E. R. Love, Department of Mathematics, The University of Melbourne, Parkville, Victoria 3052, Australia

INTEGRATION BY PARTS AND OTHER THEOREMS FOR R 3 S-INTEGRALS

Abstract

This paper is a continuation of [3], in which was introduced the Refinement-Ross-Riemann-Stieltjes $\left(R^{3} S\right)$ Integral, and in which some of its advantages were exhibited. After a brief summary of [3], this paper proves an integration by parts theorem which shows incidentally that if f is $R^{3} S$-integrable with respect to g then g is $R^{3} S$-integrable with respect to f. Theorems on term-by-term integration of sequences analogous to the Helly-Bray Theorem are next proved, in a context of Wiener's functions of bounded generalized variation as developed by L. C. Young and me. In a similar context I prove also a theorem resembling the classical theorem of Riesz representing linear functionals by Stieltjes integrals.

10 Introduction

The Refinement-Ross-Riemann-Stieltjes $\left(R^{3} S\right)$ Integral was introduced in [3], and some of its fundamental properties were established there. Its definition is repeated in $\S 11$. It extends the Ross-Riemann-Stieltjes $\left(R^{2} S\right)$ Integral $[2,6,7]$ which succeeded in overcoming, in an elementary way, some disadvantages of the classical Riemann-Stieltjes $(R S)$ Integral, notably its failure to exist when the integrand and the integrator functions have a common point of discontinuity.

This paper is a continuation of [3]. The numbering of new theorems and lemmas is from 23 to 34 , following on the numbering in [3]. Similarly the numbering of new formulae is from (31) to (56), and of sections from 10 to 15. This perversion is intended to facilitate reference to appropriate places in [3];

[^0]however is is hoped that the summary provided in $\S 11$ will minimize the need for such reference.

The $R^{2} S$-integral in $[6,7]$ is confined to increasing integrators, but is simply extended in $[2,3]$ to integrators of bounded variation. The $R^{3} S$-integral is shown in [3] to be a further extension, in which the integrator may have unbounded variation at the expense of heavier restriction on the integrand (but less heavy than bounded variation). The $R^{3} S$-integral also possesses a certain symmetry between integrator and integrand; this shows up prominently in $\S 12$ on integration by parts, particularly in Theorem 25.

In $\S 13$ on $R^{3} S$-integration of sequences, Theorem 28 resembles the HellyBray Theorem [8, p. 31], but in a more general context and Theorem 29 goes further in that direction.

Theorem 34 in $\S 15$ is an analogue of the famous theorem of F. Riesz representing a linear functional by a Stieltjes integral.

11 Background

In [3] it is evident that a major stimulus for studying the $R^{3} S$-integral is the following existence theorem for non-absolutely convergent integrals, stated and proved in [3].
Theorem 21. If $p^{-1}+q^{-1}>1, p \geq 1, q \geq 1, f \in W_{p}$ and $g \in W_{q}$, then the $R^{3} S$-integral of f with respect to g exists.

Here W_{p}, named Wiener [9], is the class of complex-valued functions f on a compact interval $[a, b]$ whose p th power variation $V_{p}(f)=V_{p}(f ; a, b)$ is finite; where

$$
\begin{equation*}
V_{p}(f ; a, b)=\sup \left(\sum_{n=1}^{l}\left|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right|^{p}\right)^{\frac{1}{p}} \tag{14}
\end{equation*}
$$

the upper bound being taken for all partitions $a=x_{0}<x_{1}<\ldots<x_{l}=b$. W_{1} is the ordinary class of functions of bounded variation; as p increases W_{p} expands, and the expansion is proper.

The earliest version of this theorem was due to Young and Love, in [10]; it was somewhat hampered by working with the classical $R S$-integral, which fails to exist if the two functions involved have a common discontinuity.

For $p \geq 1$ all functions in W_{p} are bounded and simply discontinuous; that is, they have simple discontinuities only.
Lemma 13. If $p \geq 1, f$ and g are complex-valued functions on $[a, b]$, and k is a complex constant, then

$$
V_{p}(f+g) \leq V_{p}(f)+V_{p}(g) \quad \text { and } \quad V_{p}(k f)=|k| V_{p}(f)
$$

Lemma 14. If $q \geq p \geq 1$ and

$$
V_{\infty}(f ; a, b)=\sup \{|f(x)-f(y)|: a \leq x<y \leq b\},
$$

then

$$
V_{\infty}(f) \leq V_{q}(f) \leq V_{p}(f) .
$$

Definition of the $\mathbf{R}^{\mathbf{3}} \mathbf{S}$-integral. (repeated from [3]) is as follows.
Let g be a simply discontinuous complex valued function on a compact interval $[a, b]$. Let P be a partition $a=x_{0}<x_{1}<\ldots<x_{l}=b$, and let P^{*} be P together with any associated points ξ_{n} such that $x_{n-1}<\xi_{n}<x_{n}$ for $n=1,2, \ldots, l$. Let

$$
\left.\begin{array}{cl}
\Delta_{n}=g\left(x_{n}-\right)-g\left(x_{n-1}+\right), & \delta_{n}=g\left(x_{n}+\right)-g\left(x_{n}-\right), \tag{7}\\
g(a-)=g(a), & g(b+)=g(b) .
\end{array}\right\}
$$

For a complex-valued function f on $[a, b]$ define an approximative sum

$$
\begin{equation*}
S\left(P^{*}\right)=S\left(f, g, P^{*}\right)=\sum_{n=1}^{l} f\left(\xi_{n}\right) \Delta_{n}+\sum_{n=0}^{l} f\left(x_{n}\right) \delta_{n} . \tag{8}
\end{equation*}
$$

The last summation may be called the jump sum.
Suppose that there is a complex number I with the property that, for each $\epsilon>0$ there is a partition $P(\epsilon)$ such that

$$
\begin{equation*}
\left|S\left(P^{*}\right)-I\right|<\epsilon \quad \text { whenever } \quad P \supset P(\epsilon), \tag{9}
\end{equation*}
$$

that is, whenever P is a refinement of $P(\epsilon)$ and P^{*} is associated with P. It is easily seen that I is unique; I is then called the $R^{3} S$-integral of f with respect to g on $[a, b]$,

$$
\begin{equation*}
I=\left(R^{3} S\right) \int_{a}^{b} f d g, \tag{10}
\end{equation*}
$$

and f is said to be $R^{3} S$-integrable with respect to g on $[a, b]$, or briefly, $f \in$ $R^{3} S(g)$.

Certain other approximative sums are useful when f, as well as g, is simply discontinuous. These are

$$
\left.\begin{array}{l}
S\left(P^{+}\right)=\sum_{n=1}^{l} f\left(x_{n-1}+\right) \Delta_{n}+\sum_{n=0}^{l} f\left(x_{n}\right) \delta_{n}, \\
S\left(P^{-}\right)=\sum_{n=1}^{l} f\left(x_{n}-\right) \Delta_{n}+\sum_{n=0}^{l} f\left(x_{n}\right) \delta_{n} . \tag{20}
\end{array}\right\}
$$

$12 \quad \mathrm{R}^{3}$ S-Integration by Parts

Substantial leads towards this were given by Young [10], Hewitt [1] and Ross [6, 7]. The latter two consider only functions of bounded variation, indeed mostly increasing functions. As might be expected from Theorem 21, integration by parts extends to a wide range of functions of unbounded variation.

