RESEARCH

S. N. Mukhopadhyay and S. Mitra*, Department of Mathematics, The University of Burdwan, Burdwan - 713104, India.

AN EXTENSION OF A THEOREM OF ASH ON GENERALIZED DIFFERENTIABILITY

Abstract

Let $A = \{b_0, b_1, \ldots, b_{k+\ell}; a_0, a_1, \ldots, a_{k+\ell}\}$ be a system of $2(k+\ell+1)$ real numbers such that $b_i \neq b_j$ for $i \neq j$, satisfying $\sum_{i=0}^{k+\ell} a_i b_i^p = 0$ for $p = 0, 1, \ldots, k-1$ and $\sum_{i=0}^{k+\ell} a_i b_i^k = L \neq 0$. It is proved that if f is measurable, and if $\sum_{i=0}^{k+\ell} a_i f(x+b_i h) = O(|h|^{\lambda})$ as $h \to 0$, where $\lambda > k-1$, at each point x on a measurable set E then the Peano derivative $f_{(\lambda)}$ exists finitely *a.e.* on E. This will extend a result of Ash [1]. It is further proved that if p is a positive integer $\leq k-1$ and if the upper and lower approximate Peano derivatives of f of order p are finite on a set E then $f_{(p)}$ exists *a.e.* on E.

1 Introduction

Throughout the paper \mathbb{R} , \mathbb{N} and \mathbb{N}^+ will denote the set of real numbers, the set of all non-negative integers, and the set of all positive integers respectively. The Lebesgue measure of a measurable set E will be denoted by $\mu(E)$, and the Lebesgue outer measure of a set H will be denoted by $\mu^*(H)$.

We shall consider $f : \mathbb{R} \to \mathbb{R}$. Recall that f is said to have Peano derivative (resp. approximate Peano derivative) at x of order k if there exist real numbers α_i , $1 \le i \le k$, depending on x and f only, such that

$$f(x+t) = f(x) + \sum_{i=1}^{k} \frac{t^{i} \alpha_{i}}{i!} + \frac{t^{k} \epsilon(x,t;f)}{k!}$$

Key Words: Peano derivative, approximate Peano derivative.

Mathematical Reviews subject classification: 26A24

Received by the editors January 29, 1998

^{*}The work of the second author was supported by CSIR grant of INDIA.

³⁵¹

where

$$\lim_{t \to 0} \epsilon(x, t; f) = 0 \quad \left(\text{resp.} \quad \lim_{t \to 0} \epsilon(x, t; f) = 0 \right)$$

The number α_k is called the Peano derivative (resp. approximate Peano derivative) of f at x of order k and is denoted by $f_{(k)}(x)$ (resp. $f_{(k),a}(x)$). For convenience, we take $\alpha_0 = f(x) = f_{(0)}(x) = f_{(0),a}(x)$.

Suppose that f has Peano derivative (resp. approximate Peano derivative) at x of order k. For $t \neq 0$ write

$$w_{k+1}(x,t;f) = w_{k+1}(x,t) = (k+1)! \frac{f(x+t) - \sum_{i=0}^{k} \frac{t^{i} \alpha_{i}}{i!}}{t^{k+1}}.$$

The upper (resp. approximate upper) Peano derivative of f at x of order k+1 is defined by

$$\overline{f}_{(k+1)}(x) = \limsup_{t \to 0} w_{k+1}(x, t)$$

(respectively

$$\overline{f}_{(k+1),a}(x) = \limsup_{t \to 0} \operatorname{ap} w_{k+1}(x,t) \Big) \,.$$

The lower derivatives $\underline{f}_{(k+1)}(x)$ and $\underline{f}_{(k+1),a}(x)$ are defined analogously. If

$$\overline{f}_{(k+1)}(x) = \underline{f}_{(k+1)}(x) \quad \left(\text{respectively } \overline{f}_{(k+1),a}(x) = \underline{f}_{(k+1),a}(x)\right)$$

then the common value is called the Peano derivative (resp. approximate Peano derivative) of f at x (possibly infinite) of order k + 1.

Definition 1.1. Let $k \in \mathbb{N}^+$, $\ell \in \mathbb{N}$ and $L \in \mathbb{R} \setminus \{0\}$. Let

$$A = \left\{ b_0, b_1, \dots, b_{k+\ell}; a_0, a_1, \dots, a_{k+\ell} \right\}$$
(1.1)

be a system of real numbers such that $b_i \neq b_j$ for $i \neq j$, $i, j = 0, 1, ..., k + \ell$, and

$$\sum_{i=0}^{k+\ell} a_i b_i^p = 0 \quad \text{for} \quad p = 0, 1, \dots, k-1$$

$$= L \quad \text{for} \quad p = k.$$
(1.2)

For a fixed system A in (1.1) satisfying (1.2), and for a function $f : \mathbb{R} \to \mathbb{R}$ we shall write

$$\Phi_k(x,h) = \Phi_k(x,h;f) = \Phi_k(x,h;f;A) = \sum_{i=0}^{k+\ell} a_i f(x+b_i h).$$
(1.3)

AN EXTENSION OF A THEOREM OF ASH

The generalized Riemann derivative of f at x of order k with respect to the system A is defined by

$$\operatorname{GRD}_k f(x) = \operatorname{GRD}_k f(x, A) = \frac{k!}{L} \lim_{h \to 0} \frac{\Phi_k(x, h; f; A)}{h^k}$$

if this limit exists. It can be shown that if the Peano derivative $f_{(k)}(x)$ exists finitely then $\operatorname{GRD}_k f(x, A)$ exists for every system A in (1.1) satisfying (1.2) and equals $f_{(k)}(x)$. The upper and lower derivatives $\overline{\operatorname{GRD}}_k f(x)$ and $\underline{\operatorname{GRD}}_k f(x)$ are defined in the obvious way. Thus A may be called the basis of a kth order generalized derivative. The number ℓ is called its excess.

The following lemma is immediate.

Lemma 1.1. Let $\ell \in \mathbb{N}^+$ and let there be $m \ (\leq \ell)$ zeros among the a_i 's in (1.1). Let A_0 be obtained from A by omitting those a_i 's which are 0 and those b_i 's which correspond to those a_i 's. Then A_0 is a basis having excess only l-m and

$$\Phi_k(x,h;f;A) = \Phi_k(x,h;f;A_0)$$

and therefore the kth derivative with respect to A is the same as the kth derivative with respect to A_0 .

If $\ell = 0$ and the b_i 's are given then the a_i 's are uniquely determined by (1.2). In fact (b_i^p) , $0 \le i \le k$, $0 \le p \le k$, being a Van der Monde matrix, its determinant is given by

$$\det(b_i^p) = \prod_{i < j} (b_j - b_i)$$

and so if (C_r^k) is the cofactor of b_r^k in $\det(b_i^p)$ then (C_r^k) is also Van der Monde and

$$\det(C_r^k) = (-1)^{k+r} \prod_{i < j}' (b_j - b_i)$$

where b_r never occurs in Π' . Thus

$$\frac{\det(b_i^p)}{\det(C_r^k)} = \prod_{i=0, i \neq r}^k (b_r - b_i)$$

and

$$a_r = L \Big(\prod_{i=0, i \neq r}^k (b_r - b_i) \Big)^{-1}, \quad 0 \le r \le k.$$
(1.4)

If in particular L = k! then the system (1.1) with (1.2) is considered by Ash [1] and it covers a wide class of kth derivatives. The advantage of taking L is that we can also accommodate the derivative \tilde{D}_k considered in [5, pp. 9–11]. Indeed, if

$$L = 2^{k-1} \prod_{i=1}^{k-1} (2^{k-1} - 2^{i-1})$$
 and $\ell = 0$,

and if $b_0 = 0$, $b_i = 2^{i-1}$, $1 \le i \le k$, then the kth derivative with respect to this system is the derivative \tilde{D}_k .

