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AN EXTENSION OF A THEOREM OF ASH
ON GENERALIZED DIFFERENTIABILITY

Abstract

Let A =
{
b0, b1, . . . , bk+`; a0, a1, . . . , ak+`

}
be a system of 2(k+`+1)

real numbers such that bi 6= bj for i 6= j, satisfying
∑k+`
i=0 aib

p
i = 0 for

p = 0, 1, . . . , k − 1 and
∑k+`
i=0 aib

k
i = L 6= 0. It is proved that if f

is measurable, and if
∑k+`
i=0 aif(x + bih) = O(|h|λ) as h → 0, where

λ > k − 1, at each point x on a measurable set E then the Peano
derivative f([λ]) exists finitely a.e. on E. This will extend a result of Ash
[1]. It is further proved that if p is a positive integer ≤ k − 1 and if the
upper and lower approximate Peano derivatives of f of order p are finite
on a set E then f(p) exists a.e. on E.

1 Introduction

Throughout the paper R, N and N+ will denote the set of real numbers, the
set of all non-negative integers, and the set of all positive integers respectively.
The Lebesgue measure of a measurable set E will be denoted by µ(E), and
the Lebesgue outer measure of a set H will be denoted by µ∗(H).

We shall consider f : R→ R. Recall that f is said to have Peano derivative
(resp. approximate Peano derivative) at x of order k if there exist real numbers
αi, 1 ≤ i ≤ k, depending on x and f only, such that

f(x+ t) = f(x) +

k∑
i=1

tiαi
i!

+
tkε(x, t; f)

k!
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where
lim
t→0

ε(x, t; f) = 0
(

resp. lim ap
t→0

ε(x, t; f) = 0
)
.

The number αk is called the Peano derivative (resp. approximate Peano
derivative) of f at x of order k and is denoted by f(k)(x) (resp. f(k),a(x)).
For convenience, we take α0 = f(x) = f(0)(x) = f(0),a(x).

Suppose that f has Peano derivative (resp. approximate Peano derivative)
at x of order k. For t 6= 0 write

wk+1(x, t; f) = wk+1(x, t) = (k + 1)!
f(x+ t)−

∑k
i=0

tiαi

i!

tk+1
.

The upper (resp. approximate upper) Peano derivative of f at x of order k+1
is defined by

f (k+1)(x) = lim sup
t→0

wk+1(x, t)(
respectively

f (k+1),a(x) = limsup ap
t→0

wk+1(x, t)
)
.

The lower derivatives f
(k+1)

(x) and f
(k+1),a

(x) are defined analogously. If

f (k+1)(x) = f
(k+1)

(x)
(

respectively f (k+1),a(x) = f
(k+1),a

(x)
)

then the common value is called the Peano derivative (resp. approximate
Peano derivative) of f at x (possibly infinite) of order k + 1.

Definition 1.1. Let k ∈ N+, ` ∈ N and L ∈ R \ {0}. Let

A =
{
b0, b1, . . . , bk+`; a0, a1, . . . , ak+`

}
(1.1)

be a system of real numbers such that bi 6= bj for i 6= j, i, j = 0, 1, . . . , k + `,
and

k+∑̀
i=0

aib
p
i = 0 for p = 0, 1, . . . , k − 1

= L for p = k .

(1.2)

For a fixed system A in (1.1) satisfying (1.2), and for a function f : R→ R
we shall write

Φk(x, h) = Φk(x, h; f) = Φk(x, h; f ;A) =

k+∑̀
i=0

aif(x+ bih) . (1.3)
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The generalized Riemann derivative of f at x of order k with respect to the
system A is defined by

GRDk f(x) = GRDk f(x,A) =
k!

L
lim
h→0

Φk(x, h; f ;A)

hk
,

if this limit exists. It can be shown that if the Peano derivative f(k)(x) ex-
ists finitely then GRDk f(x,A) exists for every system A in (1.1) satisfying
(1.2) and equals f(k)(x). The upper and lower derivatives GRDk f(x) and
GRDk f(x) are defined in the obvious way. Thus A may be called the basis of
a kth order generalized derivative. The number ` is called its excess.

The following lemma is immediate.

Lemma 1.1. Let ` ∈ N+ and let there be m (≤ `) zeros among the ai’s in
(1.1). Let A0 be obtained from A by omitting those ai’s which are 0 and those
bi’s which correspond to those ai’s. Then A0 is a basis having excess only l−m
and

Φk(x, h; f ;A) = Φk(x, h; f ;A0)

and therefore the kth derivative with respect to A is the same as the kth deriva-
tive with respect to A0.

If ` = 0 and the bi’s are given then the ai’s are uniquely determined by
(1.2). In fact (bpi ), 0 ≤ i ≤ k, 0 ≤ p ≤ k, being a Van der Monde matrix, its
determinant is given by

det
(
bpi
)

=
∏
i<j

(bj − bi)

and so if (Ckr ) is the cofactor of bkr in det(bpi ) then (Ckr ) is also Van der Monde
and

det
(
Ckr
)

= (−1)k+r
∏′

i<j

(bj − bi)

where br never occurs in Π′ . Thus

det(bpi )

det(Ckr )
=

k∏
i=0,i6=r

(br − bi)

and

ar = L
( k∏
i=0,i6=r

(br − bi)
)−1

, 0 ≤ r ≤ k . (1.4)
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If in particular L = k! then the system (1.1) with (1.2) is considered by
Ash [1] and it covers a wide class of kth derivatives. The advantage of taking
L is that we can also accommodate the derivative D̃k considered in [5, pp.
9–11]. Indeed, if

L = 2k−1
k−1∏
i=1

(
2k−1 − 2i−1

)
and ` = 0 ,

and if b0 = 0, bi = 2i−1, 1 ≤ i ≤ k, then the kth derivative with respect to
this system is the derivative D̃k.

