, since T carries elements of \mathcal{F} to elements of \mathcal{F}. Next note that $T\left(G \cap \Omega_{l}\right)=T\left(G \cap \Omega_{r}\right)=G$, so $\nu(G)=1$, and that since the restriction of T to each of Ω_{l} and Ω_{r} is one-to-one, ν is countably additive. Hence ν is a probability measure on \mathcal{F}.

Note that $R(G)=R^{-1}(G)=R^{-1}\left(T^{-1}(G)\right)=(T \circ R)^{-1}(G)=T^{-1}(G)=$ G, and $R\left(\Omega_{l}\right)=\Omega_{r}$, so $\nu \circ R^{-1}=\nu$.

Finally we show that $\nu \circ T^{-1}=\mu$. First observe that for any set $E \in \mathcal{F}$ we have

$$
T\left(T^{-1}(G \cap E) \cap \Omega_{l}\right)=G \cap E=T\left(T^{-1}(G \cap E) \cap \Omega_{r}\right) .
$$

To see why, recall that T maps G onto G. Therefore

$$
T\left(T^{-1}(G \cap E)\right)=G \cap E .
$$

Therefore, $g \in G \cap E$ if and only if there is some $g^{\prime} \in T^{-1}(G \cap E)$ such that $T\left(g^{\prime}\right)=g$. Now, $g^{\prime} \in T^{-1}(G \cap E)$ if and only if $R\left(g^{\prime}\right) \in T^{-1}(G \cap E)$. Since either $g^{\prime} \in \Omega_{l}$ and $R\left(g^{\prime}\right) \in \Omega_{r}$ or vice versa, T maps both $T^{-1}(G \cap E) \cap \Omega_{l}$ and $T^{-1}(G \cap E) \cap \Omega_{r}$ onto $G \cap E$, as claimed.

Therefore, for any $E \in \mathcal{F}$,

$$
\begin{aligned}
2 \nu\left(T^{-1}(E)\right) & =2 \nu\left(T^{-1}(E) \cap G\right) \\
& =2 \nu\left(T^{-1}(E \cap G)\right) \\
& =\mu\left(T\left(T^{-1}(G \cap E) \cap \Omega_{l}\right)\right)+\mu\left(T\left(T^{-1}(G \cap E) \cap \Omega_{r}\right)\right) \\
& =2 \mu(G \cap E) \\
& =2 \mu(E),
\end{aligned}
$$

which finishes the proof of the lemma.
Lemma 2. Suppose that $G \in \mathcal{I}_{T}^{\prime}$ and $G \neq \emptyset$. Let μ be a probability measure on (Ω, \mathcal{F}) and suppose that $\mu(G)=1$. There is a sequence μ_{n} of R-invariant probability measures on (Ω, \mathcal{F}) such that $\mu_{n}(G)=1$ and $\mu_{n} \circ T^{-1}=\mu_{n-1}$ for $n=1,2, \ldots$.

Proof. We give a recursive construction.
Put $\mu_{0}=\left(\mu+\mu \circ R^{-1}\right) / 2$. Since $R \circ R$ is the identity map on Ω, μ_{0} is R-invariant. Since $R^{-1}(G)=G$ we have $\mu_{0}(G)=1$.

Suppose now that n is a positive integer and $\mu_{0}, \ldots, \mu_{n-1}$ have been constructed to satisfy Lemma 2. Define μ_{n} by

$$
\mu_{n}(E)=\frac{1}{2} \mu_{n-1}\left(T\left(E \cap G \cap \Omega_{l}\right)\right)+\frac{1}{2} \mu_{n-1}\left(T\left(E \cap G \cap \Omega_{r}\right)\right)
$$

Then Lemma 1 shows that μ_{n} satisfies the conditions of Lemma 2 as well.
Theorem 3. Suppose that Ω is a compact metric space, that \mathcal{F} is the Borel sigma algebra and that T and R are continuous. Suppose that $G \in \mathcal{I}_{T}^{\prime}$ and $G \neq \emptyset$. Then there is a probability measure Pr on (Ω, \mathcal{F}) having $\operatorname{Pr}(G)=1$ which is invariant under both T and R. Furthermore, if R has at most one fixed point and T and R have no fixed points in common, then Pr is nonatomic.