Now suppose that $\ell = 0$. If $b_i = i + C$, where C is a constant, then from (1.4) we have

$$a_{i} = \frac{L}{k!} \, (-1)^{k-i} \, \binom{k}{i} \, . \tag{1.5}$$

If on the other hand $\ell > 0$ then the b_i 's and the k+1 equations in (1.2) cannot determine the a_i 's uniquely. It is clear that if A is Riemann's symmetric system, i.e., $\ell = 0$, L = k! and $b_i = i - \frac{k}{2}$ (and so a_i are as in (1.5)) then Φ_k becomes Riemann's symmetric difference of order k given by

$$\Delta_k(x,h;f) = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} f(x+ih-kh/2).$$
 (1.6)

Marcinkiewicz and Zygmund proved in a deep theorem [5, Theorem 1] that if f is measurable and

$$\Delta_k(x,h;f) = O(h^k), \quad \text{as } h \to 0 \tag{1.7}$$

for each x on a measurable set E, then the Peano derivative $f_{(k)}$ exists finitely a.e. on E. We have extended in [6] the theorem of Marcinkiewicz and Zygmund cited above replacing k at the right of (1.7) by any real number $\lambda > k - 1$. More precisely, our theorem is:

Theorem 1.2. Let $k \in \mathbb{N}^+$ and $\lambda \in \mathbb{R}$ be such that $\lambda > k - 1$. Let f be measurable. If

$$\Delta_k(x,h;f) = O(|h|^{\lambda}), \quad as \quad h \to 0$$

for each point x in a set $E \subset \mathbb{R}$, then $f_{([\lambda])}$ exists finitely a.e. on E, where $[\lambda]$ denotes the greatest integer not exceeding λ .

Ash [1] generalized the theorem of Marcinkiewich and Zygmund for any general system A in (1.1) satisfying (1.2) with L = k!. In the present paper we consider a general system A in (1.1) satisfying (1.2), and consider the generalized difference $\Phi_k(x, h; f; A)$ instead of $\Delta_k(x, h; f)$ and prove the analogue of Theorem 1.2. This will be an extension of Theorem 1 of [1].

Remark. In addition to [3] we wish to mention that there seems to be a difficulty in the assumption

$$\left|\sum_{i=0}^{k+\ell} A_i f_2(x+a_i t)\right| \le M|t|^k \quad \text{if } |t| < \delta \text{ for all } x \in \Pi$$
(1.8)

in [1, p. 189]. It may be noted that the similar assumption

$$|\omega(x,t)| < M$$
 for $x \in \Pi$, $|t| < d$

in [11, Vol. II, p. 75] can now be proved by taking

$$G_n = \left\{ x : x \in E_{k-1}; \ \left| \omega_k(x,t) \right| \le n \text{ for } 0 < |t| < \frac{1}{n} \right\},\$$

where E_{k-1} is the set where $f_{(k-1)}$ exists, and noting the measurability of G_n for all n (cf. [7, p. 771]), and choosing $G_m \subset E$, $\mu(E \setminus G_m) < \frac{\epsilon}{2}$ and a perfect set $\Pi \subset G_m$, $\mu(G_m \setminus \Pi) < \frac{\epsilon}{2}$ and setting $M = m + 1 = \frac{1}{d}$. This approach will not work for (1.8) since the sets

$$S_n = \left\{ x : \left| \sum_{i=0}^{k+\ell} A_i f(x+a_i t) \right| \le n|t|^k \quad \text{for} \ |t| < \frac{1}{n} \right\}$$

need not be measurable even for sufficiently large n. We show this in Example 1.5 which is an extension of Example 1 of [3]. We need a set S of measure 0 such that (S + S)/2 is non-measurable. For the proof of the existence of such a set the authors of [3] suggested a method and referred to a source not available to the readers. We give a proof in Theorem 1.4.

For any two sets A, B, -A is the set of all x such that $-x \in A$, and for a fixed $\tau \in \mathbb{R}$, $A + \tau$ is the set of all points $x + \tau$ such that $x \in A$, and τA is the set of all τx such that $x \in A$, and A + B is the set of all points x + y such that $x \in A$ and $y \in B$. For the definition of a Hamel basis we refer to [10, p. 411]. We need the following lemma which is a generalization of a result of Sierpinski [9] and is proved by Rubel [8]. We give a proof for completeness.

Lemma 1.3. There exists a bounded set E of Lebesgue measure 0, but E + E is non-measurable.

Proof. Let C be the Cantor ternary set in [0, 1]. Let $r \in [0, 1]$ and let $0.a_1a_2...$, where $a_i = 0, 1$ or 2, be the ternary expansion of r/2. Define c_i and c'_i for each i such that $(c_i, c'_i) = (0, 0)$ if $a_i = 0, (c_i, c'_i) = (2, 0)$ if $a_i = 1$, and

 $(c_i, c'_i) = (2, 2)$ if $a_i = 2$. Then $c = 0.c_1c_2...$ and $c' = 0.c'_1c'_2...$ are points of C and r = c + c'

$$\frac{r}{2} = \frac{c+c'}{2}$$
 giving $r = c+c'$

Thus $[0,1] \subset C + C$. Hence $C \pm C \pm C \pm \ldots = \mathbb{R}$ and therefore C contains a Hamel basis H. Let

$$E_0 = H \cup (-H) \cup \{0\}; \quad E_{n+1} = E_n + E_n \text{ for } n = 0, 1, 2, \dots$$

Then

$$\mathbb{R} = \bigcup_{n=0}^{\infty} \bigcup_{m=1}^{\infty} \frac{1}{m} E_n \,. \tag{1.9}$$

For, if $r \in \mathbb{R}$, then there are $h_1, h_2, \ldots, h_p \in H$ and rationals $\rho_1, \rho_2, \ldots, \rho_p$ such that

$$r = \sum_{i=1}^{p} \rho_i h_i = \frac{1}{d} \sum_{i=1}^{p} e_i h_i ,$$

where $\rho_i = \frac{e_i}{d}$ with $|e_i| \in \mathbb{N}^+$, $d \in \mathbb{N}^+$, and so

$$r \in \frac{1}{d}E_n$$
 if $2^n \ge \sum_{i=1}^p |e_i|$.

Hence all sets E_n cannot be of measure 0. Let n_0 be the smallest of n for which E_n has positive outer measure. Since E_0 is of measure 0, $n_0 \ge 1$. If possible, let E_{n_0} be measurable. Since $E_{n_0} = -E_{n_0}$, $E_{n_0+1} = E_{n_0} - E_{n_0}$. So by [4, p. 68], E_{n_0+1} contains an open interval I containing the origin. Let $h \in H$. Then we can find an integer $j \ge 2$ such that $\frac{h}{j} \in I$ and hence $\frac{h}{j} \in E_{n_0+1} = E_{n_0} + E_{n_0}$. Since every element of E_{n_0} is a linear combination of elements of E_o and hence of H with integral coefficients, $\frac{h}{j}$ is a linear combination of elements of H with integral coefficients. But this is a contradiction since H, being a Hamel basis, is a linearly independent set with rational coefficients. Therefore, E_{n_0} is not measurable. Putting $E = E_{n_0-1}$ the proof is complete.