Now suppose that ` = 0. If bi = i + C, where C is a constant, then from
(1.4) we have

ai =
L

k!
(−1)k−i

(
k
i

)
. (1.5)

If on the other hand ` > 0 then the bi’s and the k+1 equations in (1.2) cannot
determine the ai’s uniquely. It is clear that if A is Riemann’s symmetric
system, i.e., ` = 0, L = k! and bi = i − k

2 (and so ai are as in (1.5)) then Φk
becomes Riemann’s symmetric difference of order k given by

∆k(x, h; f) =

k∑
i=0

(−1)k−i
(
k
i

)
f(x+ ih− kh/2) . (1.6)

Marcinkiewicz and Zygmund proved in a deep theorem [5, Theorem 1] that
if f is measurable and

∆k(x, h; f) = O(hk) , as h→ 0 (1.7)

for each x on a measurable set E, then the Peano derivative f(k) exists finitely
a.e. on E. We have extended in [6] the theorem of Marcinkiewicz and Zygmund
cited above replacing k at the right of (1.7) by any real number λ > k − 1.
More precisely, our theorem is:

Theorem 1.2. Let k ∈ N+ and λ ∈ R be such that λ > k − 1. Let f be
measurable. If

∆k(x, h; f) = O
(
|h|λ

)
, as h→ 0 ,

for each point x in a set E ⊂ R, then f([λ]) exists finitely a.e. on E, where [λ]
denotes the greatest integer not exceeding λ.

Ash [1] generalized the theorem of Marcinkiewich and Zygmund for any
general system A in (1.1) satisfying (1.2) with L = k!. In the present paper
we consider a general system A in (1.1) satisfying (1.2), and consider the gen-
eralized difference Φk(x, h; f ;A) instead of ∆k(x, h; f) and prove the analogue
of Theorem 1.2. This will be an extension of Theorem 1 of [1].
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Remark. In addition to [3] we wish to mention that there seems to be a
difficulty in the assumption

∣∣∣k+∑̀
i=0

Aif2(x+ ait)
∣∣∣ ≤M |t|k if |t| < δ for all x ∈ Π (1.8)

in [1, p. 189]. It may be noted that the similar assumption∣∣ω(x, t)
∣∣ < M for x ∈ Π, |t| < d

in [11, Vol. II, p. 75] can now be proved by taking

Gn =
{
x : x ∈ Ek−1 ;

∣∣ωk(x, t)
∣∣ ≤ n for 0 < |t| < 1

n

}
,

where Ek−1 is the set where f(k−1) exists, and noting the measurability of Gn
for all n (cf. [7, p. 771]), and choosing Gm ⊂ E, µ(E \Gm) < ε

2 and a perfect
set Π ⊂ Gm, µ(Gm \Π) < ε

2 and setting M = m+ 1 = 1
d . This approach will

not work for (1.8) since the sets

Sn =
{
x :

∣∣∣k+∑̀
i=0

Aif(x+ ait)
∣∣∣ ≤ n|t|k for |t| < 1

n

}
need not be measurable even for sufficiently large n. We show this in Example
1.5 which is an extension of Example 1 of [3]. We need a set S of measure
0 such that (S + S)/2 is non-measurable. For the proof of the existence of
such a set the authors of [3] suggested a method and refered to a source not
available to the readers. We give a proof in Theorem 1.4.

For any two sets A, B, −A is the set of all x such that −x ∈ A, and for a
fixed τ ∈ R, A + τ is the set of all points x + τ such that x ∈ A, and τA is
the set of all τx such that x ∈ A, and A+B is the set of all points x+ y such
that x ∈ A and y ∈ B. For the definition of a Hamel basis we refer to [10,
p. 411]. We need the following lemma which is a generalization of a result of
Sierpinski [9] and is proved by Rubel [8]. We give a proof for completeness.

Lemma 1.3. There exists a bounded set E of Lebesgue measure 0, but E+E
is non-measurable.

Proof. Let C be the Cantor ternary set in [0, 1]. Let r ∈ [0, 1] and let 0.a1a2 . . .,
where ai = 0, 1 or 2, be the ternary expansion of r/2. Define ci and c′i for
each i such that (ci, c

′
i) = (0, 0) if ai = 0, (ci, c

′
i) = (2, 0) if ai = 1, and
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(ci, c
′
i) = (2, 2) if ai = 2. Then c = 0.c1c2 . . . and c′ = 0.c′1c

′
2 . . . are points of

C and
r

2
=
c+ c′

2
giving r = c+ c′ .

Thus [0, 1] ⊂ C + C. Hence C ± C ± C ± . . . = R and therefore C contains a
Hamel basis H. Let

E0 = H ∪ (−H) ∪ {0} ; En+1 = En + En for n = 0, 1, 2, . . . .

Then

R =
⋃∞

n=0

⋃∞
m=1

1

m
En . (1.9)

For, if r ∈ R, then there are h1, h2, . . . , hp ∈ H and rationals ρ1, ρ2, . . . , ρp
such that

r =

p∑
i=1

ρihi =
1

d

p∑
i=1

eihi ,

where ρi = ei
d with |ei| ∈ N+, d ∈ N+ , and so

r ∈ 1

d
En if 2n ≥

p∑
i=1

|ei| .