Proof. Let μ_{n} be the sequence of measures constructed in Lemma 2. Put $\sigma_{n}=n^{-1}\left(\mu_{0}+\cdots+\mu_{n-1}\right)$ for $n=1,2, \ldots$ Each σ_{n} is invariant under R and R is continuous, so any limit point of the sequence σ_{n} will also be invariant under R. Since

$$
\sigma_{n}=n^{-1}\left(\mu_{n} \circ T^{-n}+\mu_{n} \circ T^{-n+1}+\cdots+\mu_{n} \circ T^{-1}\right)
$$

it is easy to show that any limit point of the sequence σ_{n} will also be T invariant. (See Theorem 6.9 of Walters [1982] for the case of Borel measures on $[0,1]$.)

Now suppose that R has at most one fixed point and R and T have no fixed points in common. We first show that no periodic point of T may be an atom of Pr. Suppose that ω is a periodic point of T with period n. Let $p=\operatorname{Pr}(\{\omega\})>0$. Note that the inverse image of an atom under T is never empty, and therefore, contains either 1 or 2 points. Observe that

1. $\omega \in T^{-n}(\omega)$;
2. $T^{-n}(\omega)$ contains ω and at least one other point, and has probability p.
3. Each element of $T^{-n}(\omega)$ is an atom, and these atoms each have a probability which is less than p.

Therefore $p>0$ is not possible, meaning there are no periodic atoms.
Now we show that no non-periodic point may be an atom either. Begin with the purported atom ω. For each positive integer n the elements of $T^{-n}(\omega)$ are atoms, and since no atom is a periodic point, the sets $T^{-n}(\omega), n=1,2, \ldots$ are disjoint. Since these sets all have the same probability, they must have probability 0 which contradicts our assumption that ω is an atom.

Corollary 4. Suppose that $T:[0,1] \rightarrow[0,1]$ is a continuous, onto, unimodal map with $T(0)=0=T(1)$. Then there is a non-atomic probability measure on the Borel sets of $[0,1]$ and a continuous reflection R of $[0,1]$ so that $([0,1], \mathcal{B}, \operatorname{Pr}, T, R)$ is a symmetric measure-preserving system.

4 Applications

Next we will show how Theorem 3 can be used to analyze the behavior of some symmetric unimodal maps of $[0,1]$ to itself.

Lemma 5. Let \mathcal{I} be a closed bounded interval, let a be the left endpoint of \mathcal{I} and let b be in the interior of \mathcal{I}. Suppose $f: \mathcal{I} \rightarrow \mathcal{I}$

1. is continuous;
2. satisfies $f(x)>x$ on $(a, b]$;
3. satisfies $f(f(b))>a$.

Then for each $y \in(a, b]$ there is some integer $k \geq 2$ for which $f^{(k)}(b)>y$.

Proof. Suppose not. Then for each positive integer k we have $y \geq f^{(k+1)}(b)=$ $f\left(f^{(k)}(b)\right)>f^{(k)}(b)$ so $p \equiv \lim _{k \rightarrow \infty} f^{(k)}(b) \in\left(f^{(2)}(b), y\right] \subset(-a, b]$ is a fixed point of f. This contradicts our assumption that f has no fixed points in $(a, b]$.
Theorem 6. Suppose that $([0,1], \mathcal{B}, \operatorname{Pr}, T, R)$ is a symmetric measure-preserving system and that

1. Pr has no atoms;
2. T is unimodal with turning point m;
3. $T(x)>x$ on $(0, m]$;
4. $T(0)=T(1)=0$.

Then for any $a \in[0,1]$, if $T(a)<1$ then $\operatorname{Pr}([T(a), 1])>0$.
Proof. Suppose not. Then $\operatorname{Pr}([0, T(a)])=1$. We will use Lemma 5 to derive a contradiction. It is sufficient to examine the case $a \in(0, m]$.

Note that since Pr and T are both invariant under R and R is self-inverse, $\operatorname{Pr}(A)=0$ implies $\operatorname{Pr}(T(A))=0$. Since T is continuous and maps both 0 and 1 to 0 , and $\operatorname{Pr}([T(a), 1])=0$, for every $k \geq 1$ we have $\operatorname{Pr}\left(\left[0, T^{(k+1)}(a)\right]\right)=0$. From Lemma 5 for some such k we have $T^{(k+1)}(a)>a$ so $[0, a] \subset\left[0, T^{(k+1)}(a)\right]$. This implies $\operatorname{Pr}([0, a])=0$, which in turn implies $\operatorname{Pr}([0, T(a)])=0$, which is our contradiction.