A function f is said to be normalized if, for all x concerned, it is simply discontinuous and $f(x)=\frac{1}{2}\{f(x+)+f(x-)\}$.
Lemma 23. Let f and g be simply discontinuous in $[a, b]$, let f be normalized in (a, b) and let E be a dense subset of (a, b). In order that f should be $R^{3} S$-integrable with respect to g on $[a, b]$, with integral I, it is necessary and sufficient that for each $\epsilon>0$ there be a partition $P(\epsilon)$ such that $\left|I-S\left(P^{*}\right)\right|<\epsilon$ whenever $P \supset P(\epsilon)$ and every ξ_{n} in P^{*} is in E.
Proof. The necessity is obvious. For the sufficiency, suppose that the condition holds. Let $J(P)$ denote the jump sum on P; that is, the last summation in (8). Suppose that the ξ_{n} are restricted only by the requirement that $x_{n-1}<\xi_{n}<x_{n}$, as in (8). Then there are sequences

$$
\left\{s_{n, r}\right\}_{r=1}^{\infty} \subset E \cap\left(x_{n-1}, x_{n}\right) \text { and }\left\{t_{n, r}\right\}_{r=1}^{\infty} \subset E \cap\left(x_{n-1}, x_{n}\right)
$$

such that $s_{n, r} \uparrow \xi_{n}$ and $t_{n, r} \downarrow \xi_{n}$ as $r \rightarrow \infty$. For P^{*} with these ξ_{n} as the associated points,

$$
\begin{aligned}
S\left(P^{*}\right)= & \sum_{n=1}^{l} f\left(\xi_{n}\right) \Delta_{n}+J(P)=\frac{1}{2} \sum_{n=1}^{l}\left\{f\left(\xi_{n}-\right)+f\left(\xi_{n}+\right)\right\} \Delta_{n}+J(P) \\
= & \frac{1}{2} \lim _{r \rightarrow \infty} \sum_{n=1}^{l} f\left(s_{n, r}\right) \Delta_{n}+\frac{1}{2} \lim _{r \rightarrow \infty} \sum_{n=1}^{l} f\left(t_{n, r}\right) \Delta_{n}+J(P) \\
& I-S\left(P^{*}\right)=\frac{1}{2} \lim _{r \rightarrow \infty}\left\{I-\sum_{n=1}^{l} f\left(s_{n, r}\right) \Delta_{n}-J(P)\right\} \\
& +\frac{1}{2} \lim _{r \rightarrow \infty}\left\{I-\sum_{n=1}^{l} f\left(t_{n, r}\right) \Delta_{n}-J(P)\right\}
\end{aligned}
$$

so that $\left|I-S\left(P^{*}\right)\right| \leq \frac{1}{2} \epsilon+\frac{1}{2} \epsilon$ whenever $P \supset P(\epsilon)$. This proves Lemma 23.
Lemma 24. If f and g are simply discontinuous in $[a, b]$ and normalized in $(a, b), P$ is any partition of $[a, b], S\left(P^{ \pm}\right)$are the sums defined in (20) and $T\left(P^{ \pm}\right)$are the results of interchanging f and g in $S\left(P^{ \pm}\right)$, then

$$
\frac{1}{2}\left\{S\left(P^{+}\right)+S\left(P^{-}\right)\right\}+\frac{1}{2}\left\{T\left(P^{+}\right)+T\left(P^{-}\right)\right\}=B-A
$$

where A and B are as in (33) (in Theorem 25 below).

Proof. Let $J(P)$ be the jump sum for f and g on P; that is, the last summation in (8) and (20). Observing (7),

$$
\begin{align*}
J(P)= & f(a)\{g(a+)-g(a)\}+\sum_{n=1}^{l-1} f\left(x_{n}\right)\left\{g\left(x_{n}+\right)-g\left(x_{n}-\right)\right\} \\
& +f(b)\{g(b)-g(b-)\} \\
= & f(a-)\{g(a+)-g(a-)\}+f(b+)\{g(b+)-g(b-)\} \\
& +\frac{1}{2} \sum_{n=1}^{l-1}\left\{f\left(x_{n}+\right)+f\left(x_{n}-\right)\right\}\left\{g\left(x_{n}+\right)-g\left(x_{n}-\right)\right\} \\
= & -\frac{1}{2}\{f(a+)-f(a-)\}\{g(a+)-g(a-)\} \\
& +\frac{1}{2}\{f(b+)-f(b-)\}\{g(b+)-g(b-)\} \\
& +\frac{1}{2} \sum_{n=0}^{l}\left\{f\left(x_{n}+\right)-f\left(x_{n}-\right)\right\}\left\{g\left(x_{n}+\right)-g\left(x_{n}-\right)\right\} . \tag{31}
\end{align*}
$$

Let $K(P)$ be the result of interchanging f and g in $J(P)$. Then

$$
\begin{align*}
J(P)+K(P)= & -\{f(a+)-f(a-)\}\{g(a+)-g(a-)\} \\
& +\{f(b+)-f(b-)\}\{g(b+)-g(b-)\} \\
& +\sum_{n=0}^{l}\left\{f\left(x_{n}+\right) g\left(x_{n}+\right)-f\left(x_{n}-\right) g\left(x_{n}-\right)\right\} \tag{32}
\end{align*}
$$

By (20),

$$
\begin{aligned}
& \frac{1}{2}\left\{S\left(P^{+}\right)+S\left(P^{-}\right)\right\}=\frac{1}{2} \sum_{n=1}^{l}\left\{f\left(x_{n}-\right)+f\left(x_{n-1}+\right)\right\}\left\{g\left(x_{n}-\right)-g\left(x_{n-1}+\right)\right\}+J(P), \\
& \frac{1}{2}\left\{T\left(P^{+}\right)+T\left(P^{-}\right)\right\}=\frac{1}{2} \sum_{n=1}^{l}\left\{f\left(x_{n}-\right)-f\left(x_{n-1}+\right)\right\}\left\{g\left(x_{n}-\right)+g\left(x_{n-1}+\right)\right\}+K(P) .
\end{aligned}
$$

The sum of these two right sides is, using (32) and (7),

$$
\begin{aligned}
& \sum_{n=1}^{l}\left\{f\left(x_{n}-\right) g\left(x_{n}-\right)-f\left(x_{n-1}+\right) g\left(x_{n-1}+\right)\right\} \\
+ & \sum_{n=0}^{l}\left\{f\left(x_{n}+\right) g\left(x_{n}+\right)-f\left(x_{n}-\right) g\left(x_{n}-\right)\right\} \\
- & \{f(a+)-f(a-)\}\{g(a+)-g(a-)\}+\{f(b+)-f(b-)\}\{g(b+)-g(b-)\} \\
= & f\left(x_{l}+\right) g\left(x_{l}+\right)-f\left(x_{0}-\right) g\left(x_{0}-\right) \\
= & \{f(a+)-f(a)\}\{g(a+)-g(a)\}+\{f(b)-f(b-)\}\{g(b)-g(b-)\} \\
= & B-A .
\end{aligned}
$$

Theorem 25. If f and g are simply discontinuous in $[a, b]$ and normalized in (a, b), and $g \in R^{3} S(f)$, then $f \in R^{3} S(g)$ and

$$
\int_{a}^{b} f d g+\int_{a}^{b} g d f=B-A
$$

$$
\begin{array}{ll}
\text { where } & A=f(a) g(a)+\{f(a+)-f(a)\}\{g(a+)-g(a)\} \\
\text { and } & B=f(b) g(b)+\{f(b)-f(b-)\}\{g(b)-g(b-)\} .
\end{array}
$$