Hence all sets En cannot be of measure 0. Let n0 be the smallest of n for which
En has positive outer measure. Since E0 is of measure 0, n0 ≥ 1. If possible, let
En0

be measurable. Since En0
= −En0

, En0+1 = En0
−En0

. So by [4, p. 68],
En0+1 contains an open interval I containing the origin. Let h ∈ H. Then we
can find an integer j ≥ 2 such that h

j ∈ I and hence h
j ∈ En0+1 = En0 +En0 .

Since every element of En0 is a linear combination of elements of Eo and hence
of H with integral coefficients, hj is a linear combination of elements of H with
integral coefficients. But this is a contradiction since H, being a Hamel basis,
is a linearly independent set with rational coefficients. Therefore, En0

is not
measurable. Putting E = En0−1 the proof is complete.

Theorem 1.4. For any bounded interval I there is a set S ⊂ I of measure 0,
but S+S

2 is non-measurable.

Proof. Let I = [a, b], α = inf E, β = supE, where E is the set of Lemma 1.3.
Let

S =
{ (b− a)(x− α)

β − α
+ a : x ∈ E

}
.

Then S satisfies the requirements.



An Extension of a Theorem of Ash 357

Example 1.5. There exists a measurable function f : R → R such that for
each n ∈ N+ the set

En =
{
x :
|f(x+ h)− 2f(x) + f(x− h)|

h2
≤ n for 0 < |h| < 1

n

}
is non-measurable.

Proof. Let n ∈ N+ and let

an =
1

n
− 1

8n2
, δn =

1

32n2
.

Let In be the closed interval with center 2n−1 and length 2δn. By Theorem 1.4
there is a set Sn ⊂ In of measure 0 such that Sn+Sn

2 is non-measurable. Let

fn =
1

2n
χ(Sn−an)∪(Sn+an) ,

where χE is the characteristic function of E. Since Sn is of measure 0, fn is
measurable. Applying similar arguments as in [3] with a, δ, S and

[
1
2−δ,

1
2 +δ

]
being replaced by an, δn, Sn and In respectively, it can be shown that

Sn + Sn
2

=

{
x : x ∈ In ;

|fn(x+ h)− 2fn(x) + fn(x− h)|
h2

> n ,

for some h , 0 < |h| < 1

n

}
.

Hence the set{
x : x ∈ In ;

|fn(x+ h)− 2fn(x) + fn(x− h)|
h2

≤ n , for 0 < |h| < 1

n

}
is non-measurable. Let f =

∑∞
n=1 fn. Then for each ν ∈ N+ the set

Eν =

{
x :
|f(x+ h)− 2f(x) + f(x− h)|

h2
≤ ν , for 0 < |h| < 1

ν

}
is non-measurable. For, if possible, suppose Eν is measurable. Then Eν ∩ Iν
is measurable. But

Eν ∩ Iν =

=

{
x : x ∈ Iν ;

|fν(x+ h)− 2fν(x) + fν(x− h)|
h2

≤ ν , for 0 < |h| < 1

ν

}
which is non-measurable, giving a contradiction.

We shall follow the approach of Ash [1] with essential modifications.
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2 Auxiliary Results

We need the following results from [3]:

Lemma 2.1. Let 0 be a point of outer density of E, let α, β ∈ R with β 6= 0
and let ε > 0. For each u > 0 set

Bu =
{
v ∈ [u, 2u] : αu+ βv ∈ E

}
.

Then there is a δ > 0 such that if 0 < u < δ, then µ∗(Bu) > u(1− ε).

Theorem 2.2. Let f be measurable and let n ∈ N+. Suppose that αi, βi,
i = 0, 1, . . . , n are real numbers such that βi 6= βj for i 6= j and for some
i ∈ {0, 1, . . . , n}, αi 6= 0, βi 6= 0. If

n∑
i=0

αif(x+ βit) = O(1) , as t→ 0

for x ∈ E ⊂ R, then f is bounded in a neighborhood of almost every point
x ∈ E.

Theorem 2.3. Let the hypotheses of Theorem 2.2 hold. If α ≥ 0 and

n∑
i=0

αif(x+ βit) = O
(
|t|α
)
, as t→ 0

for all x ∈ E ⊂ R, then for each β ∈ R
n∑
i=0

αif
(
x+ (βi − β)t

)
= O

(
|t|α
)
, as t→ 0

for almost every x ∈ E.

The theorem is true if “O” is replaced by “o”.

The above results are respectively Lemma 1, Theorem 2 and Theorem 3
of [3].

Lemma 2.4. Let f be measurable and let the Peano derivative f(k−1)(x) of f
at x of order k − 1 exist for each x in a set E ⊂ R. If

f(x+ h)−
k−1∑
i=0

hif(i)(x)

i!
= O(hk) , as h→ 0

for x ∈ E then f(k) exists a.e. on E.
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Proof. The proof is in [5, Lemma 7] and discussed in [6, Theorem MZ1] when
E is measurable. When E is non-measurable, let

E1 =

{
x : f(k−1)(x) exists and f(x+h)−

k−1∑
i=0

hif(i)(x)

i!
= O(hk) as h→ 0

}
.

Then since the upper and lower Peano derivatives are measurable, E1 is mea-
surable and so f(k) exists a.e. on E1. Since E ⊂ E1, the result follows.

3 Main Results

The CrP -integral, which is introduced by J. C. Burkill and used in the follow-
ing lemma, can be found in [2]. Indeed, any integral will suffice if integrability
of f implies measurability of f .