Corollary 7. Suppose that $m \in(0,1)$ and

1. $T:[0,1] \rightarrow[0,1]$ is unimodal with turning point m;
2. $T(x)>x$ on $(0, m]$;
3. $T(0)=T(1)=0$;
4. $T(m)<1, T(T(m))>0$.

Then \mathcal{I}_{T}^{\prime} contains only the empty set.
Proof. Suppose not. We will now apply Theorem 3. Let Pr be the probability measure on the Borel subsets of $[0,1]$ which is preserved by both R and T. Note that Pr is not atomic as m is the only fixed point of R and m is not a fixed point of T. Hence $\operatorname{Pr}([T(m), 1])=\operatorname{Pr}\left(T^{-1}([T(m), 1])\right)=\operatorname{Pr}(\{m\})=0$. This contradicts Theorem 6.

Next we consider the question of when symmetric measure-preserving systems are isomorphic. Following Walters [1982] we say that two symmetric measure-preserving systems $\left(\Omega_{i}, \mathcal{F}_{i}, \operatorname{Pr}_{i}, T_{i}, R_{i}\right), i=1,2$ are isomorphic if there exist $M_{i} \in \mathcal{F}_{i}$ with $\operatorname{Pr}_{i}\left(M_{i}\right)=1$ for $i=1,2$ such that
(a) $T_{i}\left(M_{i}\right) \subset M_{i}$ for $i=1,2$;
(b) There is an invertible measure-preserving transformation $\Phi: M_{1} \rightarrow M_{2}$ with

$$
\begin{aligned}
\Phi\left(T_{1}(\omega)\right) & =T_{2}(\Phi(\omega)) \\
\Phi\left(R_{1}(\omega)\right) & =R_{2}(\Phi(\omega))
\end{aligned}
$$

for all $\omega \in M_{1}$.
Recall the symmetric tent map system, $([0,1], \mathcal{B}([0,1]), \lambda, \tau, \rho)$, defined in the introduction. Here is a formalization of the situation described in the introduction.

Theorem 8. Suppose that $T:[0,1] \rightarrow[0,1]$ is a continuous unimodal map with turning point $m, T(0)=T(1)=0, T(m)=1$, and reflection R. Suppose that $([0,1], \mathcal{B}, \operatorname{Pr}, T, R)$ is a symmetric measure-preserving system and the distribution function of Pr is a homeomorphism of $[0,1]$ onto $[0,1]$. Then $([0,1], \mathcal{B}, \operatorname{Pr}, T, R)$ is isomorphic to $([0,1], \mathcal{B}, \lambda, \tau, \rho)$.

Since the key in this theorem is having the distribution function of Pr be an increasing function, the following corollary to Theorem 6 is of interest.

Corollary 9. Suppose that $([0,1], \mathcal{B}, \operatorname{Pr}, T, R)$ is a symmetric measure-preserving system and

1. Pr has no atoms;
2. T is unimodal with turning point m;
3. $T(m)=1$ and $T(0)=T(1)=0$;
4. For every interval $I \subset[0,1]$ there is some positive integer k so that $m \in T^{(k)}(I)$.

Then the distribution function of Pr is a homeomorphism of $[0,1]$ onto $[0,1]$. In particular, $([0,1], \mathcal{B}, \operatorname{Pr}, T, R)$ is isomorphic to $([0,1], \mathcal{B}, \lambda, \tau, \rho)$.

Proof. Suppose not. Note that we must have $T(x)>x$ on $(0, m]$. Let F denote the distribution function of Pr. Then for some $0 \leq a<b \leq 1$ we have $F(a)=F(b)$, so $\operatorname{Pr}([a, b])=0$. Let I denote $[a, b]$, and choose k so that $m \in T^{(k)}(I) \equiv I_{k}$. Note that since T is continuous I_{k} is a closed interval, and I_{k} has probability 0 . It is also clear that I_{k} has non-empty interior. Let $J_{k}=I_{k} \cup R\left(I_{k}\right) . J_{k}$ is a closed interval with probability 0 which contains m
in its interior. Hence $T\left(J_{k}\right)$ is an interval of probability 0 with right endpoint 1 and non-empty interior. This contradicts Theorem 6.