Remarks. Observe that f and g are not required to be in Wiener classes. The familiar form of integration by parts, with the right side $B-A$ replaced by $f(b) g(b)-f(a) g(a)$, occurs if one of f and g is continuous at a and one of f and g is continuous at b.
Proof. (i) Let I be the $R^{3} S$-integral of g with respect to f on $[a, b]$. Let P and P^{*} be as in $\S 11$. By (9) there is a partition $P(\epsilon)$ such that

$$
\begin{equation*}
\left|I-T\left(P^{*}\right)\right|<\epsilon \quad \text { whenever } \quad P \supset P(\epsilon) \tag{34}
\end{equation*}
$$

Here

$$
\begin{equation*}
T\left(P^{*}\right)=\sum_{n=1}^{l} g\left(\xi_{n}\right)\left\{f\left(x_{n}-\right)-f\left(x_{n-1}+\right)\right\}+K(P) \tag{35}
\end{equation*}
$$

where $x_{n-1}<\xi_{n}<x_{n}$ and $K(P)$ is the jump sum $J(P)$ with f and g interchanged, so that $K(P)=\sum_{n=0}^{l} g\left(x_{n}\right)\left\{f\left(x_{n}+\right)-f\left(x_{n}-\right)\right\}$. Making $\xi_{n} \rightarrow$ $x_{n-1}+$, and separately $\xi_{n} \rightarrow x_{n}-$,

$$
T\left(P^{*}\right) \rightarrow \sum_{n=1}^{l} g\left(x_{n-1}+\right)\left\{f\left(x_{n}-\right)-f\left(x_{n-1}+\right)\right\}+K(P)=T\left(P^{+}\right)
$$

$$
T\left(P^{*}\right) \rightarrow \sum_{n=1}^{l} g\left(x_{n}-\right)\left\{f\left(x_{n}-\right)-f\left(x_{n-1}+\right)\right\}+K(P)=T\left(P^{-}\right)
$$

respectively, in keeping with the notation in (20). By (34), $\left|I-T\left(P^{ \pm}\right)\right| \leq \epsilon$ whenever $P \supset P(\epsilon)$, and so

$$
\begin{equation*}
\left|I-\frac{1}{2}\left\{T\left(P^{+}\right)+T\left(P^{-}\right)\right\}\right| \leq \epsilon \quad \text { whenever } \quad P \supset P(\epsilon) \tag{36}
\end{equation*}
$$

(ii) Suppose now that l is even. Let \sum_{o} denote summation over odd n and \sum_{e} summation over even n. In (35) make $\xi_{n} \rightarrow x_{n-1}+$ for odd $n, \xi_{n} \rightarrow x_{n}-$ for even n; these give

$$
\begin{aligned}
T\left(P^{*}\right) \rightarrow & \sum_{n=1}^{l} o g\left(x_{n-1}+\right)\left\{f\left(x_{n}-\right)-f\left(x_{n-1}+\right)\right\} \\
& +\sum_{n=1}^{l} e g\left(x_{n}-\right)\left\{f\left(x_{n}-\right)-f\left(x_{n-1}+\right)\right\}+K(P) .
\end{aligned}
$$

Again, in (35) make $\xi_{n} \rightarrow x_{n}$ - for odd $n, \xi_{n} \rightarrow x_{n-1}+$ for even n. Then

$$
\begin{aligned}
T\left(P^{*}\right) \rightarrow & \sum_{n=1}^{l}{ }_{o} g\left(x_{n}-\right)\left\{f\left(x_{n}-\right)-f\left(x_{n-1}+\right)\right\} \\
& +\sum_{n=1}^{l} e g\left(x_{n-1}+\right)\left\{f\left(x_{n}-\right)-f\left(x_{n-1}+\right)\right\}+K(P) .
\end{aligned}
$$

Subtracting these limits gives, because of (34),

$$
\begin{align*}
& \mid \sum_{n=1}^{l} o\left\{f\left(x_{n}-\right)-f\left(x_{n-1}+\right)\right\}\left\{g\left(x_{n}-\right)-g\left(x_{n-1}+\right)\right\} \tag{37}\\
& \quad-\sum_{n=1}^{l} e\left\{f\left(x_{n}-\right)-f\left(x_{n-1}+\right)\right\}\left\{g\left(x_{n}-\right)-g\left(x_{n-1}+\right)\right\} \mid \leq 2 \epsilon
\end{align*}
$$

whenever $P \supset P(\epsilon)$.
(iii) Let P and P^{*} be as in (i); that is, as in $\S 11$, and let Q be the partition

$$
a=x_{0}<\xi_{1}<x_{1}<\xi_{2}<x_{2}<\ldots<x_{l-1}<\xi_{l}<x_{l}=b
$$

that is, Q consists of all the points of P^{*}. Observe that (36) and (37) involve only the x_{n}, not the ξ_{n}; this will enable them to be used with P replaced by Q, as will be done shortly.

Let all the ξ_{n} be points of continuity of f; such points are of course dense since f is simply discontinuous. By (8) and (20)

$$
\begin{align*}
S\left(P^{*}\right)- & \frac{1}{2}\left\{S\left(Q^{+}\right)+S\left(Q^{-}\right)\right\} \\
= & \sum_{n=1}^{l} f\left(\xi_{n}\right)\left\{g\left(x_{n}-\right)-g\left(x_{n-1}+\right)\right\}+J(P)-J(Q) \\
& -\frac{1}{2} \sum_{n=1}^{l}\left\{f\left(x_{n-1}+\right)+f\left(\xi_{n}-\right)\right\}\left\{g\left(\xi_{n}-\right)-g\left(x_{n-1}+\right)\right\} \\
& -\frac{1}{2} \sum_{n=1}^{l}\left\{f\left(\xi_{n}+\right)+f\left(x_{n}-\right)\right\}\left\{g\left(x_{n}-\right)-g\left(\xi_{n}+\right)\right\} \\
= & \sum_{n=1}^{l} f\left(\xi_{n}\right)\left\{g\left(x_{n}-\right)-g\left(x_{n-1}+\right)-g\left(\xi_{n}+\right)+g\left(\xi_{n}-\right)\right\} \\
& -\frac{1}{2} \sum_{n=1}^{l}\left\{f\left(\xi_{n}\right)+f\left(x_{n-1}+\right)\right\}\left\{g\left(\xi_{n}-\right)-g\left(x_{n-1}+\right)\right\} \\
& -\frac{1}{2} \sum_{n=1}^{l}\left\{f\left(x_{n}-\right)+f\left(\xi_{n}\right)\right\}\left\{g\left(x_{n}-\right)-g\left(\xi_{n}+\right)\right\} \\
= & \frac{1}{2} \sum_{n=1}^{l}\left\{f\left(\xi_{n}\right)-f\left(x_{n-1}+\right)\right\}\left\{g\left(\xi_{n}-\right)-g\left(x_{n-1}+\right)\right\} \\
& +\frac{1}{2} \sum_{n=1}^{l}\left\{f\left(\xi_{n}\right)-f\left(x_{n}-\right)\right\}\left\{g\left(x_{n}-\right)-g\left(\xi_{n}+\right)\right\} \\
= & \frac{1}{2} \sum_{n=1}^{l}\left\{f\left(\xi_{n}-\right)-f\left(x_{n-1}+\right)\right\}\left\{g\left(\xi_{n}-\right)-g\left(x_{n-1}+\right)\right\} \\
& -\frac{1}{2} \sum_{n=1}^{l}\left\{f\left(x_{n}-\right)-f\left(\xi_{n}+\right)\right\}\left\{g\left(x_{n}-\right)-g\left(\xi_{n}+\right)\right\} \tag{38}
\end{align*}
$$

(iv) Let A and B be as in (33). Then

$$
\begin{align*}
\mid S\left(P^{*}\right) & -(B-A-I)\left|\leq\left|S\left(P^{*}\right)-\frac{1}{2}\left\{S\left(Q^{+}\right)+S\left(Q^{-}\right)\right\}\right|\right. \\
& +\left|\frac{1}{2}\left\{S\left(Q^{+}\right)+S\left(Q^{-}\right)\right\}+\frac{1}{2}\left\{T\left(Q^{+}\right)+T\left(Q^{-}\right)\right\}-(B-A)\right| \\
& +\left|I-\frac{1}{2}\left\{T\left(Q^{+}\right)+T\left(Q^{-}\right)\right\}\right| \tag{39}
\end{align*}
$$

The middle line on the right of (39) is zero, by Lemma 24 with P replaced by Q, a change which does not affect $B-A$. The last line on the right is, by (36), at most ϵ if $Q \supset P(\epsilon)$ and this is indeed so whenever $P \supset P(\epsilon)$, because then $Q \supset P \supset P(\epsilon)$.

