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INTEGRATION BY PARTS AND OTHER
THEOREMS FOR R3S-INTEGRALS

Abstract

This paper is a continuation of [3], in which was introduced the
Refinement-Ross-Riemann-Stieltjes (R3S) Integral, and in which some
of its advantages were exhibited. After a brief summary of [3], this paper
proves an integration by parts theorem which shows incidentally that if f
is R3S-integrable with respect to g then g is R3S-integrable with respect
to f . Theorems on term-by-term integration of sequences analogous
to the Helly-Bray Theorem are next proved, in a context of Wiener’s
functions of bounded generalized variation as developed by L. C. Young
and me. In a similar context I prove also a theorem resembling the
classical theorem of Riesz representing linear functionals by Stieltjes
integrals.

10 Introduction

The Refinement-Ross-Riemann-Stieltjes (R3S) Integral was introduced in [3],
and some of its fundamental properties were established there. Its definition is
repeated in §11. It extends the Ross-Riemann-Stieltjes (R2S) Integral [2, 6, 7]
which succeeded in overcoming, in an elementary way, some disadvantages
of the classical Riemann-Stieltjes (RS) Integral, notably its failure to exist
when the integrand and the integrator functions have a common point of
discontinuity.

This paper is a continuation of [3]. The numbering of new theorems and
lemmas is from 23 to 34, following on the numbering in [3]. Similarly the
numbering of new formulae is from (31) to (56), and of sections from 10 to 15.
This perversion is intended to facilitate reference to appropriate places in [3];
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316 E. R. Love

however is is hoped that the summary provided in §11 will minimize the need
for such reference.

The R2S-integral in [6, 7] is confined to increasing integrators, but is simply
extended in [2, 3] to integrators of bounded variation. The R3S-integral is
shown in [3] to be a further extension, in which the integrator may have
unbounded variation at the expense of heavier restriction on the integrand (but
less heavy than bounded variation). The R3S-integral also possesses a certain
symmetry between integrator and integrand; this shows up prominently in §12
on integration by parts, particularly in Theorem 25.

In §13 on R3S-integration of sequences, Theorem 28 resembles the Helly-
Bray Theorem [8, p. 31], but in a more general context and Theorem 29 goes
further in that direction.

Theorem 34 in §15 is an analogue of the famous theorem of F. Riesz rep-
resenting a linear functional by a Stieltjes integral.

11 Background

In [3] it is evident that a major stimulus for studying the R3S-integral is the
following existence theorem for non-absolutely convergent integrals, stated and
proved in [3].

Theorem 21. If p−1 + q−1 > 1, p ≥ 1, q ≥ 1, f ∈ Wp and g ∈ Wq, then the
R3S-integral of f with respect to g exists.

Here Wp, named Wiener [9], is the class of complex-valued functions f on
a compact interval [a, b] whose pth power variation Vp(f) = Vp(f ; a, b) is finite;
where

Vp(f ; a, b) = sup
( l∑
n=1

∣∣f(xn)− f(xn−1)
∣∣p) 1

p

, (14)

the upper bound being taken for all partitions a = x0 < x1 < . . . < xl = b .
W1 is the ordinary class of functions of bounded variation; as p increases Wp

expands, and the expansion is proper.
The earliest version of this theorem was due to Young and Love, in [10];

it was somewhat hampered by working with the classical RS-integral, which
fails to exist if the two functions involved have a common discontinuity.

For p ≥ 1 all functions in Wp are bounded and simply discontinuous; that
is, they have simple discontinuities only.

Lemma 13. If p ≥ 1, f and g are complex-valued functions on [a, b], and k
is a complex constant, then

Vp(f + g) ≤ Vp(f) + Vp(g) and Vp(kf) = |k|Vp(f) .
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Lemma 14. If q ≥ p ≥ 1 and

V∞(f ; a, b) = sup
{
|f(x)− f(y)| : a ≤ x < y ≤ b

}
,

then
V∞(f) ≤ Vq(f) ≤ Vp(f) .