Theorem 1.4. For any bounded interval I there is a set $S \subset I$ of measure 0, but $\frac{S+S}{2}$ is non-measurable.

Proof. Let I = [a, b], $\alpha = \inf E$, $\beta = \sup E$, where E is the set of Lemma 1.3. Let

$$S = \left\{ \frac{(b-a)(x-\alpha)}{\beta - \alpha} + a : x \in E \right\}.$$

Then S satisfies the requirements.

AN EXTENSION OF A THEOREM OF ASH

Example 1.5. There exists a measurable function $f : \mathbb{R} \to \mathbb{R}$ such that for each $n \in \mathbb{N}^+$ the set

$$E_n = \left\{ x : \frac{|f(x+h) - 2f(x) + f(x-h)|}{h^2} \le n \text{ for } 0 < |h| < \frac{1}{n} \right\}$$

is non-measurable.

Proof. Let $n \in \mathbb{N}^+$ and let

$$a_n = \frac{1}{n} - \frac{1}{8n^2}, \quad \delta_n = \frac{1}{32n^2}.$$

Let I_n be the closed interval with center 2n-1 and length $2\delta_n$. By Theorem 1.4 there is a set $S_n \subset I_n$ of measure 0 such that $\frac{S_n + S_n}{2}$ is non-measurable. Let

$$f_n = \frac{1}{2n} \chi_{(S_n - a_n) \cup (S_n + a_n)},$$

where χ_E is the characteristic function of E. Since S_n is of measure 0, f_n is measurable. Applying similar arguments as in [3] with a, δ, S and $\left[\frac{1}{2} - \delta, \frac{1}{2} + \delta\right]$ being replaced by a_n , δ_n , S_n and I_n respectively, it can be shown that

$$\frac{S_n + S_n}{2} = \left\{ x \, : \, x \in I_n \, ; \quad \frac{|f_n(x+h) - 2f_n(x) + f_n(x-h)|}{h^2} > n \, , \\ \text{for some } h \, , \quad 0 < |h| < \frac{1}{n} \right\}$$

Hence the set

$$\left\{x \,:\, x \in I_n\,; \quad \frac{|f_n(x+h) - 2f_n(x) + f_n(x-h)|}{h^2} \le n\,, \text{ for } 0 < |h| < \frac{1}{n}\right\}$$

is non-measurable. Let $f = \sum_{n=1}^{\infty} f_n$. Then for each $\nu \in \mathbb{N}^+$ the set

$$E_{\nu} = \left\{ x : \frac{|f(x+h) - 2f(x) + f(x-h)|}{h^2} \le \nu, \text{ for } 0 < |h| < \frac{1}{\nu} \right\}$$

is non-measurable. For, if possible, suppose E_{ν} is measurable. Then $E_{\nu} \cap I_{\nu}$ is measurable. But $F \cap I$

$$E_{\nu} \cap I_{\nu} =$$

$$= \left\{ x : x \in I_{\nu}; \quad \frac{|f_{\nu}(x+h) - 2f_{\nu}(x) + f_{\nu}(x-h)|}{h^2} \le \nu, \text{ for } 0 < |h| < \frac{1}{\nu} \right\}$$
which is non-measurable, giving a contradiction.

which is non-measurable, giving a contradiction.

We shall follow the approach of Ash [1] with essential modifications.

2 Auxiliary Results

We need the following results from [3]:

Lemma 2.1. Let 0 be a point of outer density of E, let $\alpha, \beta \in \mathbb{R}$ with $\beta \neq 0$ and let $\epsilon > 0$. For each u > 0 set

$$B_u = \left\{ v \in [u, 2u] : \alpha u + \beta v \in E \right\}.$$

Then there is a $\delta > 0$ such that if $0 < u < \delta$, then $\mu^*(B_u) > u(1 - \epsilon)$.

Theorem 2.2. Let f be measurable and let $n \in \mathbb{N}^+$. Suppose that α_i , β_i , $i = 0, 1, \ldots, n$ are real numbers such that $\beta_i \neq \beta_j$ for $i \neq j$ and for some $i \in \{0, 1, \ldots, n\}, \alpha_i \neq 0, \beta_i \neq 0$. If

$$\sum_{i=0}^n \alpha_i f(x+\beta_i t) = O(1) \,, \quad as \ t \to 0$$

for $x \in E \subset \mathbb{R}$, then f is bounded in a neighborhood of almost every point $x \in E$.

Theorem 2.3. Let the hypotheses of Theorem 2.2 hold. If $\alpha \geq 0$ and

$$\sum_{i=0}^{n} \alpha_i f(x+\beta_i t) = O\left(|t|^{\alpha}\right), \quad as \ t \to 0$$

for all $x \in E \subset \mathbb{R}$, then for each $\beta \in \mathbb{R}$

$$\sum_{i=0}^{n} \alpha_i f\left(x + (\beta_i - \beta)t\right) = O\left(|t|^{\alpha}\right), \quad as \ t \to 0$$

for almost every $x \in E$.

The theorem is true if "O" is replaced by "o".

The above results are respectively Lemma 1, Theorem 2 and Theorem 3 of [3].

Lemma 2.4. Let f be measurable and let the Peano derivative $f_{(k-1)}(x)$ of f at x of order k-1 exist for each x in a set $E \subset \mathbb{R}$. If

$$f(x+h) - \sum_{i=0}^{k-1} \frac{h^i f_{(i)}(x)}{i!} = O(h^k), \quad as \ h \to 0$$

for $x \in E$ then $f_{(k)}$ exists a.e. on E.

Proof. The proof is in [5, Lemma 7] and discussed in [6, Theorem MZ1] when E is measurable. When E is non-measurable, let

$$E_1 = \left\{ x : f_{(k-1)}(x) \text{ exists and } f(x+h) - \sum_{i=0}^{k-1} \frac{h^i f_{(i)}(x)}{i!} = O(h^k) \text{ as } h \to 0 \right\}.$$

Then since the upper and lower Peano derivatives are measurable, E_1 is measurable and so $f_{(k)}$ exists *a.e.* on E_1 . Since $E \subset E_1$, the result follows. \Box

3 Main Results

The $C_r P$ -integral, which is introduced by J. C. Burkill and used in the following lemma, can be found in [2]. Indeed, any integral will suffice if integrability of f implies measurability of f.

Lemma 3.1. Let f be C_rP -integrable in every finite interval on \mathbb{R} for some $r \in \mathbb{N}^+$. Let

$$\Phi_k(x,h;f;A) = \sum_{i=0}^{k+\ell} a_i f(x+b_i h) = O(|h|^{\lambda}), \quad as \ h \to 0,$$
(3.1)

where $\lambda \geq 0$ at each point x on a set $E \subset \mathbb{R}$. Then there is $s \in \mathbb{N}$ such that

$$\Delta_{k+s}(x,h;F_s) = O\left(|h|^{\lambda+s}\right), \quad as \quad h \to 0,$$
(3.2)

for almost all $x \in E$ where F_s is the sth indefinite $C_r P$ -integral of f, i.e.,

$$F_0(x) = f(x); \quad F_1(x) = \int_0^x f(t) dt;$$

$$F_s(x) = \frac{1}{(s-1)!} \int_0^x (x-t)^{s-1} f(t) dt, \quad \text{for } s \ge 2.$$
(3.3)

Proof. We note that, since f is $C_r P$ -integrable, it is measurable [2, Proposition 4.7]. We may suppose that $b_0 < b_1 < \ldots < b_{k+\ell}$. By Theorem 2.3 we may further suppose that $b_0 = 1$. We consider the following cases:

CASE I. Let $\ell = 0$, $b_i \in \mathbb{N}^+$ for i = 1, 2, ..., k. Then $b_k = s + k + 1$ for some $s \in \mathbb{N}$. If s = 0 then $b_i = i + 1$ for i = 0, 1, ..., k, and so the a_i 's are given by (1.5). Hence from (3.1) and Theorem 2.3 (with $\alpha_i = a_i, \beta_i = i + 1, \beta = \frac{k}{2} + 1, \alpha = \lambda$), we get (3.2) for s = 0.