Now Q partitions $[a, b]$ into an even number, $2 l$, of subintervals. A suitable change of notation for the points of Q would turn (38) into one half the contents of the modulus signs in (37) and so $\left|S\left(P^{*}\right)-\frac{1}{2}\left\{S\left(Q^{+}\right)+S\left(Q^{-}\right)\right\}\right| \leq \epsilon$ whenever $Q \supset P(\epsilon)$, and therefore whenever $P \supset P(\epsilon)$. Thus (39) gives

$$
\left|S\left(P^{*}\right)-(B-A-I)\right| \leq 2 \epsilon \quad \text { whenever } \quad P \supset P(\epsilon)
$$

This inequality has been obtained under the assumption that the associated points ξ_{n} are all in the dense set of points of continuity of f. By Lemma $23, f$ is $R^{3} S$-integrable with respect to g, with integral equal to $B-A-I$, completing the proof of Theorem 25.

13 Limits of $\mathrm{R}^{3} \mathrm{~S}$-Integrals

In $\S 11$ only the part of Theorem 21 relevant there is quoted. The rest of that theorem [3, p. 308] is now needed; it is as follows.

Theorem 21 continued. The integral satisfies the inequality

$$
\left|\int_{a}^{b} f d g-C\right| \leq 2 \zeta(p, q) V_{p}(f ; a+, b-) V_{q}(g ; a+, b-)
$$

where $\zeta(p, q)$ is independent of f, g, a and b, and

$$
C=f(b)\{g(b)-g(b-)\}+f(a+)\{g(b-)-g(a+)\}+f(a)\{g(a+)-g(a)\}
$$

The inequality also holds with $f(a+)$ (in C) replaced by $f(b-)$.
The following theorem [3, p. 310] is also needed.

Theorem 22. If g is simply discontinuous in $[a, b], a<c<b$ and either side of the equation

$$
\int_{a}^{b} f d g=\int_{a}^{c} f d g+\int_{c}^{b} f d g
$$

exists in the $R^{3} S$-sense, then so does the other side and the equation holds.
This theorem does not require f and g to be in Wiener classes.
Lemma 26. If $p^{-1}+q^{-1}>1, p \geq 1, q \geq 1, f \in W_{p}$ and $g \in W_{q}$ on $[a, b]$, and $\zeta(p, q)$ is the constant in Theorems 17 and 21, then

$$
\left|\int_{a}^{b}\{f(x)-f(a+)\} d g(x)\right| \leq\{2 \zeta(p, q)+1\} V_{p}(f ; a, b) V_{q}(g ; a, b)
$$

and

$$
\left|\int_{a}^{b}\{f(x)-f(a)\} d g(x)\right| \leq\{2 \zeta(p, q)+2\} V_{p}(f ; a, b) V_{q}(g ; a, b)
$$

These inequalities also hold with replacement of $f(a+)$ or $f(a)$ on the left by $f(b-)$ or $f(b)$ respectively.

Proof. In Theorem 21 replace $f(x)$ by $f(x)-f(a+)$; then C in that theorem becomes C^{\prime}, say, with

$$
\left|C^{\prime}\right| \leq|f(a)-f(a+)||g(a+)-g(a)|+|f(b)-f(a+)||g(b)-g(b-)|
$$

By Jensen's extension of Hölder's Inequality,

$$
\begin{aligned}
\left|C^{\prime}\right| & \leq\left\{|f(a)-f(a+)|^{p}+|f(a+)-f(b)|^{p}\right\}^{\frac{1}{p}}\left\{|g(a)-g(a+)|^{q}+|g(b-)-g(b)|^{q}\right\}^{\frac{1}{q}} \\
& \leq V_{p}(f ; a, b) V_{q}(g ; a, b) .
\end{aligned}
$$

The first inequality in Lemma 26 now follows easily from "Theorem 21 continued".

The second inequality can be obtained similarly, or deduced from the first by "adding" the trivial inequality

$$
\begin{aligned}
\left|\int_{a}^{b}\{f(a+)-f(a)\} d g(x)\right| & =|f(a+)-f(a)||g(b)-g(a)| \\
& \leq V_{p}(f ; a, b) V_{q}(g ; a, b)
\end{aligned}
$$

The other two inequalities are proved in a similar manner.

Lemma 27. If $r>p \geq 1$ and $f \in W_{p}(a, b)$ then, given $\epsilon>0$, there is a step function s such that $V_{r}(f-s ; a, b)<\epsilon$.

Proof. This is the main part of [5, p. 7, Lemma 2].
Theorem 28. Let $p^{-1}+q^{-1}>1, p \geq 1, q \geq 1, f \in W_{p}$ and $g_{n} \in W_{q}$ on $[a, b]$. Let $V_{q}\left(g_{n} ; a, b\right)$ be a bounded function of the positive integer n, and $g_{n}(x) \rightarrow g(x)$ as $n \rightarrow \infty$ for each $x \in[a, b]$. If also $g_{n}(x \pm) \rightarrow g(x \pm)$ at each discontinuity x of f, and at the end-points $x=a$ and b, then

$$
\int_{a}^{b} f d g_{n} \rightarrow \int_{a}^{b} f d g \quad \text { as } n \rightarrow \infty
$$

Proof. (i) For any partition $a=x_{0}<x_{1}<\ldots<x_{l}=b$, denoted by P,

$$
\sum_{i=1}^{l}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right|^{q}=\lim _{n \rightarrow \infty} \sum_{i=1}^{l}\left|g_{n}\left(x_{i}\right)-g_{n}\left(x_{i-1}\right)\right|^{q} \leq \varlimsup_{n \rightarrow \infty} V_{q}\left(g_{n} ; a, b\right)^{q}
$$

So $g \in W_{q}(a, b)$, and all the $R^{3} S$-integrals exist by Theorem 21. Further $V_{q}(g ; a, b) \leq \sup V_{q}\left(g_{n} ; a, b\right)$.
(ii) If f is constant throughout $(a, b),(7),(8)$ and (9) show easily that $f \in R^{3} S(g)$ and

$$
\begin{aligned}
\int_{a}^{b} f d g=f(a)\{g(a+)-g(a)\} & +f(b)\{g(b)-g(b-)\} \\
& +f(b-)\{g(b-)-g(a+)\}
\end{aligned}
$$