Lemma 3.1. Let f be CrP -integrable in every finite interval on R for some
r ∈ N+. Let

Φk(x, h; f ;A) =

k+∑̀
i=0

aif(x+ bih) = O
(
|h|λ

)
, as h→ 0 , (3.1)

where λ ≥ 0 at each point x on a set E ⊂ R. Then there is s ∈ N such that

∆k+s(x, h;Fs) = O
(
|h|λ+s

)
, as h→ 0 , (3.2)

for almost all x ∈ E where Fs is the sth indefinite CrP -integral of f , i.e.,

F0(x) = f(x) ; F1(x) =

∫ x

0

f(t) dt ;

Fs(x) =
1

(s− 1)!

∫ x

0

(x− t)s−1f(t) dt , for s ≥ 2 .
(3.3)

Proof. We note that, since f is CrP -integrable, it is measurable [2, Proposition
4.7]. We may suppose that b0 < b1 < . . . < bk+`. By Theorem 2.3 we may
further suppose that b0 = 1. We consider the following cases:

Case I. Let ` = 0, bi ∈ N+ for i = 1, 2, . . . , k. Then bk = s + k + 1 for
some s ∈ N. If s = 0 then bi = i + 1 for i = 0, 1, . . . , k, and so the ai’s are
given by (1.5). Hence from (3.1) and Theorem 2.3 (with αi = ai, βi = i + 1,
β = k

2 + 1, α = λ), we get (3.2) for s = 0.
If s > 0 there are s gaps in b0, b1, . . . , bk. Let n1 be the smallest positive

integer in (b0, bk) such that n1 /∈ {b0, b1, . . . , bk}. Applying Theorem 2.3 in
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(3.1) with αi = ai, βi = bi, β = n1 and α = λ, we have

k∑
i=0

aif
(
x+ (bi − n1)h

)
= O

(
|h|λ

)
, as h→ 0 ,

for almost all x ∈ E, and integrating with respect to h from 0 to t, |t| being
sufficiently small, we have

k∑
i=0

ai
bi − n1

F1

(
x+ (bi − n1)t

)
−
( k∑
i=0

ai
bi − n1

)
F1(x) =

= O
(
|t|λ+1

)
, as t→ 0 ,

(3.4)

for almost all x ∈ E. By (1.2) all the ai’s cannot be 0, and so applying
Theorem 2.3 in (3.4) with β = −n1, α = λ + 1 and αi = ai

bi−n1
, βi = bi − n1

for i = 0, 1, . . . , k and αk+1 = −
∑k
i=0

ai
bi−n1

, βk+1 = 0, we have

k∑
i=0

ai
bi − n1

F1

(
x+ bit

)
−
( k∑
i=0

ai
bi − n1

)
F1

(
x+ n1t

)
=

= O
(
|t|λ+1

)
, as t→ 0 ,

(3.5)

for almost all x ∈ E. It is easy to check that the system

A1 =
{
b0, b1, . . . , bk, n1,

a0
b0 − n1

;
a1

b1 − n1
, . . . ,

ak
bk − n1

,−
k∑
i=0

ai
bi − n1

}
satisfies the condition (1.2) with k replaced by k + 1. Hence from (3.5) we
observe that

Φk+1(x, h;F1;A1) = O
(
|h|λ+1

)
, as h→ 0 ,

for almost all x ∈ E. The numbers b0, b1, . . . , bk, n1 have one fewer gap than
b0, b1, . . . , bk and also the excess is still 0. So, if s = 1, the proof is com-
pleted as in the first paragraph replacing k by k + 1 and A by A1. Oth-
erwise, choose the smallest positive integer n2 in (b0, bk) such that n2 /∈
{bo, b1, . . . , bk, n1}, and repeating this process s − 1 more times, we obtain
the numbers b0, b1, . . . , bk, n1, . . . , ns which have no gap, and we obtain the
system As such that

Φk+s(x, h;Fs;As) = O
(
|h|λ+s

)
, as h→ 0 ,

for almost all x ∈ E. The proof is completed as in the first paragraph.
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Case II. Let ` ∈ N+, bi ∈ N+ for i = 1, 2, . . . , k + `. By employing
the process of filling in the gaps employed in Case I, we may suppose that
bi = i+ 1, i = 1, 2, . . . , k+ `. It may be noted that the process of filling never
increases the excess. Hence (3.1) reduces to

r∑
i=1

ai−1f(x+ ih) = O
(
|h|λ) , as h→ 0 for x ∈ E , (3.6)

where r = k + ` + 1. Applying Theorem 2.3 in (3.6) with β = r + 1, α = λ,
we have

r∑
i=1

ai−1f
(
x+

(
i− (r + 1)

)
h
)

= O
(
|h|λ

)
, as h→ 0 , (3.7)

for almost all x ∈ E. Integrating (3.6) and (3.7) with respect to h from 0 to
t, we have

r∑
i=1

ai−1
i
F1(x+ it)−

( r∑
i=1

ai−1
i

)
F1(x) =

= O
(
|t|λ+1

)
, as t→ 0 ,

(3.8)

for almost all x ∈ E, and

r∑
j=1

aj−1
j − r − 1

F1

(
x+ (j − r − 1)t

)
−
( r∑
j=1

aj−1
j − r − 1

)
F1(x) =

= O
(
|t|λ+1

)
, as t→ 0 ,

(3.9)

for almost all x ∈ E. Applying Theorem 2.3 to (3.9) with β = −r, α = λ+ 1
and changing indices by setting i = j − 1, we have

r−1∑
i=0

ai
i− r

F1

(
x+ it

)
−
(r−1∑
i=0

ai
i− r

)
F1(x+ rt) =

= O
(
|t|λ+1

)
, as t→ 0 ,

(3.10)

for almost all x ∈ E. If possible, suppose that the coefficients of F1(x + it),
0 ≤ i ≤ r, in (3.8) and (3.10) are proportional. Then there is ρ ∈ R \ {0} such
that

−
r∑
i=1

ai−1
i

= −ρa0
r

;

ai−1
i

=
ρai
i− r

, 1 ≤ i ≤ r − 1 ;

ar−1
r

= −ρ
r−1∑
i=0

ai
i− r

.