If s > 0 there are s gaps in b_0, b_1, \ldots, b_k . Let n_1 be the smallest positive integer in (b_0, b_k) such that $n_1 \notin \{b_0, b_1, \ldots, b_k\}$. Applying Theorem 2.3 in

(3.1) with $\alpha_i = a_i, \ \beta_i = b_i, \ \beta = n_1 \text{ and } \alpha = \lambda$, we have

$$\sum_{i=0}^{k} a_i f\left(x + (b_i - n_1)h\right) = O\left(|h|^{\lambda}\right), \quad \text{as} \ h \to 0,$$

for almost all $x \in E$, and integrating with respect to h from 0 to t, |t| being sufficiently small, we have

$$\sum_{i=0}^{k} \frac{a_i}{b_i - n_1} F_1 \left(x + (b_i - n_1)t \right) - \left(\sum_{i=0}^{k} \frac{a_i}{b_i - n_1} \right) F_1 (x) =$$

$$= O \left(|t|^{\lambda + 1} \right), \quad \text{as} \quad t \to 0,$$
(3.4)

for almost all $x \in E$. By (1.2) all the a_i 's cannot be 0, and so applying Theorem 2.3 in (3.4) with $\beta = -n_1$, $\alpha = \lambda + 1$ and $\alpha_i = \frac{a_i}{b_i - n_1}$, $\beta_i = b_i - n_1$ for $i = 0, 1, \ldots, k$ and $\alpha_{k+1} = -\sum_{i=0}^k \frac{a_i}{b_i - n_1}$, $\beta_{k+1} = 0$, we have

$$\sum_{i=0}^{k} \frac{a_i}{b_i - n_1} F_1(x + b_i t) - \left(\sum_{i=0}^{k} \frac{a_i}{b_i - n_1}\right) F_1(x + n_1 t) =$$

$$= O(|t|^{\lambda + 1}), \quad \text{as} \quad t \to 0,$$
(3.5)

for almost all $x \in E$. It is easy to check that the system

$$A_1 = \left\{ b_0, b_1, \dots, b_k, n_1, \frac{a_0}{b_0 - n_1}; \frac{a_1}{b_1 - n_1}, \dots, \frac{a_k}{b_k - n_1}, -\sum_{i=0}^k \frac{a_i}{b_i - n_1} \right\}$$

satisfies the condition (1.2) with k replaced by k + 1. Hence from (3.5) we observe that

$$\Phi_{k+1}(x,h;F_1;A_1) = O(|h|^{\lambda+1}), \text{ as } h \to 0,$$

for almost all $x \in E$. The numbers $b_0, b_1, \ldots, b_k, n_1$ have one fewer gap than b_0, b_1, \ldots, b_k and also the excess is still 0. So, if s = 1, the proof is completed as in the first paragraph replacing k by k + 1 and A by A_1 . Otherwise, choose the smallest positive integer n_2 in (b_0, b_k) such that $n_2 \notin \{b_o, b_1, \ldots, b_k, n_1\}$, and repeating this process s - 1 more times, we obtain the numbers $b_0, b_1, \ldots, b_k, n_1, \ldots, n_s$ which have no gap, and we obtain the system A_s such that

$$\Phi_{k+s}(x,h;F_s;A_s) = O(|h|^{\lambda+s}), \quad \text{as} \ h \to 0,$$

for almost all $x \in E$. The proof is completed as in the first paragraph.

AN EXTENSION OF A THEOREM OF ASH

CASE II. Let $\ell \in \mathbb{N}^+$, $b_i \in \mathbb{N}^+$ for $i = 1, 2, \ldots, k + \ell$. By employing the process of filling in the gaps employed in Case I, we may suppose that $b_i = i + 1, i = 1, 2, \ldots, k + \ell$. It may be noted that the process of filling never increases the excess. Hence (3.1) reduces to

$$\sum_{i=1}^{r} a_{i-1} f(x+ih) = O(|h|^{\lambda}), \quad \text{as} \ h \to 0 \ \text{for} \ x \in E,$$
(3.6)

where $r = k + \ell + 1$. Applying Theorem 2.3 in (3.6) with $\beta = r + 1$, $\alpha = \lambda$, we have

$$\sum_{i=1}^{r} a_{i-1} f\left(x + \left(i - (r+1)\right)h\right) = O\left(|h|^{\lambda}\right), \quad \text{as} \ h \to 0,$$
(3.7)

for almost all $x \in E$. Integrating (3.6) and (3.7) with respect to h from 0 to t, we have

$$\sum_{i=1}^{r} \frac{a_{i-1}}{i} F_1(x+it) - \left(\sum_{i=1}^{r} \frac{a_{i-1}}{i}\right) F_1(x) =$$

$$= O\left(|t|^{\lambda+1}\right), \quad \text{as} \ t \to 0,$$
(3.8)

for almost all $x \in E$, and

$$\sum_{j=1}^{r} \frac{a_{j-1}}{j-r-1} F_1\left(x + (j-r-1)t\right) - \left(\sum_{j=1}^{r} \frac{a_{j-1}}{j-r-1}\right) F_1(x) = O\left(|t|^{\lambda+1}\right), \quad \text{as} \ t \to 0,$$
(3.9)

for almost all $x \in E$. Applying Theorem 2.3 to (3.9) with $\beta = -r$, $\alpha = \lambda + 1$ and changing indices by setting i = j - 1, we have

$$\sum_{i=0}^{r-1} \frac{a_i}{i-r} F_1(x+it) - \left(\sum_{i=0}^{r-1} \frac{a_i}{i-r}\right) F_1(x+rt) =$$

$$= O(|t|^{\lambda+1}), \quad \text{as} \quad t \to 0,$$
(3.10)

for almost all $x \in E$. If possible, suppose that the coefficients of $F_1(x + it)$, $0 \le i \le r$, in (3.8) and (3.10) are proportional. Then there is $\rho \in \mathbb{R} \setminus \{0\}$ such that

$$-\sum_{i=1}^{r} \frac{a_{i-1}}{i} = -\frac{\rho a_0}{r};$$

$$\frac{a_{i-1}}{i} = \frac{\rho a_i}{i-r}, \quad 1 \le i \le r-1;$$

$$\frac{a_{r-1}}{r} = -\rho \sum_{i=0}^{r-1} \frac{a_i}{i-r}.$$

(3.11)