If f is a step function on $[a, b]$ with discontinuities only at the points of P, the above equation and Theorem 22 give

$$
\begin{align*}
\int_{a}^{b} f d g= & \sum_{i=0}^{l} f\left(x_{i}\right)\left\{g\left(x_{i}+\right)-g\left(x_{i}-\right)\right\} \\
& +\sum_{i=1}^{l} f\left(x_{i}-\right)\left\{g\left(x_{i}-\right)-g\left(x_{i-1}+\right)\right\} \tag{40}
\end{align*}
$$

remembering that $g\left(x_{0}-\right)=g(a-)=g(a)$ and $g\left(x_{l}+\right)=g(b+)=g(b)$. Similarly, replacing g by g_{n},

$$
\int_{a}^{b} f d g_{n}=\sum_{i=0}^{l} f\left(x_{i}\right)\left\{g_{n}\left(x_{i}+\right)-g_{n}\left(x_{i}-\right)\right\}+\sum_{i=1}^{l} f\left(x_{i}-\right)\left\{g_{n}\left(x_{i}-\right)-g_{n}\left(x_{i-1}+\right)\right\}
$$

Making $n \rightarrow \infty$, Theorem 28 is proved for all step functions f.
(iii) Suppose that f is no longer a step function. Fix r such that $1-q^{-1}<$ $r^{-1}<p^{-1}$. Let $M=1+2 \zeta(r, q)$ and $N=1+\sup V_{q}\left(g_{n} ; a, b\right)$. Given $\epsilon>0$, let $\epsilon^{\prime}=\epsilon / 3 M N$; then by Lemma 27 there is a step function s such that $V_{r}(f-s ; a, b)<\epsilon^{\prime}$. Since addition of a constant to s does not alter this inequality, $s(a+)$ may be supposed equal to $f(a+)$.

Let $h=f-s$. Then $h \in W_{p} \subset W_{r}$, using Lemma 14 and $h(a+)=0$. By Lemma 26 with p, f and g replaced by r, h and g_{n} respectively,

$$
\begin{aligned}
\left|\int_{a}^{b} h d g_{n}\right| & =\left|\int_{a}^{b}\{h(x)-h(a+)\} d g_{n}(x)\right| \\
& \leq\{2 \zeta(r, q)+1\} V_{r}(h ; a, b) V_{q}\left(g_{n} ; a, b\right) \\
& \leq M \epsilon^{\prime} N=\frac{1}{3} \epsilon
\end{aligned}
$$

By (i) the same inequality holds when g_{n} is replaced by g. Using linearity,

$$
\begin{aligned}
\left|\int_{a}^{b} f d g_{n}-\int_{a}^{b} f d g\right| & \leq\left|\int_{a}^{b} h d g_{n}-\int_{a}^{b} h d g\right|+\left|\int_{a}^{b} s d g_{n}-\int_{a}^{b} s d g\right| \\
& \leq \frac{2}{3} \epsilon+\left|\int_{a}^{b} s d g_{n}-\int_{a}^{b} s d g\right|<\epsilon
\end{aligned}
$$

for all n sufficiently large, since by (ii) the theorem holds when f is the step function s.

Remarks. Theorem 28 resembles the Helly-Bray Theorem [8, p. 31] in which f is continuous and the g_{n} are of uniformly bounded variation. Theorem 29 (below) is a generalization of Theorem 28. The hypothesis that $g_{n}(x \pm) \rightarrow$ $g(x \pm)$ at the discontinuities of f is essential for both these theorems; this is shown by the following example.

Let $a<c<b$ and $c_{n} \downarrow c$. Let $f(c) \neq 1$, and

$$
\begin{aligned}
f(x)=0 & \text { if } a \leq x<c, & f(x)=1 \quad \text { if } c<x \leq b \\
g_{n}(x)=0 & \text { if } a \leq x<c_{n}, & g_{n}(x)=1 \quad \text { if } c_{n} \leq x \leq b \\
g(x)=0 & \text { if } a \leq x \leq c, & g(x)=1 \quad \text { if } c<x \leq b
\end{aligned}
$$

Then $V_{q}\left(g_{n} ; a, b\right)=1$, and $g_{n}(x) \rightarrow g(x)$ as $n \rightarrow \infty$ because

$$
g(x)-g_{n}(x)= \begin{cases}1 & \text { if } c<x<c_{n} \\ 0 & \text { otherwise }\end{cases}
$$

it follows that $g(c+)-g_{n}(c+)=1 \neq 0$. The conclusion of Theorem 28 does not hold, because by (7), (8) and (9)

$$
\int_{a}^{b} f d g_{n}=f\left(c_{n}\right) \rightarrow 1 \quad \text { but } \quad \int_{a}^{b} f d g=f(c) \neq 1
$$

Theorem 29. Let $p^{-1}+q^{-1}>1, p \geq 1, q \geq 1, f_{n} \in W_{p}$ and $g_{n} \in W_{q}$ on $[a, b]$. Let $V_{p}\left(f_{n}-f ; a, b\right) \rightarrow 0$ as $n \rightarrow \infty$ and $V_{q}\left(g_{n} ; a, b\right)$ be bounded. If

$$
\begin{aligned}
f_{n}(x) & \rightarrow f(x) & & \text { for one } x \in[a, b], \\
g_{n}(x) & \rightarrow g(x) & & \text { for all } x \in[a, b], \\
g_{n}(x \pm) & \rightarrow g(x \pm) & & \text { at each discontinuity } x \text { of } f
\end{aligned}
$$

and also at $x=a$ and b, then

$$
\int_{a}^{b} f_{n} d g_{n} \rightarrow \int_{a}^{b} f d g \quad \text { as } n \rightarrow \infty
$$

Proof. By Lemma $13, V_{p}(f) \leq V_{p}\left(f-f_{n}\right)+V_{p}\left(f_{n}\right)<\infty$; so $f \in W_{p}$. Thus the discontinuities of f are simple and enumerable.

The hypotheses imply that $f_{n}(x) \rightarrow f(x)$ for all $x \in[a, b]$. For let c be the one value of x at which this happens by hypothesis, and let $h_{n}(x)=$ $f_{n}(x)-f(x)$. Then, for each $x \in[a, b]$,

$$
\left|h_{n}(x)\right| \leq\left|h_{n}(x)-h_{n}(c)\right|+\left|h_{n}(c)\right| \leq V_{p}\left(h_{n} ; a, b\right)+\left|h_{n}(c)\right| \rightarrow 0
$$

as $n \rightarrow \infty$; in particular $h_{n}(a) \rightarrow 0$. Also $h_{n} \in W_{p}$.
Using Lemma 26,

$$
\begin{aligned}
\left|\int_{a}^{b} h_{n} d g_{n}\right| & \leq\left|\int_{a}^{b}\left\{h_{n}(x)-h_{n}(a)\right\} d g_{n}(x)\right|+\left|\int_{a}^{b} h_{n}(a) d g_{n}(x)\right| \\
& \leq\{2 \zeta(p, q)+2\} V_{p}\left(h_{n}\right) V_{q}\left(g_{n}\right)+\left|h_{n}(a)\right| V_{q}\left(g_{n}\right) \rightarrow 0
\end{aligned}
$$

Theorem 28 now gives, as $n \rightarrow \infty$

$$
\int_{a}^{b} f_{n} d g_{n}=\int_{a}^{b} h_{n} d g_{n}+\int_{a}^{b} f d g_{n} \rightarrow \int_{a}^{b} f d g
$$

as required.

14 Preparations for the Representation Theorem

Such a theorem was given in [4, pp. 248 and 255] for linear functionals on a certain subspace of W_{p}. The subspace excluded all discontinuous (and also some other) functions. Attempts to admit some discontinuous functions were made in [5, pp. 8 and 33]. No proper representation of a linear functional, but only an inequality for it, was achieved in one of these attempts [5, p. 8 , Theorem 1] and the other [5, p. 33, Theorem 20] had little more success. The latter attempt expressed the linear functional as a refinement version of the (classical) $R S$-integral, for a class of (possibly) discontinuous functions in W_{p} but it too was hampered by the common discontinuity trouble.