(3.11)
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It can be verified that the following two systems

B1 =
{

0, 1, . . . , r;−
r∑
i=1

ai−1
i
, a0,

a1
2
, . . . ,

ar−1
r

}
,

B2 =
{

0, 1, . . . , r;
a0
−r

,
a1

1− r
, . . . ,

ar−1
−1

,−
r−1∑
i=0

ai
i− r

}
,

(3.12)

which correspond to (3.8) and (3.10) respectively, satisfy the conditions (1.2)
with k replaced by k + 1. In fact, it is easy for B1. For B2 note that

r−1∑
i=0

ai
i− r

ip −
(r−1∑
i=0

ai
i− r

)
rp =

=

r−1∑
i=0

ai

p−1∑
ν=0

ip−1−νrν =

p−1∑
ν=0

rν
r∑
j=1

aj−1(j − 1)p−1−ν

=

p−1∑
ν=0

rν
p−1−ν∑
µ=0

(−1)p−1−ν−µ
(
p− 1− ν

µ

) r∑
j=1

aj−1j
µ ,

and since the last sum is 0 for µ = 0, 1, . . . , k − 1 and L for µ = k, it is 0 if
p = 0, 1, . . . , k, and it is L if p = k + 1, proving the assertion. Hence from
(3.11), (3.12) and the last condition of (1.2), we have ρL = L showing that
ρ = 1. Hence from (3.11)

ai = −r − i
i

ai−1 for 1 ≤ i ≤ r − 1 ,

and hence

r−1∑
i=0

ai(i+ 1)k = a0

r−1∑
i=0

(−1)i
(
r − 1
i

)
(i+ 1)k

= a0

r−1∑
i=0

(−1)i
(
r − 1
i

) k∑
ν=0

(
k
ν

)
iν

= a0

k∑
ν=0

(
k
ν

) r−1∑
i=0

(−1)i
(
r − 1
i

)
iν

= (−1)r−1a0

k∑
ν=0

(
k
ν

) r−1∑
i=0

(−1)r−1−i
(
r − 1
i

)
iν .

(3.13)
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Since

m∑
i=0

(−1)m−i
(
m
i

)
ip = 0 for p = 0, 1, . . . ,m− 1

= m! for p = m,

(cf. (1.5) and (1.2)), and since r − 1 = k + ` > k, the inner summation at the
right of (3.13) is 0 for ν = 0, 1, . . . , k, and so the right side of (3.13) is 0. But
since bi = i+1 and the system {b0, b1, . . . , bk+`; a0, a1, . . . , ak+`} satisfies (1.2),
the left hand side of (3.13) is L 6= 0, which is a contradiction. Therefore the
coefficients of F1(x + it), 0 ≤ i ≤ r, in (3.8) and (3.10) are not proportional.
Therefore denoting the coefficients of F (x+ it), 0 ≤ i ≤ r, in (3.8) and (3.10)
by pi and qi respectively, we conclude that there is an i0 ∈ {0, 1, . . . , r} such
that pi0 and qi0 are not equal. Set

γ = qi0
(
qi0 − pi0

)−1
, δ = −pi0

(
qi0 − pi0

)−1
;

then γ + δ = 1 and pi0γ + qi0δ = 0. Since (3.8) and (3.10) can be written as

Φk+1(x, h;F1;Bi) = O
(
|t|λ+1

)
, as t→ 0 , i = 1, 2 ,

for almost all x ∈ E, where B1 and B2 are given in (3.12), we have

γΦk+1(x, h;F1;B1) + δΦk+1(x, h;F1;B2) = O
(
|t|λ+1

)
as t→ 0 , (3.14)

for almost all x ∈ E. Let B be obtained by adding γ times the elements of
B1 with δ times the corresponding elements of B2. Since γ + δ = 1, the first
group of r + 1 elements of B are 0, 1, . . . , r, and the second group of r + 1
elements of B are γpi + δqi, 0 ≤ i ≤ r. Let B0 be obtained by omitting from
B those γpi + δqi’s for which γpi + δqi = 0 and the corresponding i’s. Then
by Lemma 1.1 and by (3.14)

Φk+1(x, h;F1;B0) = Φk+1(x, h;F1;B) = O
(
|t|λ+1

)
as t→ 0 ,

for almost all x ∈ E, and therefore, since γpi0 +δqi0 = 0, B0 has excess ≤ `−1.
Repeating this process at most `− 1 more times, this case reduces to Case I.