Definition of the R3S-integral. (repeated from [3]) is as follows.
Let g be a simply discontinuous complex valued function on a compact

interval [a, b]. Let P be a partition a = x0 < x1 < . . . < xl = b, and let P ∗

be P together with any associated points ξn such that xn−1 < ξn < xn for
n = 1, 2, . . . , l. Let

∆n = g(xn−)− g(xn−1+) , δn = g(xn+)− g(xn−) ,

g(a−) = g(a) , g(b+) = g(b) .

}
(7)

For a complex-valued function f on [a, b] define an approximative sum

S(P ∗) = S(f, g, P ∗) =

l∑
n=1

f(ξn)∆n +

l∑
n=0

f(xn)δn . (8)

The last summation may be called the jump sum.
Suppose that there is a complex number I with the property that, for each

ε > 0 there is a partition P (ε) such that∣∣S(P ∗)− I
∣∣ < ε whenever P ⊃ P (ε) , (9)

that is, whenever P is a refinement of P (ε) and P ∗ is associated with P . It is
easily seen that I is unique; I is then called the R3S-integral of f with respect
to g on [a, b],

I = (R3S)

∫ b

a

f dg , (10)

and f is said to be R3S-integrable with respect to g on [a, b], or briefly, f ∈
R3S(g).

Certain other approximative sums are useful when f , as well as g, is simply
discontinuous. These are

S(P+) =

l∑
n=1

f(xn−1+)∆n +

l∑
n=0

f(xn)δn ,

S(P−) =

l∑
n=1

f(xn−)∆n +

l∑
n=0

f(xn)δn .


(20)
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12 R3S-Integration by Parts

Substantial leads towards this were given by Young [10], Hewitt [1] and Ross [6,
7]. The latter two consider only functions of bounded variation, indeed mostly
increasing functions. As might be expected from Theorem 21, integration by
parts extends to a wide range of functions of unbounded variation.

A function f is said to be normalized if, for all x concerned, it is simply
discontinuous and f(x) = 1

2

{
f(x+) + f(x−)

}
.

Lemma 23. Let f and g be simply discontinuous in [a, b], let f be normalized
in (a, b) and let E be a dense subset of (a, b). In order that f should be
R3S-integrable with respect to g on [a, b], with integral I, it is necessary and
sufficient that for each ε > 0 there be a partition P (ε) such that

∣∣I−S(P ∗)
∣∣ < ε

whenever P ⊃ P (ε) and every ξn in P ∗ is in E.

Proof. The necessity is obvious. For the sufficiency, suppose that the con-
dition holds. Let J(P ) denote the jump sum on P ; that is, the last summa-
tion in (8). Suppose that the ξn are restricted only by the requirement that
xn−1 < ξn < xn, as in (8). Then there are sequences

{sn,r}∞r=1 ⊂ E ∩ (xn−1, xn) and {tn,r}∞r=1 ⊂ E ∩ (xn−1, xn)

such that sn,r ↑ ξn and tn,r ↓ ξn as r → ∞. For P ∗ with these ξn as the
associated points,

S(P ∗) =

l∑
n=1

f(ξn)∆n + J(P ) = 1
2

l∑
n=1

{
f(ξn−) + f(ξn+)

}
∆n + J(P )

= 1
2 lim
r→∞

l∑
n=1

f(sn,r)∆n + 1
2 lim
r→∞

l∑
n=1

f(tn,r)∆n + J(P ) ,

I − S(P ∗) = 1
2 lim
r→∞

{
I −

l∑
n=1

f(sn,r)∆n − J(P )
}

+ 1
2 lim
r→∞

{
I −

l∑
n=1

f(tn,r)∆n − J(P )
}

;

so that
∣∣I−S(P ∗)

∣∣ ≤ 1
2ε+ 1

2ε whenever P ⊃ P (ε). This proves Lemma 23.