In what follows I present such a theorem using the $R^{3} S$-integral. It is confined to the subspace W_{p}^{*} (defined at (45) in $\S 15$) of W_{p}, just as the theorems mentioned above are but discontinuities are immaterial, and it is a proper representation theorem, not just an inequality. It can be regarded as a converse to Theorem 30 (below), a theorem which is little more than a restatement, made for motivational purposes, of Theorem 21 and Lemma 26.

For $p \geq 1$ and $f \in W_{p}$ on $[a, b]$, define

$$
\begin{equation*}
\|f\|=|f(a)|+V_{p}(f ; a, b) \tag{41}
\end{equation*}
$$

this is known (and easily verified) to be a norm on W_{p}. Also define, for $a \leq x \leq b$, the Heaviside functions \bar{x} and \underline{x} (different from one used in [5]) as follows.

$$
\begin{align*}
& \bar{x}(t)=1 \quad \text { if } t \leq x, \quad \bar{x}(t)=0 \quad \text { if } t>x, \\
& \underline{x}(t)=1 \quad \text { if } t<x, \quad \underline{x}(t)=0 \quad \text { if } t \geq x . \tag{42}
\end{align*}
$$

It follows that $\underline{x}(x)=0<1=\bar{x}(x)$.
It is convenient here to use the notation of Banach and Riesz for linear functionals, rather than modern notation.
Theorem 30. If $p^{-1}+q^{-1}>1, p \geq 1, q \geq 1, f \in W_{p}$ and $g \in W_{q}$ on $[a, b]$, then $f \in R^{3} S(g)$. The $R^{3} S$-integral $L(f)=\int_{a}^{b} f d g$ has the following properties, for fixed g.

- L is a bounded linear functional on the space W_{p} normed by (41).
- If, for \bar{x} and \underline{x} as in (42), \bar{g} and \underline{g} are the functions

$$
\bar{g}(x)=L(\bar{x}) \quad \text { and } \quad \underline{g}(x)=L(\underline{x})
$$

then \bar{g} and \underline{g} are simply discontinuous in $[a, b]$ and

$$
\bar{g}(x)=\bar{g}(x+)=\underline{g}(x+), \quad \underline{g}(x)=\underline{g}(x-)=\bar{g}(x-) .
$$

Proof. (i) Linearity of L has been taken for granted throughout this paper. For boundedness on W_{p}, Lemma 26 gives, writing K for $2 \zeta(p, q)+2$ so that $K>1$,

$$
\begin{aligned}
|L(f)| & \leq\left|\int_{a}^{b} f(a) d g(x)\right|+K V_{p}(f ; a, b) V_{q}(g ; a, b) \\
& =|f(a)||g(b)-g(a)|+K V_{p}(f ; a, b) V_{q}(g ; a, b) \\
& \leq K V_{q}(g ; a, b)\left\{|f(a)|+V_{p}(f ; a, b)\right\}=M\|f\|
\end{aligned}
$$

where M denotes the constant $K V_{q}(g ; a, b)$.
(ii) Since \bar{x} and \underline{x} are step functions, (40) gives, after some algebra,

$$
\bar{g}(x)=\int_{a}^{b} \bar{x} d g=g(x+)-g(a) \quad \text { and } \quad \underline{g}(x)=\int_{a}^{b} \underline{x} d g=g(x-)-g(a)
$$

Let $a<x<y<\frac{1}{2}(x+b)<b$. Then $a<x<y<2 y-x<b$ and $g \in W_{q}(x, b)$; so, keeping x fixed,

$$
|g(y+)-g(x+)| \leq V_{q}(g ; x+, 2 y-x) \rightarrow 0 \quad \text { as } \quad y \rightarrow x+
$$

Hence $g(y+) \rightarrow g(x+)$ as $y \rightarrow x+$. Thus

$$
\bar{g}(x+)=\lim _{y \rightarrow x+} \bar{g}(y)=\lim _{y \rightarrow x+}\{g(y+)-g(a)\}=g(x+)-g(a)=\bar{g}(x)
$$

which gives one of the required relations. For another,

$$
\begin{aligned}
\bar{g}(x+)-\underline{g}(x+) & =\lim _{y \rightarrow x+}\{\bar{g}(y)-\underline{g}(y)\}=\lim _{y \rightarrow x+}\left(\int_{a}^{b} \bar{y} d g-\int_{a}^{b} \underline{y} d g\right) \\
& =\lim _{y \rightarrow x+} \int_{a}^{b}(\bar{y}-\underline{y}) d g=\lim _{y \rightarrow x+}\{g(y+)-g(y-)\}
\end{aligned}
$$

If $a<x<y<\frac{1}{2}(x+b)$, then $y<2 y-x$ and, as above,

$$
|g(y+)-g(y-)| \leq V_{q}(g ; x+, 2 y-x) \rightarrow 0 \quad \text { as } \quad y \rightarrow x+
$$

Thus $\bar{g}(x+)-\underline{g}(x+)=0$, another of the required relations.
The other two relations can be proved similarly.
Definitions. Following [5, $\S 12$, p. 29], for $p \geq 1$ and $f \in W_{p}(a, b)$, let

$$
\begin{equation*}
V_{p}^{*}(f)=V_{p}^{*}(f ; a, b)=\inf _{P}\left(\sum_{n=1}^{l} V_{p}\left(f ; x_{n-1}, x_{n}\right)^{p}\right)^{\frac{1}{p}} \tag{43}
\end{equation*}
$$

the lower bound being taken for all partitions P of $[a, b]$. Also let

$$
\begin{gather*}
\mathfrak{S}_{p}(f)=\mathfrak{S}_{p}(f ; a, b)= \\
=\left(\sum_{n}\left\{\left|f\left(s_{n}+\right)-f\left(s_{n}\right)\right|^{p}+\left|f\left(s_{n}\right)-f\left(s_{n}-\right)\right|^{p}\right\}\right)^{\frac{1}{p}} \tag{44}
\end{gather*}
$$

where the summation is taken over the enumerable set of discontinuities s_{n} of f, and $f(a-)$ and $f(b+)$ are understood to be $f(a)$ and $f(b)$ respectively. It is easily shown that $\mathfrak{S}_{p}(f) \leq V_{p}^{*}(f) \leq V_{p}(f)$.

Define W_{p}^{*} to be the set of functions f in W_{p} for which

$$
\begin{equation*}
\mathfrak{S}_{p}(f)=V_{p}^{*}(f) \tag{45}
\end{equation*}
$$

and let W_{p-} be the union of all W_{r} with $1 \leq r<p$. It is shown in $[5, \S 12$, p. 32] that, for $p>1$,

$$
\begin{equation*}
W_{p-} \subset W_{p}^{*} \subset W_{p} \tag{46}
\end{equation*}
$$

It can also be shown that W_{p}^{*} is a closed subspace of W_{p}, by means of theorems on approximation to functions in W_{p}^{*} by step functions [5, Theorems 18 and 19], one of which is quoted below (see Lemma 33).

The definition of $S_{p}(\mathrm{a} ; 1, k)$ in (17) is also needed. Repeating it here, it is the p th root of

$$
\begin{equation*}
S_{p}(\mathrm{a} ; 1, k)^{p}=\max \sum_{r=1}^{l}\left|\sum_{i=h(r-1)+1}^{h(r)} a_{i}\right|^{p} \tag{47}
\end{equation*}
$$

where the complex numbers a_{i} are components of the vector $\mathrm{a}=\left(a_{i}\right)$, and the maximum is taken for all integer sequences

$$
0=h(0)<h(1)<h(2)<\ldots<h(l)=k
$$

This means that the sequence $a_{1}, a_{2}, \ldots, a_{k}$ is partitioned into sums in all possible ways preserving order, and then the p th powers of moduli of the sums added together.