We are, however, in a position to assert the existence of symmetric measurepreserving systems. Using Corollary 4 and the idea of the proof of Corollary 9, it is easy to see

Theorem 10. Suppose

1. $T:[0,1] \rightarrow[0,1]$ is continuous;
2. T is unimodal with turning point m;
3. $T(m)=1, T(0)=T(1)=0$;
4. For every interval $I \subset[0,1]$ there is some positive integer k so that $m \in T^{(k)}(I)$.

Then there is a continuous reflection of $[0,1]$, denote it by R, and non-atomic probability measure Pr on \mathcal{B} which assigns positive probability to all intervals, such that $([0,1], \mathcal{B}, \operatorname{Pr}, T, R)$ is a symmetric measure-preserving system which is isomorphic to $([0,1], \mathcal{B}, \lambda, \tau, \rho)$.

Condition 4 in the theorem is satisfied in many cases. See the discussion of homtervals and stable periodic orbits in Collet and Eckmann [1980].

5 Symmetry in $([0,1], \mathcal{B}, \operatorname{Pr})$

Suppose that we are given a probability measure Pr on the Borel subsets, \mathcal{B}, of $[0,1]$. We would like to construct transformations T and R so that $(\Omega, \mathcal{B}, \operatorname{Pr}, T, R)$ is symmetric. We have seen that this is easily done if the distribution function of Pr is continuous and strictly increasing. Suppose then we only require that it be continuous.

Theorem 11. If Pr is a non-atomic probability measure on the Borel sets of $[0,1]$ then there is a symmetric measure-preserving system $([0,1], \mathcal{B}, \operatorname{Pr}, T, R)$.

The proof is presented as a series of lemmas. As before, put $F(t)=$ $\operatorname{Pr}([0, t])$. Put $F^{-1}(y)=\sup \{x: F(x) \leq y\}$ and $R(t)=F^{-1}(1-F(t))$ for all $t \in[0,1]$. Then we have:

Lemma 12. There exists $\Omega_{0} \subset \mathcal{B}$ with $\operatorname{Pr}\left(\Omega_{0}\right)=1$ such that $R(R(\omega))=\omega$ for all $\omega \in \Omega_{0}$.

Proof. We shall take Ω_{0} to be the complement of the union of all intervals where F is constant. Precisely, we define

$$
\begin{aligned}
\mathcal{J}=\{ & {[a, b] \subset[0,1]: a<b, F(a)=F(b), } \\
& x<a<b<y \text { implies } F(x)<F(a)<F(y)\}
\end{aligned}
$$

Since the elements of \mathcal{J} are disjoint closed subintervals of $[0,1]$ of positive length, \mathcal{J} is countable, and the union of its elements is not $[0,1]$ since each element of \mathcal{J} has probability 0 . Let Ω_{0} be the complement of the union of the elements of \mathcal{J}. It is clear that $\operatorname{Pr}\left(\Omega_{0}\right)=1$ and that F is strictly increasing on Ω_{0}.

It is easy to see that for all $x \in[0,1]$ we have $F\left(F^{-1}(x)\right)=x$. What we need to know is that if $x \in \Omega_{0}$ then $F^{-1}(F(x))=x$. To see this, observe that for all x we have $x \leq F^{-1}(F(x))$, so we suppose that $x \in \Omega_{0}$ and $x<$ $F^{-1}(F(x))$. However, since $F(x)=F\left(F^{-1}(F(x))\right)$, this would imply that both x and $F^{-1}(F(x))$ were in Ω_{0}^{c}, a contradiction.

Now it is a simple matter to check that if $x \in \Omega_{0}$ then $R(R(x))=x$.
Lemma 13. Suppose that $g:[a, b] \rightarrow[0,1]$ is monotone and continuous. Let $h=F^{-1} \circ g$. For $z \in(a, b]$ put $c_{z}=h\left(z^{-}\right)$and put $c_{a}=a$. For $z \in[a, b)$ put $d_{z}=h\left(z^{+}\right)$and put $d_{b}=b$. Then for any $z \in[a, b]$, we have $F\left(c_{z}\right)=F\left(d_{z}\right)$.

Proof. Simply observe that since F and g are continuous, $F\left(c_{z}\right)=g(z)=$ $F\left(d_{z}\right)$.

First we apply Lemma 13 to prove:
Lemma 14. R preserves Pr.
Proof. It is sufficient to prove that for any $b \in[0,1], \operatorname{Pr}([b, 1])=$ $\operatorname{Pr}\left(R^{-1}([b, 1])\right)$.