Lemma 24. If f and g are simply discontinuous in [a, b] and normalized in
(a, b), P is any partition of [a, b], S(P±) are the sums defined in (20) and
T (P±) are the results of interchanging f and g in S(P±), then

1
2

{
S(P+) + S(P−)

}
+ 1

2

{
T (P+) + T (P−)

}
= B −A
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where A and B are as in (33) (in Theorem 25 below).

Proof. Let J(P ) be the jump sum for f and g on P ; that is, the last
summation in (8) and (20). Observing (7),

J(P ) = f(a)
{
g(a+)− g(a)

}
+

l−1∑
n=1

f(xn)
{
g(xn+)− g(xn−)

}
+ f(b)

{
g(b)− g(b−)

}
= f(a−)

{
g(a+)− g(a−)

}
+ f(b+)

{
g(b+)− g(b−)

}
+ 1

2

l−1∑
n=1

{
f(xn+) + f(xn−)

}{
g(xn+)− g(xn−)

}
= − 1

2

{
f(a+)− f(a−)

}{
g(a+)− g(a−)

}
+ 1

2

{
f(b+)− f(b−)

}{
g(b+)− g(b−)

}
+ 1

2

l∑
n=0

{
f(xn+)− f(xn−)

}{
g(xn+)− g(xn−)

}
. (31)

Let K(P ) be the result of interchanging f and g in J(P ). Then

J(P ) +K(P ) = −
{
f(a+)− f(a−)

}{
g(a+)− g(a−)

}
+
{
f(b+)− f(b−)

}{
g(b+)− g(b−)

}
+

l∑
n=0

{
f(xn+)g(xn+)− f(xn−)g(xn−)

}
. (32)

By (20),

1
2

{
S(P+)+S(P−)

}
= 1

2

l∑
n=1

{
f(xn−)+f(xn−1+)

}{
g(xn−)−g(xn−1+)

}
+J(P ) ,

1
2

{
T (P+)+T (P−)

}
= 1

2

l∑
n=1

{
f(xn−)−f(xn−1+)

}{
g(xn−)+g(xn−1+)

}
+K(P ) .
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The sum of these two right sides is, using (32) and (7),

l∑
n=1

{
f(xn−)g(xn−)− f(xn−1+)g(xn−1+)

}
+

l∑
n=0

{
f(xn+)g(xn+)− f(xn−)g(xn−)

}
−
{
f(a+)− f(a−)

}{
g(a+)− g(a−)

}
+
{
f(b+)− f(b−)

}{
g(b+)− g(b−)

}
= f(xl+)g(xl+)− f(x0−)g(x0−)

−
{
f(a+)− f(a)

}{
g(a+)− g(a)

}
+
{
f(b)− f(b−)

}{
g(b)− g(b−)

}
= B −A .

Theorem 25. If f and g are simply discontinuous in [a, b] and normalized in
(a, b), and g ∈ R3S(f), then f ∈ R3S(g) and∫ b

a

f dg +

∫ b

a

g df = B −A ,

where A = f(a)g(a) +
{
f(a+)− f(a)

}{
g(a+)− g(a)

}
and B = f(b)g(b) +

{
f(b)− f(b−)

}{
g(b)− g(b−)

}
.

(33)

Remarks. Observe that f and g are not required to be in Wiener classes.
The familiar form of integration by parts, with the right side B − A replaced
by f(b)g(b)− f(a)g(a) , occurs if one of f and g is continuous at a and one of
f and g is continuous at b.