A minor extension of (47) is to define $S_{p}(\mathrm{a} ; 2, k)$ in the same way except that the value of $h(0)$ is changed from 0 to 1 . It is evident that

$$
\begin{equation*}
S_{p}(\mathrm{a} ; 2, k) \leq S_{p}(\mathrm{a} ; 1, k) \tag{48}
\end{equation*}
$$

Lemma 31. If $p^{-1}+q^{-1}=1, p>1, q>1, A>0, B>0, k$ is a positive integer and b is a complex vector $\left(b_{i}\right)$ such that (see (47))

$$
S_{q}(\mathrm{~b})=S_{q}(\mathrm{~b} ; 1, k) \geq 3
$$

then there is a vector $\mathrm{a}=\left(a_{i}\right)$ (real if b is real) such that

$$
S_{p}(\mathrm{a} ; 1, k) \leq A \quad \text { and } \quad\left|\sum_{0<i \leq j \leq k} a_{i} b_{j}\right| \geq A B / 2^{1+1 / q}
$$

This is the lemma in [4, p. 249]. It is obviously analogous to a form of the classical "converse of Hölder's inequality" and it is, in a similar sense, a converse of Theorem 17. It has some minor extensions, not needed here, which allow $p^{-1}+q^{-1}<1$ and omission of the modulus signs in the final inequality. In the sixth line of [4, p. 249], a_{K} should be a_{N}.

Lemma 32. If a_{n} are complex, $a_{1}+a_{2}+\ldots+a_{m}+a_{m+1}=0$, $\mathrm{a}=\left(a_{n}\right)$, $p>0$ and S_{p} is defined as in (47) and (48), then

$$
S_{p}(\mathrm{a} ; 2, m+1) \leq 2^{1 / p} S_{p}(\mathrm{a} ; 1, m)
$$

Proof. By definition $S_{p}(\mathrm{a} ; 2, m+1)^{p}$ is the greatest of the sums

$$
\begin{align*}
& T_{m}+\left|a_{m+1}\right|^{p}, T_{m-1}+\left|a_{m}+a_{m+1}\right|^{p}, T_{m-2}+\left|a_{m-1}+a_{m}+a_{m+1}\right|^{p} \\
& \quad \ldots, T_{2}+\left|a_{3}+a_{4}+\ldots+a_{m+1}\right|^{p},\left|a_{2}+a_{3}+\ldots+a_{m+1}\right|^{p} \tag{49}
\end{align*}
$$

where T_{n} stands for any sum like the inner sums in (47) but restricted to $a_{2}, a_{3}, \ldots, a_{n}$. In (49) all the sums which involve a_{m+1} have been separated out and written explicitly. Now for $2 \leq n \leq m$

$$
T_{n} \leq T_{m} \leq S_{p}(\mathrm{a} ; 2, m)^{p} \leq S_{p}(\mathrm{a} ; 1, m)^{p}
$$

and consequently $S_{p}(\mathrm{a} ; 2, m+1)^{p}$ is at most equal to

$$
\begin{aligned}
& \quad S_{p}(\mathrm{a} ; 1, m)^{p}+\max \left\{\left|a_{m+1}\right|^{p},\left|a_{m}+a_{m+1}\right|^{p},\left|a_{m-1}+a_{m}+a_{m+1}\right|^{p},\right. \\
& \left.\ldots,\left|a_{3}+\ldots+a_{m+1}\right|^{p},\left|a_{2}+a_{3}+\ldots+a_{m+1}\right|^{p}\right\} \\
& =S_{p}(\mathrm{a} ; 1, m)^{p}+\max \left\{\left|a_{1}+a_{2}+\ldots+a_{m}\right|^{p},\left|a_{1}+a_{2}+\ldots+a_{m-1}\right|^{p}\right. \\
& \\
& \left.\quad\left|a_{1}+a_{2}+\ldots+a_{m-2}\right|^{p}, \ldots,\left|a_{1}+a_{2}\right|^{p},\left|a_{1}\right|^{p}\right\} \\
& \leq \\
& S_{p}(\mathrm{a} ; 1, m)^{p}+\quad S_{p}(\mathrm{a} ; 1, m)^{p}
\end{aligned}
$$

The stated inequality follows from this.

Lemma 33. If $p>1$ and $f \in W_{p}^{*}$ then, given $\epsilon>0$ there is a step function s such that

$$
\begin{equation*}
V_{p}(f-s)<\epsilon \tag{50}
\end{equation*}
$$

Further, there is a partition $P(\epsilon)$ such that, for all $P \supset P(\epsilon)$ and all P^{*} associated with P as in §11, the step function s given by

$$
s\left(x_{n}\right)=f\left(x_{n}\right) \quad \text { and } \quad s(x)=f\left(\xi_{n}\right) \quad \text { for } \quad x_{n-1}<x<x_{n}
$$

satisfies (50)
This is [5, p. 30, Theorem 18] with one difference, that the associated points ξ_{n} of P^{*} are confined to the open interval $\left(x_{n-1}, x_{n}\right)$; this simply omits a little of what is proved in [5]. There is a converse [5, p. 32, Theorem 19], but it is not needed here.

15 A Riesz-type Representation Theorem

Theorem 34. If $p^{-1}+q^{-1}=1, p>1, L$ is a bounded linear functional on $W_{p}^{*}(a, b)$ normed as in (41), \bar{x} and \underline{x} are the Heaviside functions in (42), and the functions \bar{g} and \underline{g} defined by

$$
\begin{equation*}
\bar{g}(x)=L(\bar{x}) \quad \text { and } \quad \underline{g}(x)=L(\underline{x}) \tag{51}
\end{equation*}
$$

satisfy the equations

$$
\left.\begin{array}{ll}
\bar{g}(x)=\frac{1}{2}\{\bar{g}(x+)+\underline{g}(x+)\} & \text { for } a \leq x<b \tag{52}\\
\underline{g}(x)=\frac{1}{2}\{\bar{g}(x-)+\underline{g}(x-)\} & \text { for } a<x \leq b
\end{array}\right\}
$$

and
then there is $g \in W_{q}$ such that $L(f)=\left(R^{3} S\right) \int_{a}^{b} f d g$ for all $f \in W_{p}^{*}$.
Proof. I prove first that \bar{g} and \underline{g} are in W_{q}. This ensures that they are simply discontinuous, so that equations (52) have meaning.
(i) Suppose that $\bar{g} \notin W_{q}$. Let M be a bound of L on W_{p}^{*}. There is a partition P such that

$$
\sum_{n=1}^{l}\left|\bar{g}\left(x_{n}\right)-\bar{g}\left(x_{n-1}\right)\right|^{q}>2^{3 q+1} M^{q}
$$

Taking b_{n}, A and B in Lemma 31 as $\bar{g}\left(x_{n}\right)-\bar{g}\left(x_{n-1}\right), 1$ and $2^{3+1 / q} M$ respectively, there is a $=\left(a_{n}\right)$ such that $S_{p}(\mathrm{a} ; 1, l) \leq 1$ and

$$
\left|\sum_{0<i \leq j \leq l} a_{i}\left\{\bar{g}\left(x_{j}\right)-\bar{g}\left(x_{j-1}\right)\right\}\right| \geq 4 M .
$$