It can be verified that the following two systems

$$B_{1} = \left\{0, 1, \dots, r; -\sum_{i=1}^{r} \frac{a_{i-1}}{i}, a_{0}, \frac{a_{1}}{2}, \dots, \frac{a_{r-1}}{r}\right\},$$

$$B_{2} = \left\{0, 1, \dots, r; \frac{a_{0}}{-r}, \frac{a_{1}}{1-r}, \dots, \frac{a_{r-1}}{-1}, -\sum_{i=0}^{r-1} \frac{a_{i}}{i-r}\right\},$$
(3.12)

which correspond to (3.8) and (3.10) respectively, satisfy the conditions (1.2) with k replaced by k + 1. In fact, it is easy for B_1 . For B_2 note that

$$\sum_{i=0}^{r-1} \frac{a_i}{i-r} i^p - \left(\sum_{i=0}^{r-1} \frac{a_i}{i-r}\right) r^p =$$
$$= \sum_{i=0}^{r-1} a_i \sum_{\nu=0}^{p-1} i^{p-1-\nu} r^{\nu} = \sum_{\nu=0}^{p-1} r^{\nu} \sum_{j=1}^{r} a_{j-1} (j-1)^{p-1-\nu}$$
$$= \sum_{\nu=0}^{p-1} r^{\nu} \sum_{\mu=0}^{p-1-\nu} (-1)^{p-1-\nu-\mu} \binom{p-1-\nu}{\mu} \sum_{j=1}^{r} a_{j-1} j^{\mu},$$

and since the last sum is 0 for $\mu = 0, 1, ..., k - 1$ and L for $\mu = k$, it is 0 if p = 0, 1, ..., k, and it is L if p = k + 1, proving the assertion. Hence from (3.11), (3.12) and the last condition of (1.2), we have $\rho L = L$ showing that $\rho = 1$. Hence from (3.11)

$$a_i = -\frac{r-i}{i}a_{i-1}$$
 for $1 \le i \le r-1$,

and hence

$$\sum_{i=0}^{r-1} a_i (i+1)^k = a_0 \sum_{i=0}^{r-1} (-1)^i \binom{r-1}{i} (i+1)^k$$

= $a_0 \sum_{i=0}^{r-1} (-1)^i \binom{r-1}{i} \sum_{\nu=0}^k \binom{k}{\nu} i^{\nu}$
= $a_0 \sum_{\nu=0}^k \binom{k}{\nu} \sum_{i=0}^{r-1} (-1)^i \binom{r-1}{i} i^{\nu}$
= $(-1)^{r-1} a_0 \sum_{\nu=0}^k \binom{k}{\nu} \sum_{i=0}^{r-1} (-1)^{r-1-i} \binom{r-1}{i} i^{\nu}.$ (3.13)

 $\sum_{i=0}^{m} (-1)^{m-i} \binom{m}{i} i^p = 0 \quad \text{for } p = 0, 1, \dots, m-1$ $= m! \quad \text{for } p = m,$

(cf. (1.5) and (1.2)), and since $r-1 = k + \ell > k$, the inner summation at the right of (3.13) is 0 for $\nu = 0, 1, \ldots, k$, and so the right side of (3.13) is 0. But since $b_i = i+1$ and the system $\{b_0, b_1, \ldots, b_{k+\ell}; a_0, a_1, \ldots, a_{k+\ell}\}$ satisfies (1.2), the left hand side of (3.13) is $L \neq 0$, which is a contradiction. Therefore the coefficients of $F_1(x + it), 0 \leq i \leq r$, in (3.8) and (3.10) are not proportional. Therefore denoting the coefficients of $F(x + it), 0 \leq i \leq r$, in (3.8) and (3.10) by p_i and q_i respectively, we conclude that there is an $i_0 \in \{0, 1, \ldots, r\}$ such that p_{i_0} and q_{i_0} are not equal. Set

$$\gamma = q_{i_0} (q_{i_0} - p_{i_0})^{-1}, \quad \delta = -p_{i_0} (q_{i_0} - p_{i_0})^{-1};$$

then $\gamma + \delta = 1$ and $p_{i_0}\gamma + q_{i_0}\delta = 0$. Since (3.8) and (3.10) can be written as

$$\Phi_{k+1}(x,h;F_1;B_i) = O(|t|^{\lambda+1}), \text{ as } t \to 0, i = 1,2,$$

for almost all $x \in E$, where B_1 and B_2 are given in (3.12), we have

$$\gamma \Phi_{k+1}(x,h;F_1;B_1) + \delta \Phi_{k+1}(x,h;F_1;B_2) = O(|t|^{\lambda+1}) \text{ as } t \to 0, \quad (3.14)$$

for almost all $x \in E$. Let *B* be obtained by adding γ times the elements of B_1 with δ times the corresponding elements of B_2 . Since $\gamma + \delta = 1$, the first group of r + 1 elements of *B* are $0, 1, \ldots, r$, and the second group of r + 1 elements of *B* are $\gamma p_i + \delta q_i$, $0 \leq i \leq r$. Let B_0 be obtained by omitting from *B* those $\gamma p_i + \delta q_i$'s for which $\gamma p_i + \delta q_i = 0$ and the corresponding *i*'s. Then by Lemma 1.1 and by (3.14)

$$\Phi_{k+1}(x,h;F_1;B_0) = \Phi_{k+1}(x,h;F_1;B) = O(|t|^{\lambda+1}) \text{ as } t \to 0,$$

for almost all $x \in E$, and therefore, since $\gamma p_{i_0} + \delta q_{i_0} = 0$, B_0 has excess $\leq \ell - 1$. Repeating this process at most $\ell - 1$ more times, this case reduces to Case I.

CASE III. Let $\ell \in \mathbb{N}^+$ and b_i 's be arbitrary reals for $1 \leq i \leq k + \ell$. (Note that we have assumed that $b_0 = 1 < b_1 < \ldots < b_{k+\ell}$.) Let b_{i_0} be the smallest of $b_1, b_2, \ldots, b_{k+\ell}$ which is not an integer. Let $n_1, n_2 \in \mathbb{N}^+ \setminus \{b_0, b_1, \ldots, b_{k+\ell}\}$, $n_1 \neq n_2$. Applying Theorem 2.3 with $\beta = n_j, j = 1, 2, \alpha = \lambda$ in (3.1), we have

$$\sum_{i=0}^{k+\ell} a_i f\left(x + (b_i - n_j)h\right) = O\left(|h|^{\lambda}\right), \quad \text{as} \ h \to 0, \ j = 1, 2, \qquad (3.15.j)$$

Since

for almost all $x \in E$. Integrating (3.15.j) with respect to h from 0 to t, and then applying Theorem 2.3 with $\beta = -n_j$, j = 1, 2, $\alpha = \lambda + 1$, we have

$$\sum_{i=0}^{k+\ell} \frac{a_i}{b_i - n_j} F_1(x + b_i t) - \left(\sum_{i=0}^{k+\ell} \frac{a_i}{b_i - n_j}\right) F_1(x + n_j t) =$$

$$= O(|t|^{\lambda+1}), \quad \text{as} \quad t \to 0, \ j = 1, 2,$$
(3.16.j)

for almost all $x \in E$. Set

$$p = \frac{b_{i_0} - n_1}{n_2 - n_1}$$
 and $q = \frac{n_2 - b_{i_0}}{n_2 - n_1}$.