Case III. Let ` ∈ N+ and bi’s be arbitrary reals for 1 ≤ i ≤ k + `. (Note
that we have assumed that b0 = 1 < b1 < . . . < bk+`.) Let bi0 be the smallest
of b1, b2, . . . , bk+` which is not an integer. Let n1, n2 ∈ N+ \ {b0, b1, . . . , bk+`},
n1 6= n2. Applying Theorem 2.3 with β = nj , j = 1, 2, α = λ in (3.1), we have

k+∑̀
i=0

aif
(
x+ (bi − nj)h

)
= O

(
|h|λ

)
, as h→ 0 , j = 1, 2 , (3.15.j)
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for almost all x ∈ E. Integrating (3.15.j) with respect to h from 0 to t, and
then applying Theorem 2.3 with β = −nj , j = 1, 2, α = λ+ 1, we have

k+∑̀
i=0

ai
bi − nj

F1

(
x+ bit

)
−
(k+∑̀
i=0

ai
bi − nj

)
F1(x+ njt) =

= O
(
|t|λ+1

)
, as t→ 0 , j = 1, 2 ,

(3.16.j)

for almost all x ∈ E. Set

p =
bi0 − n1
n2 − n1

and q =
n2 − bi0
n2 − n1

.

Then
p+ q = 1 and p

ai0
bi0 − n1

+ q
ai0

bi0 − n2
= 0 . (3.17)

Adding (3.16.1) multiplied by p with (3.16.2) multiplied by q we have

Φk+1(x, h;F1;C1) = O
(
|h|λ+1

)
, as h→ 0 ,

for almost all x ∈ E, where

C1 =

{
b0, . . . , bi0 − 1, bi0+1, . . . , bk+`, n1, n2; p

a0
b0 − n1

+ q
a0

b0 − n2
,

. . . , p
ai0−1

bi0−1 − n1
+ q

ai0−1
bi0−1 − n2

, p
ai0+1

bi0+1 − n1
+ q

ai0+1

bi0+1 − n2
,

. . . , p
ak+`

bk+` − n1
+ q

ak+`
bk+` − n2

, −p
k+∑̀
i=0

ai
bi − n1

, −q
k+∑̀
i=0

ai
bi − n2

}
.

The system C1 satisfies (1.2) with k replaced by k + 1. Indeed, using (3.17)
we have

k+∑̀
i=0
i 6=i0

(
p

ai
bi − n1

+ q
ai

bi − n2

)
bsi −

k+∑̀
i=0

p
ai

bi − n1
ns1 −

k+∑̀
i=0

q
ai

bi − n2
ns2

which is 0 if s = 0, and if 1 ≤ s ≤ k + 1, then this is

=

k+∑̀
i=0

(
p
ai(b

s
i − ns1)

bi − n1
+ q

ai(b
s
i − ns2)

bi − n2

)
=

k+∑̀
i=0

(
pai

s−1∑
j=0

bs−1−ji nj1 + qai

s−1∑
j=0

bs−1−ji nj2

)

=

s−1∑
j=0

(
pnj1 + qnj2

) k+∑̀
i=0

aib
s−1−j
i =

k+∑̀
i=0

aib
s−1
i ,
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which is 0 if 1 ≤ s < k + 1 and is L if s = k + 1. So, we have removed the
non-integer bi0 and got C1. We next pick the smallest of bi0+1, . . . , bk+`, say
bi1 , which is not an integer, and choose n3, n4 ∈ N+ \ {b0, b1, . . . , bk+`, n1, n2},
n3 6= n4, and repeat the above argument to get a system C2 which contains
n1, n2, n3, n4, instead of bi0 , bi1 of A such that

Φk+2(x, h;F2;C2) = O
(
|h|λ+2

)
, as h→ 0 ,

for almost all x ∈ E. After repeating the process we get a system Cu, where
1 ≤ u ≤ k+ `, of 2(1 +k+ `+u) elements in which the first set of 1 +k+ `+u
elements are all in N+, and for which

Φk+u(x, h;Fu;Cu) = O
(
|h|λ+u

)
, as h→ 0 ,

for almost all x ∈ E. After rearranging the elements of Cu, this case now
reduces to Case II. This completes the proof.

Theorem 3.2. Let f be measurable. If

Φk(x, h; f ;A) = O
(
|h|λ

)
, as h→ 0 ,

where λ > k − 1, at each point x in a measurable set E ⊂ R, then f([λ]) exists
finitely a.e. on E, [λ] being the greatest integer not exceeding λ.

Proof. We may suppose that E is bounded. By Theorem 2.2 there is a mea-
surable set E1 ⊂ E such that µ(E1) = µ(E), and for each x ∈ E1 there exist
δ(x) > 0 and M(x) with

|f(t)| ≤M(x) for t ∈
(
x− δ(x), x+ δ(x)

)
.

Let ε1, ε2 be arbitrary positive numbers. Then there is a closed set E2 ⊂ E1

such that µ(E1 \ E2) < ε1, and so by the compactness of E2 there exist open
intervals I1, I2, . . . , In such that E2 ⊂ ∪ni=1Ii and f is bounded on ∪ni=1Ii.
Clearly f is bounded on the closure I = ∪iIi. Let ψ = f on I and = 0 outside
I. Then ψ is Lebesgue integrable and a fortiori CrP -integrable on every finite
interval in R. Then by Lemma 3.1, there exist s ∈ N and a set E3 ⊂ E2 such
that µ(E3) = µ(E2) and

∆k+s(x, t;ψs) = O
(
|t|λ+s

)
, as t→ 0 ,

for all x ∈ E3, where ψs is the sth indefinite integral of ψ. Therefore, by
Theorem 1.2, it follows that (ψs)([λ]+s) exists finitely on a set E4 ⊂ E3, where

µ(E4) = µ(E3). Let E5 ⊂ E4 be such that µ(E5) = µ(E4) and ψ
(s)
s = ψ on

E5. Now by [11, II; p. 77, Theorem 4.25], there is a perfect set P ⊂ E5 such
that µ(E5 \ P ) < ε2 and there are functions G and H satisfying
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(i) ψs = G+H,

(ii) G([λ]+s) exists continuously, and

(iii) H(r)(x) = 0 for x ∈ P , r = 0, 1, . . . , [λ] + s.