Proof. (i) Let I be the R3S-integral of g with respect to f on [a, b]. Let P
and P ∗ be as in §11. By (9) there is a partition P (ε) such that∣∣I − T (P ∗)

∣∣ < ε whenever P ⊃ P (ε) . (34)

Here

T (P ∗) =

l∑
n=1

g(ξn)
{
f(xn−)− f(xn−1+)

}
+K(P ) (35)

where xn−1 < ξn < xn and K(P ) is the jump sum J(P ) with f and g in-

terchanged, so that K(P ) =
∑l

n=0 g(xn)
{
f(xn+) − f(xn−)

}
. Making ξn →

xn−1+, and separately ξn → xn−,

T (P ∗)→
l∑

n=1

g(xn−1+)
{
f(xn−)− f(xn−1+)

}
+K(P ) = T (P+) ,
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T (P ∗)→
l∑

n=1

g(xn−)
{
f(xn−)− f(xn−1+)

}
+K(P ) = T (P−)

respectively, in keeping with the notation in (20). By (34),
∣∣I − T (P±)

∣∣ ≤ ε
whenever P ⊃ P (ε) , and so∣∣∣I − 1

2

{
T (P+) + T (P−)

}∣∣∣ ≤ ε whenever P ⊃ P (ε) . (36)

(ii) Suppose now that l is even. Let
∑

o denote summation over odd n and∑
e summation over even n. In (35) make ξn → xn−1+ for odd n, ξn → xn−

for even n; these give

T (P ∗)→
l∑

n=1
o g(xn−1+)

{
f(xn−)− f(xn−1+)

}

+

l∑
n=1

e g(xn−)
{
f(xn−)− f(xn−1+)

}
+K(P ) .

Again, in (35) make ξn → xn− for odd n, ξn → xn−1+ for even n. Then

T (P ∗)→
l∑

n=1
o g(xn−)

{
f(xn−)− f(xn−1+)

}

+

l∑
n=1

e g(xn−1+)
{
f(xn−)− f(xn−1+)

}
+K(P ) .

Subtracting these limits gives, because of (34),

∣∣∣ l∑
n=1

o
{
f(xn−)− f(xn−1+)

}{
g(xn−)− g(xn−1+)

}

−
l∑

n=1
e
{
f(xn−)− f(xn−1+)

}{
g(xn−)− g(xn−1+)

}∣∣∣ ≤ 2ε

(37)

whenever P ⊃ P (ε) .
(iii) Let P and P ∗ be as in (i); that is, as in §11, and let Q be the partition

a = x0 < ξ1 < x1 < ξ2 < x2 < . . . < xl−1 < ξl < xl = b ;
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that is, Q consists of all the points of P ∗. Observe that (36) and (37) involve
only the xn, not the ξn; this will enable them to be used with P replaced by
Q, as will be done shortly.

Let all the ξn be points of continuity of f ; such points are of course dense
since f is simply discontinuous. By (8) and (20)

S(P ∗)− 1
2

{
S(Q+) + S(Q−)

}
=

l∑
n=1

f(ξn)
{
g(xn−)− g(xn−1+)

}
+ J(P )− J(Q)

− 1
2

l∑
n=1

{
f(xn−1+) + f(ξn−)

}{
g(ξn−)− g(xn−1+)

}
− 1

2

l∑
n=1

{
f(ξn+) + f(xn−)

}{
g(xn−)− g(ξn+)

}
=

l∑
n=1

f(ξn)
{
g(xn−)− g(xn−1+)− g(ξn+) + g(ξn−)

}
− 1

2

l∑
n=1

{
f(ξn) + f(xn−1+)

}{
g(ξn−)− g(xn−1+)

}
− 1

2

l∑
n=1

{
f(xn−) + f(ξn)

}{
g(xn−)− g(ξn+)

}
= 1

2

l∑
n=1

{
f(ξn)− f(xn−1+)

}{
g(ξn−)− g(xn−1+)

}
+ 1

2

l∑
n=1

{
f(ξn)− f(xn−)

}{
g(xn−)− g(ξn+)

}
= 1

2

l∑
n=1

{
f(ξn−)− f(xn−1+)

}{
g(ξn−)− g(xn−1+)

}
− 1

2

l∑
n=1

{
f(xn−)− f(ξn+)

}{
g(xn−)− g(ξn+)

}
. (38)