Then

$$p+q=1$$
 and $p\frac{a_{i_0}}{b_{i_0}-n_1}+q\frac{a_{i_0}}{b_{i_0}-n_2}=0$. (3.17)

Adding (3.16.1) multiplied by p with (3.16.2) multiplied by q we have

$$\Phi_{k+1}(x,h;F_1;C_1) = O(|h|^{\lambda+1}), \text{ as } h \to 0,$$

for almost all $x \in E$, where

$$C_{1} = \left\{ b_{0}, \dots, b_{i_{0}} - 1, b_{i_{0}+1}, \dots, b_{k+\ell}, n_{1}, n_{2}; p \frac{a_{0}}{b_{0} - n_{1}} + q \frac{a_{0}}{b_{0} - n_{2}}, \\ \dots, p \frac{a_{i_{0}-1}}{b_{i_{0}-1} - n_{1}} + q \frac{a_{i_{0}-1}}{b_{i_{0}-1} - n_{2}}, p \frac{a_{i_{0}+1}}{b_{i_{0}+1} - n_{1}} + q \frac{a_{i_{0}+1}}{b_{i_{0}+1} - n_{2}}, \\ \dots, p \frac{a_{k+\ell}}{b_{k+\ell} - n_{1}} + q \frac{a_{k+\ell}}{b_{k+\ell} - n_{2}}, -p \sum_{i=0}^{k+\ell} \frac{a_{i}}{b_{i} - n_{1}}, -q \sum_{i=0}^{k+\ell} \frac{a_{i}}{b_{i} - n_{2}} \right\}.$$

The system C_1 satisfies (1.2) with k replaced by k + 1. Indeed, using (3.17) we have

$$\sum_{\substack{i=0\\i\neq i_0}}^{k+\ell} \left(p \frac{a_i}{b_i - n_1} + q \frac{a_i}{b_i - n_2} \right) b_i^s - \sum_{i=0}^{k+\ell} p \frac{a_i}{b_i - n_1} n_1^s - \sum_{i=0}^{k+\ell} q \frac{a_i}{b_i - n_2} n_2^s$$

which is 0 if s = 0, and if $1 \le s \le k + 1$, then this is

$$= \sum_{i=0}^{k+\ell} \left(p \frac{a_i(b_i^s - n_1^s)}{b_i - n_1} + q \frac{a_i(b_i^s - n_2^s)}{b_i - n_2} \right)$$

$$= \sum_{i=0}^{k+\ell} \left(p a_i \sum_{j=0}^{s-1} b_i^{s-1-j} n_1^j + q a_i \sum_{j=0}^{s-1} b_i^{s-1-j} n_2^j \right)$$

$$= \sum_{j=0}^{s-1} \left(p n_1^j + q n_2^j \right) \sum_{i=0}^{k+\ell} a_i b_i^{s-1-j} = \sum_{i=0}^{k+\ell} a_i b_i^{s-1},$$

which is 0 if $1 \leq s < k+1$ and is L if s = k+1. So, we have removed the non-integer b_{i_0} and got C_1 . We next pick the smallest of $b_{i_0+1}, \ldots, b_{k+\ell}$, say b_{i_1} , which is not an integer, and choose $n_3, n_4 \in \mathbb{N}^+ \setminus \{b_0, b_1, \ldots, b_{k+\ell}, n_1, n_2\}$, $n_3 \neq n_4$, and repeat the above argument to get a system C_2 which contains n_1, n_2, n_3, n_4 , instead of b_{i_0}, b_{i_1} of A such that

$$\Phi_{k+2}(x,h;F_2;C_2) = O(|h|^{\lambda+2}), \text{ as } h \to 0,$$

for almost all $x \in E$. After repeating the process we get a system C_u , where $1 \leq u \leq k+\ell$, of $2(1+k+\ell+u)$ elements in which the first set of $1+k+\ell+u$ elements are all in \mathbb{N}^+ , and for which

$$\Phi_{k+u}(x,h;F_u;C_u) = O(|h|^{\lambda+u}), \quad \text{as} \ h \to 0,$$

for almost all $x \in E$. After rearranging the elements of C_u , this case now reduces to Case II. This completes the proof.

Theorem 3.2. Let f be measurable. If

$$\Phi_k(x,h;f;A) = O(|h|^{\lambda}), \quad as \ h \to 0,$$

where $\lambda > k - 1$, at each point x in a measurable set $E \subset \mathbb{R}$, then $f_{([\lambda])}$ exists finitely a.e. on E, $[\lambda]$ being the greatest integer not exceeding λ .

Proof. We may suppose that E is bounded. By Theorem 2.2 there is a measurable set $E_1 \subset E$ such that $\mu(E_1) = \mu(E)$, and for each $x \in E_1$ there exist $\delta(x) > 0$ and M(x) with

$$|f(t)| \le M(x)$$
 for $t \in (x - \delta(x), x + \delta(x))$.

Let ϵ_1, ϵ_2 be arbitrary positive numbers. Then there is a closed set $E_2 \subset E_1$ such that $\mu(E_1 \setminus E_2) < \epsilon_1$, and so by the compactness of E_2 there exist open intervals I_1, I_2, \ldots, I_n such that $E_2 \subset \bigcup_{i=1}^n I_i$ and f is bounded on $\bigcup_{i=1}^n I_i$. Clearly f is bounded on the closure $\overline{I} = \bigcup_i \overline{I_i}$. Let $\psi = f$ on \overline{I} and = 0 outside \overline{I} . Then ψ is Lebesgue integrable and a fortiori $C_r P$ -integrable on every finite interval in \mathbb{R} . Then by Lemma 3.1, there exist $s \in \mathbb{N}$ and a set $E_3 \subset E_2$ such that $\mu(E_3) = \mu(E_2)$ and

$$\Delta_{k+s}(x,t;\psi_s) = O(|t|^{\lambda+s}), \quad \text{as} \ t \to 0,$$

for all $x \in E_3$, where ψ_s is the sth indefinite integral of ψ . Therefore, by Theorem 1.2, it follows that $(\psi_s)_{([\lambda]+s)}$ exists finitely on a set $E_4 \subset E_3$, where $\mu(E_4) = \mu(E_3)$. Let $E_5 \subset E_4$ be such that $\mu(E_5) = \mu(E_4)$ and $\psi_s^{(s)} = \psi$ on E_5 . Now by [11, II; p. 77, Theorem 4.25], there is a perfect set $P \subset E_5$ such that $\mu(E_5 \setminus P) < \epsilon_2$ and there are functions G and H satisfying

- (i) $\psi_s = G + H$,
- (ii) $G^{([\lambda]+s)}$ exists continuously, and
- (iii) $H_{(r)}(x) = 0$ for $x \in P, r = 0, 1, \dots, [\lambda] + s$.