Let g = G(s). Then g([λ]) exists continuously. So, H(s) = (ψs−G)(s) = ψ−g
on E5. Let h = H(s) on E5. Then ψ = g + h on E5. Since H = 0 on P and
H(s) exists on P , H(s)(x) = 0 for x ∈ P , and so h(x) = 0 for all x ∈ P . Since
for all x ∈ E5, ψ, g satisfy (note that ψ = f on ∪ni=1Ii)

k+∑̀
i=0

aiψ(x+ bit) = O
(
t[λ]
)
, as t→ 0

and
n∑
i=0

aig(x+ bit) = O
(
t[λ]
)
, as t→ 0 ,

we have for all x ∈ E5

n∑
i=0

aih(x+ bit) = O
(
t[λ]
)
, as t→ 0 .

We now show that h([λ]) exists finitely a.e. on P . Define for each m ∈ N+,

E∗m =

{
x : x ∈ P ;

∣∣∣k+∑̀
i=0

aih(x+ bit)
∣∣∣ ≤ m|t|[λ] , for 0 < |t| < 1

m

}
.

Then P = ∪∞m=1E
∗
m. Let m be fixed. Let x0 ∈ E∗m be a point of outer density

of E∗m. We may suppose that x0 = 0. Let η, 0 < η < 1
k+`+2 , be arbitrary.

Choose j, 0 ≤ j ≤ k + `, such that aj 6= 0, bj 6= 0. By reordering the terms
of A we may suppose that a0 6= 0, b0 6= 0. Then by Lemma 2.1 there is a δ1,
0 < δ1 < 1, such that if 0 < t < δ1 then

µ∗(Bi) > (1− η)t and µ∗(C) > (1− η)t for i = 1, 2, . . . , k + ` ,

where

Bi =
{
u : u ∈ [t, 2t]; t+ (bi − b0)u ∈ E∗m

}
, i = 1, 2, . . . , k + ` ,

C =
{
u : u ∈ [t, 2t]; t− b0u ∈ E∗m

}
.
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Fix t ∈
(
0,min(δ1, 1/2m)

)
. Set

Si =
{
u : u ∈ [t, 2t]; t+ (bi − b0)u ∈ P

}
, i = 1, 2, . . . , k + ` ,

D =

{
u : u ∈ [t, 2t];

∣∣∣k+∑̀
i=0

aih
(
(t− b0u) + biu

)∣∣∣ ≤ m|u|[λ]} .
Then the Si’s and D are measurable for i = 1, 2, . . . , k + `. and C ⊂ D,
Bi ⊂ Si, and so

µ(D) > (1− η)t , µ(Si) > (1− η)t , for i = 1, 2, . . . , k + ` .

Now, since

µ

(
[t, 2t] \

((
∩k+`i=1Si

)
∩D

))
< (k + `+ 1)ηt < t ,

we have µ
(
(∩k+`i=1Si) ∩ D

)
> 0. Hence there is an u ∈ (∩k+`i=1Si) ∩ D, and so

t+ (bi − b0)u ∈ P , for all i = 1, 2, . . . , k + `, which gives

h
(
t+ (bi − b0)u

)
= 0 , for all i = 1, 2, . . . , k + ` .

Also, since u ∈ D, ∣∣∣k+∑̀
i=0

aih
(
(t− b0u) + biu

)∣∣∣ ≤ m|u|[λ] ,
and hence∣∣a0h(t)

∣∣ =
∣∣∣k+∑̀
i=0

aih
(
(t− b0u) + biu

)∣∣∣ ≤ m|u|[λ] ≤ 2[λ]m|t|[λ] .

This shows that
h(t) = O

(
t[λ]
)
, as t→ 0 .

Since x0 = 0 is a point of outer density of E∗m, it follows that

h(x+ t) = O
(
t[λ]
)
, as t→ 0 ,

for almost all points x in E∗m, and hence this also holds for almost all points x
in P . Therefore by Lemma 2.4, h([λ]) exists a.e. on P . Thus ψ([λ]) exists a.e.
on P . Since P ⊂ E5 and µ(E5 \P ) < ε2, and since ε2 is arbitrary, ψ([λ]) exists
a.e. on E5. Since E5 ⊂ E2 ⊂ ∪ni=1Ii and since f = ψ on ∪ni=1Ii, which is an
open set, f([λ]) exists a.e. on E5. Since E5 ⊂ E2 ⊂ E1 ⊂ E, µ(E5) = µ(E2),
µ(E1 \ E2) < ε1 and µ(E1) = µ(E), and since ε1 is arbitrary, f([λ]) exists a.e.
on E. This completes the proof.
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The above theorem is not true for λ = k−1 (see [6, Theorem 3.2]). However
we have Theorem 3.3

Theorem 3.3. Let k, p ∈ N+, p ≤ k − 1 and let f be measurable. Let

Φk(x, u; f ;A) = O
(
up
)
, as u→ 0 ,

for each point x in a set E. If f(p),a exists finitely on E, then f(p) exists a.e.
on E. More generally, if

−∞ < f
(p),a

≤ f (p),a <∞ on E ,

then f(p−1) exists finitely and

−∞ < f
(p)
≤ f (p) <∞ a.e. on E .

To prove the theorem, we need the following lemma.