First notice that F^{-1} is strictly increasing and continuous from the right. Since F itself is non-decreasing and continuous we conclude that R is nonincreasing and continuous from the left. Let $b \in[0,1]$ be given and put $t_{b}=$ $\sup (\{x: R(x) \geq b\})$. It is straightforward to check that $R\left(t_{b}\right) \geq b$ and that $R^{-1}([b, 1])=\left[0, t_{b}\right]$.

Since $\operatorname{Pr}([b, 1])=1-F(b)$ and $\operatorname{Pr}\left(R^{-1}([b, 1])\right)=\operatorname{Pr}\left(\left[0, t_{b}\right]\right)=F\left(t_{b}\right)$, it is sufficient to show that $1-F(b)=F\left(t_{b}\right)$. This is easily done by applying Lemma 13 with $g(x)=1-F(x)$ and $z=t_{b}$, and observing that $R\left(t_{b}^{+}\right) \leq b \leq$ $R\left(t_{b}\right)=R\left(t_{b}^{-}\right)$.

We now focus our attention on constructing T which preserves Pr and which satisfies $T=T \circ R$. We omit the straightforward proof of the following:
Lemma 15. $m \equiv F^{-1}(1 / 2)$ is the unique fixed point of R.

Define the function T as follows:

$$
T(x)=\left\{\begin{array}{cc}
F^{-1}(2 F(x)) & \text { if } x \in[0, m] \\
F^{-1}(2(1-F(x))) & \text { if } x \in[m, 1]
\end{array}\right.
$$

Lemma 16. $T=T \circ R$
Proof. It is easy to check that for any $x \in[0,1]$ that $F(x)=1-F(R(x))$.
Suppose that $x \in[0, m]$. Then $R(x) \geq R(m)=m$ so $R(x) \in[m, 1]$. So, $T(x)=F^{-1}(2 F(x))=F^{-1}(2(1-F(R(x))))=T(R(x))$. Similarly, if $x \in[m, 1]$ then $R(x) \leq R(m)=m$ so $R(x) \in[0, m]$ and $T(x)=F^{-1}(2(1-$ $F(x)))=F^{-1}(2 F(R(x)))=T(R(x))$.
Lemma 17. T preserves Pr.
Proof. It will be sufficient to prove that for any $b \in[0,1]$ that $\operatorname{Pr}([b, 1])=$ $\operatorname{Pr}\left(T^{-1}([b, 1])\right)$.

Fix such a b and put $a_{b}=\inf (\{x: T(x) \geq b\})$ and $c_{b}=\sup (\{x: T(x) \geq b\})$. Observe that T is right continuous on $[0, m]$, left continuous on $[m, 1]$, and $T(m)=1$. Therefore $a_{b} \leq m \leq c_{b}$ and $T^{-1}([b, 1])=\left[a_{b}, c_{b}\right]$. Once we show that $F(b)=2 F\left(a_{b}\right)$ and $F(b)=2\left(1-F\left(c_{b}\right)\right)$ we will be done, since averaging these equations gives $F(b)=F\left(a_{b}\right)+1-F\left(c_{b}\right)$, which in turn shows

$$
\begin{aligned}
\operatorname{Pr}([b, 1]) & =1-F(b)=1-\left[F\left(a_{b}\right)+1-F\left(c_{b}\right)\right] \\
& =F\left(c_{b}\right)-F\left(a_{b}\right)=\operatorname{Pr}\left(\left[a_{b}, c_{b}\right]\right)
\end{aligned}
$$

(Note the use of our assumption that Pr is non-atomic.)
To see that $F(b)=2\left(F\left(a_{b}\right)\right)$ apply Lemma 13 with $g(x)=2 F(x)$ on $[0, m]$ and $z=a_{b}$, and to see that $F(b)=2\left(1-F\left(c_{b}\right)\right)$ apply Lemma 13 with $g(x)=2(1-F(x))$ on $[m, 1]$ with $z=c_{b}$.

References

[1] P. Collet and J. P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhäuser, Boston, 1980.
[2] W. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill Book Company, New York, 1987.
[3] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.

[^0]: Key Words: Measure-preserving, symmetric tent map
 Mathematical Reviews subject classification: Primary: 28D05. Secondary: 47A35
 Received by the editors July 28, 1997