Integration by Parts for R3S-Integrals 323

(iv) Let A and B be as in (33). Then∣∣S(P ∗)− (B −A− I)
∣∣ ≤ ∣∣∣S(P ∗)− 1

2

{
S(Q+) + S(Q−)

}∣∣∣
+
∣∣∣ 12{S(Q+) + S(Q−)

}
+ 1

2

{
T (Q+) + T (Q−)

}
− (B −A)

∣∣∣
+
∣∣∣I − 1

2

{
T (Q+) + T (Q−)

}∣∣∣ . (39)

The middle line on the right of (39) is zero, by Lemma 24 with P replaced
by Q, a change which does not affect B −A. The last line on the right is, by
(36), at most ε if Q ⊃ P (ε) and this is indeed so whenever P ⊃ P (ε), because
then Q ⊃ P ⊃ P (ε).

Now Q partitions [a, b] into an even number, 2l, of subintervals. A suitable
change of notation for the points ofQ would turn (38) into one half the contents

of the modulus signs in (37) and so
∣∣∣S(P ∗)− 1

2

{
S(Q+)+S(Q−)

}∣∣∣ ≤ ε whenever

Q ⊃ P (ε), and therefore whenever P ⊃ P (ε). Thus (39) gives∣∣S(P ∗)− (B −A− I)
∣∣ ≤ 2ε whenever P ⊃ P (ε) .

This inequality has been obtained under the assumption that the associated
points ξn are all in the dense set of points of continuity of f . By Lemma 23, f is
R3S-integrable with respect to g, with integral equal to B−A−I, completing
the proof of Theorem 25.

13 Limits of R3S-Integrals

In §11 only the part of Theorem 21 relevant there is quoted. The rest of that
theorem [3, p. 308] is now needed; it is as follows.

Theorem 21 continued. The integral satisfies the inequality∣∣∣∫ b

a

f dg − C
∣∣∣ ≤ 2ζ(p, q)Vp(f ; a+, b−)Vq(g; a+, b−) ,

where ζ(p, q) is independent of f , g, a and b, and

C = f(b)
{
g(b)− g(b−)

}
+ f(a+)

{
g(b−)− g(a+)

}
+ f(a)

{
g(a+)− g(a)

}
.

The inequality also holds with f(a+) (in C) replaced by f(b−).

The following theorem [3, p. 310] is also needed.
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Theorem 22. If g is simply discontinuous in [a, b], a < c < b and either side
of the equation ∫ b

a

f dg =

∫ c

a

f dg +

∫ b

c

f dg

exists in the R3S-sense, then so does the other side and the equation holds.

This theorem does not require f and g to be in Wiener classes.

Lemma 26. If p−1 + q−1 > 1, p ≥ 1, q ≥ 1, f ∈ Wp and g ∈ Wq on [a, b],
and ζ(p, q) is the constant in Theorems 17 and 21, then∣∣∣∫ b

a

{
f(x)− f(a+)

}
dg(x)

∣∣∣ ≤ {2ζ(p, q) + 1
}
Vp(f ; a, b)Vq(g; a, b)

and ∣∣∣∫ b

a

{
f(x)− f(a)

}
dg(x)

∣∣∣ ≤ {2ζ(p, q) + 2
}
Vp(f ; a, b)Vq(g; a, b) .

These inequalities also hold with replacement of f(a+) or f(a) on the left by
f(b−) or f(b) respectively.

Proof. In Theorem 21 replace f(x) by f(x)−f(a+); then C in that theorem
becomes C ′, say, with

|C ′| ≤
∣∣f(a)− f(a+)

∣∣ ∣∣g(a+)− g(a)
∣∣+
∣∣f(b)− f(a+)

∣∣ ∣∣g(b)− g(b−)
∣∣ .

By Jensen’s extension of Hölder’s Inequality,

|C′| ≤
{∣∣f(a)−f(a+)

∣∣p +
∣∣f(a+)−f(b)

∣∣p} 1
p
{∣∣g(a)−g(a+)

∣∣q +
∣∣g(b−)−g(b)

∣∣q} 1
q

≤ Vp(f ; a, b)Vq(g; a, b) .