Lemma 3.4. Let k, p ∈ N+ and let f be measurable. Let for all m ∈ N+,

Em =
{
x : f(p),a(x) exists finitely and∣∣Φk(x, u; f ;A)

∣∣ < m|u|p for 0 < |u| < 1

m

}
.

Then f(p) exists a.e. on Em.

Proof. Without loss of generality we may assume that a0 6= 0, b0 6= 0 in
A =

{
a0, a1, . . . , ak+`; b0, b1, . . . , bk+`

}
. Let x0 ∈ Em be a point of outer

density of Em. We suppose that

x0 = 0 = f(x0) = f(1),a(x0) = . . . = f(p),a(x0) .

Let 0 < ε < 1. Let

G =
{
x : |f(x)| ≤ ε|x|p

p!

}
.

Then G is measurable and 0 ∈ G is a point of density of G. Set H = Em ∩G.
Then 0 is a point of outer density of H. Let 0 < η < ε

2k+2` . Then by
Lemma 2.1, there is a δ > 0 such that, if 0 < u < δ then

µ∗(B) > (1− η)u , µ∗(Cj) > (1− η)u ,

where

B =
{
v ∈ [u, 2u] :

u+ v

2
∈ H

}
,
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Cj =
{
v ∈ [u, 2u] : λju+ µjv ∈ H

}
, for 1 ≤ j ≤ k + ` ,

where the λj ’s and µj ’s are given as follows:

λj =
1 +

bj
b0

2
, µj =

1− bj
b0

2
for 1 ≤ j ≤ k + ` .

Fix u ∈
(
0,min(δ, |b0|m )

)
. Let

S =

{
v ∈ [u, 2u] :

∣∣∣Φk(u+ v

2
,
u− v
2b0

)∣∣∣ < m
∣∣∣u− v

2b0

∣∣∣p}
and

Tj =
{
v ∈ [u, 2u] :

∣∣f(λju+ µjv)
∣∣ ≤ ε|λju+ µjv|p

p!

}
, for 1 ≤ j ≤ k + ` .

Since f is measurable, S and Tj are measurable. Also B ⊂ S, Cj ⊂ Tj , and
hence

µ(S) > (1− η)u , µ(Tj) > (1− η)u .

Therefore

µ
(
∩j(S ∩ Tj)

)
>
(
1− 2(k + `)η

)
u > (1− ε)u .

Hence (
∩j(S ∩ Tj)

)
∩ (u, u+ εu) 6= ∅ .

Choose v ∈
(
∩j(S ∩ Tj)

)
∩ (u, u+ εu). Then

0 < v − u < εu < u ,

and so ∣∣∣Φk(u+ v

2
,
u− v
2b0

)∣∣∣ < m
∣∣∣u− v

2b0

∣∣∣p < m
∣∣∣ εu
2b0

∣∣∣p ,
which gives ∣∣∣k+∑̀

i=0

aif
(u+ v

2
+ bi

u− v
2b0

)∣∣∣ < m
∣∣∣ εu
2b0

∣∣∣p .
Hence

|a0| · |f(u)| < m
∣∣∣ εu
2b0

∣∣∣p +

k+∑̀
i=1

|ai| ·
∣∣∣∣f( (1 + bi

b0
)u

2
+

(1− bi
b0

)v

2

)∣∣∣∣ .
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Since v ∈ Ti for 1 ≤ i ≤ k + `,

|a0| · |f(u)| < m
∣∣∣ εu
2b0

∣∣∣p +

k+∑̀
i=1

ε|ai| · |λiu+ µiv|p

p!

≤ m
∣∣∣ εu
2b0

∣∣∣p +
ε

p!

k+∑̀
i=1

|ai|
(
|λi|+ 2|µi|

)p
up

≤ ε
[

m

|2b0|p
+

1

p!

k+∑̀
i=1

|ai|
(
|λi|+ 2|µi|

)p]
up .

This shows that f(u)
up → 0 as u→ 0+.

Similarly, it can be shown that f(u)
up → 0 as u → 0−. This completes the

proof of the lemma.

Proof of the theorem. The sequence {Em}, defined in Lemma 3.4, is nonde-
creasing and E ⊂ ∪∞m=1Em. By Lemma 3.4, f(p) exists a.e. on Em, and so the
first part follows.

For the last part we proceed exactly as in Lemma 3.4 and in the first part
of the theorem, but with the following changes:

Em =
{
x : −m <f

(p),a
(x) ≤ f (p),a(x) < m and∣∣Φk(x, u; f ;A)

∣∣ < m|u|p for 0 < |u| < 1

m

}
,

with the assumption that

x0 = 0 = f(x0) = f(1),a(x0) = . . . = f(p−1),a(x0) ,

and

Gm =
{
x : |f(x)| ≤ m|x|p

p!

}
,

Tj =
{
v ∈ [u, 2u] :

∣∣f(λju+ µjv)
∣∣ ≤ m|λju+ µjv|p

p!

}
, for 1 ≤ j ≤ k + ` ,

other sets in Lemma 3.4 remaining unchanged. Proceeding as in Lemma 3.4 ,

|a0| · |f(u)| ≤
[
mεp

|2b0|p
+
m

p!

k+∑̀
i=1

|ai|
(
|λi|+ 2|µi|

)p]
up ,

showing that f(u) = O(up) as u→ 0+, and similarly f(u) = O(up) as u→ 0−,
and the rest is clear.
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Corollary 3.5. Under the hypotheses of Theorem 3.3, if

−∞ < f
(p),a

≤ f (p),a <∞ on E

then f(p) exists finitely a.e. on E.

The proof follows from Theorem 3.3 and Theorem 2.2 of [6].
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