Let $g = G^{(s)}$. Then $g^{([\lambda])}$ exists continuously. So, $H^{(s)} = (\psi_s - G)^{(s)} = \psi - g$ on E_5 . Let $h = H^{(s)}$ on E_5 . Then $\psi = g + h$ on E_5 . Since H = 0 on P and $H^{(s)}$ exists on P, $H^{(s)}(x) = 0$ for $x \in P$, and so h(x) = 0 for all $x \in P$. Since for all $x \in E_5$, ψ , g satisfy (note that $\psi = f$ on $\bigcup_{i=1}^n I_i$)

$$\sum_{i=0}^{k+\ell} a_i \psi(x+b_i t) = O(t^{[\lambda]}), \quad \text{as} \ t \to 0$$

and

$$\sum_{i=0}^{n} a_i g(x+b_i t) = O(t^{[\lambda]}), \quad \text{as} \ t \to 0,$$

we have for all $x \in E_5$

$$\sum_{i=0}^{n} a_i h(x+b_i t) = O(t^{[\lambda]}), \quad \text{as} \ t \to 0.$$

We now show that $h_{([\lambda])}$ exists finitely *a.e.* on *P*. Define for each $m \in \mathbb{N}^+$,

$$E_m^* = \left\{ x : x \in P; \ \left| \sum_{i=0}^{k+\ell} a_i h(x+b_i t) \right| \le m |t|^{[\lambda]}, \quad \text{for } 0 < |t| < \frac{1}{m} \right\}.$$

Then $P = \bigcup_{m=1}^{\infty} E_m^*$. Let *m* be fixed. Let $x_0 \in E_m^*$ be a point of outer density of E_m^* . We may suppose that $x_0 = 0$. Let η , $0 < \eta < \frac{1}{k+\ell+2}$, be arbitrary. Choose *j*, $0 \le j \le k+\ell$, such that $a_j \ne 0$, $b_j \ne 0$. By reordering the terms of *A* we may suppose that $a_0 \ne 0$, $b_0 \ne 0$. Then by Lemma 2.1 there is a δ_1 , $0 < \delta_1 < 1$, such that if $0 < t < \delta_1$ then

$$\mu^*(B_i) > (1-\eta)t$$
 and $\mu^*(C) > (1-\eta)t$ for $i = 1, 2, \dots, k+\ell$,

where

$$B_{i} = \left\{ u : u \in [t, 2t]; \ t + (b_{i} - b_{0})u \in E_{m}^{*} \right\}, \quad i = 1, 2, \dots, k + \ell,$$
$$C = \left\{ u : u \in [t, 2t]; \ t - b_{0}u \in E_{m}^{*} \right\}.$$

Fix $t \in (0, \min(\delta_1, 1/2m))$. Set

$$S_{i} = \left\{ u : u \in [t, 2t]; t + (b_{i} - b_{0})u \in P \right\}, \quad i = 1, 2, \dots, k + \ell,$$
$$D = \left\{ u : u \in [t, 2t]; \left| \sum_{i=0}^{k+\ell} a_{i}h((t - b_{0}u) + b_{i}u) \right| \le m|u|^{[\lambda]} \right\}.$$

Then the S_i 's and D are measurable for $i = 1, 2, ..., k + \ell$. and $C \subset D$, $B_i \subset S_i$, and so

$$\mu(D) > (1 - \eta)t$$
, $\mu(S_i) > (1 - \eta)t$, for $i = 1, 2, \dots, k + \ell$.

Now, since

$$\mu\left([t,2t] \setminus \left(\left(\bigcap_{i=1}^{k+\ell} S_i\right) \cap D\right)\right) < (k+\ell+1)\eta t < t,$$

we have $\mu((\bigcap_{i=1}^{k+\ell}S_i) \cap D) > 0$. Hence there is an $u \in (\bigcap_{i=1}^{k+\ell}S_i) \cap D$, and so $t + (b_i - b_0)u \in P$, for all $i = 1, 2, \ldots, k + \ell$, which gives

$$h(t + (b_i - b_0)u) = 0$$
, for all $i = 1, 2, ..., k + \ell$.

Also, since $u \in D$,

$$\left|\sum_{i=0}^{k+\ell} a_i h\left((t-b_0 u)+b_i u\right)\right| \le m|u|^{[\lambda]},$$

and hence

$$a_0 h(t) \Big| = \Big| \sum_{i=0}^{k+\ell} a_i h \big((t-b_0 u) + b_i u \big) \Big| \le m |u|^{[\lambda]} \le 2^{[\lambda]} m |t|^{[\lambda]} \,.$$

This shows that

$$h(t) = O(t^{[\lambda]}), \quad \text{as} \ t \to 0.$$

Since $x_0 = 0$ is a point of outer density of E_m^* , it follows that

$$h(x+t) = O(t^{[\lambda]}), \quad \text{as} \ t \to 0,$$

for almost all points x in E_m^* , and hence this also holds for almost all points x in P. Therefore by Lemma 2.4, $h_{([\lambda])}$ exists *a.e.* on P. Thus $\psi_{([\lambda])}$ exists *a.e.* on P. Since $P \subset E_5$ and $\mu(E_5 \setminus P) < \epsilon_2$, and since ϵ_2 is arbitrary, $\psi_{([\lambda])}$ exists *a.e.* on E_5 . Since $E_5 \subset E_2 \subset \bigcup_{i=1}^n I_i$ and since $f = \psi$ on $\bigcup_{i=1}^n I_i$, which is an open set, $f_{([\lambda])}$ exists *a.e.* on E_5 . Since $E_5 \subset E_2 \subset \bigcup_{i=1}^n I_i$ and since $\epsilon_1 \subset E_1 \subset E$, $\mu(E_5) = \mu(E_2)$, $\mu(E_1 \setminus E_2) < \epsilon_1$ and $\mu(E_1) = \mu(E)$, and since ϵ_1 is arbitrary, $f_{([\lambda])}$ exists *a.e.* on E. This completes the proof.

The above theorem is not true for $\lambda = k-1$ (see [6, Theorem 3.2]). However we have Theorem 3.3

Theorem 3.3. Let $k, p \in \mathbb{N}^+$, $p \leq k-1$ and let f be measurable. Let

 $\Phi_k(x, u; f; A) = O(u^p), \quad as \ u \to 0,$

for each point x in a set E. If $f_{(p),a}$ exists finitely on E, then $f_{(p)}$ exists a.e. on E. More generally, if

$$-\infty < \underline{f}_{(p),a} \le \overline{f}_{(p),a} < \infty \quad on \quad E,$$

then $f_{(p-1)}$ exists finitely and

$$-\infty < \underline{f}_{(p)} \le \overline{f}_{(p)} < \infty \quad a.e. \quad on \quad E.$$

To prove the theorem, we need the following lemma.

Lemma 3.4. Let $k, p \in \mathbb{N}^+$ and let f be measurable. Let for all $m \in \mathbb{N}^+$,

$$E_m = \left\{ x : f_{(p),a}(x) \text{ exists finitely and} \\ \left| \Phi_k(x,u;f;A) \right| < m|u|^p \text{ for } 0 < |u| < \frac{1}{m} \right\}$$

Then $f_{(p)}$ exists a.e. on E_m .

Proof. Without loss of generality we may assume that $a_0 \neq 0$, $b_0 \neq 0$ in $A = \{a_0, a_1, \ldots, a_{k+\ell}; b_0, b_1, \ldots, b_{k+\ell}\}$. Let $x_0 \in E_m$ be a point of outer density of E_m . We suppose that

$$x_0 = 0 = f(x_0) = f_{(1),a}(x_0) = \dots = f_{(p),a}(x_0).$$

Let $0 < \epsilon < 1$. Let

$$G = \left\{ x \, : \, |f(x)| \le \frac{\epsilon |x|^p}{p!} \right\}.$$

Then G is measurable and $0 \in G$ is a point of density of G. Set $H = E_m \cap G$. Then 0 is a point of outer density of H. Let $0 < \eta < \frac{\epsilon}{2k+2\ell}$. Then by Lemma 2.1, there is a $\delta > 0$ such that, if $0 < u < \delta$ then

$$\mu^*(B) > (1 - \eta)u, \quad \mu^*(C_j) > (1 - \eta)u,$$

where

$$B = \left\{ v \in [u, 2u] : \frac{u+v}{2} \in H \right\},\$$

AN EXTENSION OF A THEOREM OF ASH

$$C_j = \left\{ v \in [u, 2u] : \lambda_j u + \mu_j v \in H \right\}, \quad \text{for } 1 \le j \le k + \ell,$$

where the λ_j 's and μ_j 's are given as follows:

$$\lambda_j = \frac{1 + \frac{b_j}{b_0}}{2}, \quad \mu_j = \frac{1 - \frac{b_j}{b_0}}{2} \quad \text{for } 1 \le j \le k + \ell.$$