Writing $A_{j}=\sum_{i=1}^{j} a_{i}$ this gives, since each $\bar{x}_{j} \in W_{1} \subset W_{p}^{*}$ by (46),

$$
\begin{align*}
4 M & \leq\left|\sum_{j=1}^{l} A_{j}\left\{\bar{g}\left(x_{j}\right)-\bar{g}\left(x_{j-1}\right)\right\}\right| \\
& =\left|L\left(\sum_{j=1}^{l} A_{j}\left(\bar{x}_{j}-\bar{x}_{j-1}\right)\right)\right| \leq M\left\|\sum_{j=1}^{l} A_{j}\left(\bar{x}_{j}-\bar{x}_{j-1}\right)\right\| ; \tag{53}
\end{align*}
$$

this leads to the contradiction

$$
\begin{equation*}
4 \leq V_{p}\left(\sum_{j=1}^{l} A_{j}\left(\bar{x}_{j}-\bar{x}_{j-1}\right)\right)=S_{p}(\mathrm{a} ; 1, l) \leq 1 . \tag{54}
\end{equation*}
$$

The middle equality in (54) holds because $\bar{x}_{j}-\bar{x}_{j-1}$ is the characteristic function of $\left(x_{j-1}, x_{j}\right.$], so that the linear combination of these in (53) is the step function which has jumps a_{j} at x_{j-1} for $j=1,2, \ldots, l$. The contradiction (54) proves that $\bar{g} \in W_{q}$.
(ii) A proof that $\underline{g} \in W_{q}$ is exactly like (i) as far as (53), the function occurring in (53) being replaced, on account of (51), by

$$
\sum_{j=1}^{l} A_{j}\left(\underline{x}_{j}-\underline{x}_{j-1}\right) .
$$

Now $\underline{x}_{j}-\underline{x}_{j-1}$ is the characteristic function of $\left[x_{j-1}, x_{j}\right)$, so this linear combination is the step function with jumps a_{2} at x_{1}, a_{3} at x_{2}, \ldots, a_{j} at x_{j-1}. It has no jump at x_{0}, but as the other end-point x_{l} is approached it jumps from A_{l} to 0 . Denoting this last jump $-A_{l}$ by a_{l+1},

$$
a_{1}+a_{2}+\ldots+a_{l}+a_{l+1}=0
$$

Instead of (53) and (54) I now have, using (41) and Lemma 32,

$$
\begin{aligned}
4 & \leq\left|a_{1}\right|+V_{p}\left(\sum_{j=1}^{l} A_{j}\left(\underline{x}_{j}-\underline{x}_{j-1}\right)\right) \\
& =\left|a_{1}\right|+S_{p}(\mathrm{a} ; 2, l+1) \\
& \leq\left|a_{1}\right|+2^{1 / p} S_{p}(\mathrm{a} ; 1, l) \\
& \leq\left(1+2^{1 / p}\right) S_{p}(\mathrm{a} ; 1, l) \\
& \leq 2^{1 / p}+2^{1 / p}=2^{1+1 / p}<4 .
\end{aligned}
$$

This contradiction shows that $g \in W_{q}$.
(iii) Given $f \in W_{p}^{*}$ and $\epsilon>\overline{0}$, Lemma 33 provides a partition $P(\epsilon / M)$ such that $V_{p}(f-s)<\epsilon / M$ whenever s is the step function

$$
s=\sum_{n=0}^{l} f\left(x_{n}\right)\left(\bar{x}_{n}-\underline{x}_{n}\right)+\sum_{n=1}^{l} f\left(\xi_{n}\right)\left(\underline{x}_{n}-\bar{x}_{n-1}\right)
$$

$x_{n-1}<\xi_{n}<x_{n}$ for each n, and the partition P is a refinement of $P(\epsilon / M)$. By (51),

$$
\begin{equation*}
L(s)=\sum_{n=0}^{l} f\left(x_{n}\right)\left\{\bar{g}\left(x_{n}\right)-\underline{g}\left(x_{n}\right)\right\}+\sum_{n=1}^{l} f\left(\xi_{n}\right)\left\{\underline{g}\left(x_{n}\right)-\underline{g}\left(x_{n-1}\right)\right\} \tag{55}
\end{equation*}
$$

Define g by $g(a)=\underline{g}(a), g(b)=\bar{g}(b)$, and

$$
\begin{equation*}
g(x)=\frac{1}{2}\{\bar{g}(x)+\underline{g}(x)\} \quad \text { for } \quad a<x<b . \tag{56}
\end{equation*}
$$

Then $g \in W_{q}$ by (i) and (ii); and by (52)

$$
\begin{array}{ll}
g(x+)=\bar{g}(x) & \text { for } a \leq x<b \\
g(x-)=\underline{g}(x) & \text { for } a<x \leq b
\end{array}
$$

These with (55) give

$$
\begin{aligned}
L(s)= & f(a)\{g(a+)-g(a)\}+f(b)\{g(b)-g(b-)\} \\
& +\sum_{n=1}^{l-1} f\left(x_{n}\right)\left\{g\left(x_{n}+\right)-g\left(x_{n}-\right)\right\}+\sum_{n=1}^{l} f\left(\xi_{n}\right)\left\{g\left(x_{n}-\right)-g\left(x_{n-1}+\right)\right\}
\end{aligned}
$$

which is equal to $S\left(P^{*}\right)$ in the notation of (7) and (8). Thus

$$
\left|L(f)-S\left(P^{*}\right)\right|=|L(f-s)| \leq M\|f-s\|=M V_{p}(f-s)<\epsilon
$$

whenever $P \supset P(\epsilon / M)$ and P^{*} is associated with P. So by (9) and (10), $f \in R^{3} S(g)$ and $L(f)$ is the value of the $R^{3} S$-integral.

Remark. By (56) and (51),

$$
g(x)=L\left\{\frac{1}{2}(\bar{x}+\underline{x})\right\}=L(h) \quad \text { for } \quad a \leq x \leq b
$$

where h is the Heaviside function

$$
h(t)=1 \text { for } t<x, \quad h(x)=\frac{1}{2}, \quad h(t)=0 \text { for } t>x .
$$

References

[1] E. Hewitt, Integration by parts for Stieltjes integrals, Amer. Math. Monthly 67 (1960), 419-423.
[2] E. R. Love, The Ross-Riemann-Stieltjes integral, Bull. Inst. Math. Appl. 18 (1982), 193-196.
[3] E. R. Love, The Refinement-Ross-Riemann-Stieltjes ($R^{3} S$) integral, in: Analysis, Geometry and Groups; a Riemann legacy volume, part I, ed. H. M. Srivastava and Th. M. Rassias, Hadronic Press, Palm Harbor, Florida 34682-1577, U.S.A., ISBN 0-911767-59-2, (1993), 289-312.
[4] E. R. Love and L. C. Young, Sur une classe de fonctionelles linéaires, Fund. Math. 28 (1937), 243-257.
[5] E. R. Love and L. C. Young, On fractional integration by parts, Proc. London. Math. Soc. (2) 44 (1938), 1-35.
[6] K. A. Ross, Another approach to Riemann-Stieltjes integrals, Amer. Math. Monthly 87 (1980), 660-662.
[7] K. A. Ross, Elementary analysis: the theory of calculus, Springer-Verlag, New York, 1980.
[8] D. V. Widder, The Laplace transform, Princeton, 1946.
[9] N. Wiener, The quadratic variation of a function and its Fourier coefficients, J. Massachusetts Inst. Tech. 3 (1924), 73-94.
[10] L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), 251-282.
E. R. Love

[^0]: Mathematical Reviews subject classification: 26A42
 Received by the editors January 14, 1998