Fix $u \in \left(0, \min(\delta, \frac{|b_0|}{m})\right)$. Let

$$S = \left\{ v \in [u, 2u] : \left| \Phi_k \left(\frac{u+v}{2}, \frac{u-v}{2b_0} \right) \right| < m \left| \frac{u-v}{2b_0} \right|^p \right\}$$

and

$$T_j = \left\{ v \in [u, 2u] : \left| f(\lambda_j u + \mu_j v) \right| \le \frac{\epsilon |\lambda_j u + \mu_j v|^p}{p!} \right\}, \text{ for } 1 \le j \le k + \ell.$$

Since f is measurable, S and T_j are measurable. Also $B \subset S, \, C_j \subset T_j,$ and hence

$$\mu(S) > (1 - \eta)u, \quad \mu(T_j) > (1 - \eta)u.$$

Therefore

$$\mu\big(\cap_j (S \cap T_j)\big) > \big(1 - 2(k+\ell)\eta\big)u > (1-\epsilon)u.$$

Hence

$$\left(\cap_j (S \cap T_j)\right) \cap (u, u + \epsilon u) \neq \emptyset.$$

Choose $v \in (\cap_j (S \cap T_j)) \cap (u, u + \epsilon u)$. Then

$$0 < v - u < \epsilon u < u \,,$$

and so

$$\left|\Phi_k\left(\frac{u+v}{2},\frac{u-v}{2b_0}\right)\right| < m \left|\frac{u-v}{2b_0}\right|^p < m \left|\frac{\epsilon u}{2b_0}\right|^p,$$

which gives

$$\left|\sum_{i=0}^{k+\ell} a_i f\left(\frac{u+v}{2} + b_i \frac{u-v}{2b_0}\right)\right| < m \left|\frac{\epsilon u}{2b_0}\right|^p.$$

Hence

$$|a_0| \cdot |f(u)| < m \Big| \frac{\epsilon u}{2b_0} \Big|^p + \sum_{i=1}^{k+\ell} |a_i| \cdot \Big| f \Big(\frac{(1+\frac{b_i}{b_0})u}{2} + \frac{(1-\frac{b_i}{b_0})v}{2} \Big) \Big|.$$

Since $v \in T_i$ for $1 \le i \le k + \ell$,

$$\begin{aligned} |a_0| \cdot |f(u)| &< m \Big| \frac{\epsilon u}{2b_0} \Big|^p + \sum_{i=1}^{k+\ell} \frac{\epsilon |a_i| \cdot |\lambda_i u + \mu_i v|^p}{p!} \\ &\leq m \Big| \frac{\epsilon u}{2b_0} \Big|^p + \frac{\epsilon}{p!} \sum_{i=1}^{k+\ell} |a_i| \big(|\lambda_i| + 2|\mu_i| \big)^p u^p \\ &\leq \epsilon \Big[\frac{m}{|2b_0|^p} + \frac{1}{p!} \sum_{i=1}^{k+\ell} |a_i| \big(|\lambda_i| + 2|\mu_i| \big)^p \Big] u^p \end{aligned}$$

This shows that $\frac{f(u)}{u^p} \to 0$ as $u \to 0^+$. Similarly, it can be shown that $\frac{f(u)}{u^p} \to 0$ as $u \to 0^-$. This completes the proof of the lemma.

Proof of the theorem. The sequence $\{E_m\}$, defined in Lemma 3.4, is nondecreasing and $E \subset \bigcup_{m=1}^{\infty} E_m$. By Lemma 3.4, $f_{(p)}$ exists *a.e.* on E_m , and so the first part follows.

For the last part we proceed exactly as in Lemma 3.4 and in the first part of the theorem, but with the following changes:

$$\begin{split} E_m &= \left\{ x \, : \, -m < \underline{f}_{(p),a}(x) \le \overline{f}_{(p),a}(x) < m \text{ and} \\ & \left| \Phi_k(x,u;f;A) \right| < m|u|^p \text{ for } 0 < |u| < \frac{1}{m} \right\}, \end{split}$$

with the assumption that

.

$$x_0 = 0 = f(x_0) = f_{(1),a}(x_0) = \dots = f_{(p-1),a}(x_0),$$

and

$$G_m = \left\{ x : |f(x)| \le \frac{m|x|^p}{p!} \right\},$$

$$T_j = \left\{ v \in [u, 2u] : \left| f(\lambda_j u + \mu_j v) \right| \le \frac{m |\lambda_j u + \mu_j v|^p}{p!} \right\}, \text{ for } 1 \le j \le k + \ell,$$

other sets in Lemma 3.4 remaining unchanged. Proceeding as in Lemma 3.4,

$$|a_0| \cdot |f(u)| \le \left[\frac{m\epsilon^p}{|2b_0|^p} + \frac{m}{p!} \sum_{i=1}^{k+\ell} |a_i| \left(|\lambda_i| + 2|\mu_i|\right)^p\right] u^p,$$

showing that $f(u) = O(u^p)$ as $u \to 0^+$, and similarly $f(u) = O(u^p)$ as $u \to 0^-$, and the rest is clear.

Corollary 3.5. Under the hypotheses of Theorem 3.3, if

$$-\infty < \underline{f}_{(p),a} \le f_{(p),a} < \infty$$
 on E

then $f_{(p)}$ exists finitely a.e. on E.

The proof follows from Theorem 3.3 and Theorem 2.2 of [6].

References

- J. M. Ash, Generalizations of the Riemann derivative, Trans. Amer. Math. Soc. 126 (1967), 181–199.
- [2] J. A. Bergin, A new characterization of Cesaro-Perron integrals using Peano derivatives, Trans. Amer. Math. Soc. 228 (1977), 287–305.
- [3] H. Fejzic and C. E. Weil, Repairing the proof of a classical differentiation result, Real Analysis Exchange 19 (1993/4), no. 2, 639–643.
- [4] P. R. Halmos, *Measure theory*, D. Van Nostrand Co., 1950.
- [5] J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability of trigonometric series, Fund. Math. 26 (1936), 1–43.
- [6] S. N. Mukhopadhyay and S. Mitra, An extension of a theorem of Marcinkiewicz and Zygmund on differentiability, Fund. Math. 151 (1996), 21–38.
- [7] S. N. Mukhopadhyay and S. Mitra, Measurability of Peano derivates and approximate Peano derivates, Real Analysis Exchange 20 (1994/5), no. 2, 768–775.
- [8] L. A. Rubel, A pathological Lebesgue measurable function, J. London Math. Soc. 38 (1963), 1–4.
- [9] W. Sierpinski, Sur la question de la measurabilité de la base de M. Hamel, Fund. Math. 1 (1920), 105–111.
- [10] B. S. Thomson, Symmetric properties of real functions, Marcel Dekker, Inc., 1994.
- [11] A. Zygmund, Trigonometric series, Cambridge University Press, 1968.

S. N. Mukhopadhyay and S. Mitra