The first inequality in Lemma 26 now follows easily from “Theorem 21 con-
tinued”.

The second inequality can be obtained similarly, or deduced from the first
by “adding” the trivial inequality∣∣∣∫ b

a

{
f(a+)− f(a)

}
dg(x)

∣∣∣ =
∣∣f(a+)− f(a)

∣∣ ∣∣g(b)− g(a)
∣∣

≤ Vp(f ; a, b)Vq(g; a, b) .

The other two inequalities are proved in a similar manner.
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Lemma 27. If r > p ≥ 1 and f ∈ Wp(a, b) then, given ε > 0, there is a step
function s such that Vr(f − s; a, b) < ε.

Proof. This is the main part of [5, p. 7, Lemma 2].

Theorem 28. Let p−1 + q−1 > 1, p ≥ 1, q ≥ 1, f ∈ Wp and gn ∈ Wq

on [a, b]. Let Vq(gn; a, b) be a bounded function of the positive integer n, and
gn(x) → g(x) as n → ∞ for each x ∈ [a, b]. If also gn(x±) → g(x±) at each
discontinuity x of f , and at the end-points x = a and b, then∫ b

a

f dgn →
∫ b

a

f dg as n→∞ .

Proof. (i) For any partition a = x0 < x1 < . . . < xl = b, denoted by P ,

l∑
i=1

∣∣g(xi)− g(xi−1)
∣∣q = lim

n→∞

l∑
i=1

∣∣gn(xi)− gn(xi−1)
∣∣q ≤ lim

n→∞
Vq(gn; a, b)q .

So g ∈ Wq(a, b), and all the R3S-integrals exist by Theorem 21. Further
Vq(g; a, b) ≤ supVq(gn; a, b).

(ii) If f is constant throughout (a, b), (7), (8) and (9) show easily that
f ∈ R3S(g) and∫ b

a

f dg = f(a)
{
g(a+)− g(a)

}
+ f(b)

{
g(b)− g(b−)

}
+ f(b−)

{
g(b−)− g(a+)

}
.

If f is a step function on [a, b] with discontinuities only at the points of P , the
above equation and Theorem 22 give∫ b

a

f dg =

l∑
i=0

f(xi)
{
g(xi+)− g(xi−)

}

+

l∑
i=1

f(xi−)
{
g(xi−)− g(xi−1+)

}
,

(40)

remembering that g(x0−) = g(a−) = g(a) and g(xl+) = g(b+) = g(b).
Similarly, replacing g by gn,∫ b

a

f dgn =

l∑
i=0

f(xi)
{
gn(xi+)−gn(xi−)

}
+

l∑
i=1

f(xi−)
{
gn(xi−)−gn(xi−1+)

}
.
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Making n→∞, Theorem 28 is proved for all step functions f .
(iii) Suppose that f is no longer a step function. Fix r such that 1− q−1 <

r−1 < p−1. Let M = 1 + 2ζ(r, q) and N = 1 + supVq(gn; a, b) . Given
ε > 0, let ε′ = ε/3MN ; then by Lemma 27 there is a step function s such
that Vr(f − s; a, b) < ε′ . Since addition of a constant to s does not alter this
inequality, s(a+) may be supposed equal to f(a+).

Let h = f − s. Then h ∈ Wp ⊂ Wr, using Lemma 14 and h(a+) = 0. By
Lemma 26 with p, f and g replaced by r, h and gn respectively,∣∣∣∫ b

a

h dgn

∣∣∣ =
∣∣∣∫ b

a

{
h(x)− h(a+)

}
dgn(x)

∣∣∣
≤
{

2ζ(r, q) + 1
}
Vr(h; a, b)Vq(gn; a, b)

≤Mε′N = 1
3ε .

By (i) the same inequality holds when gn is replaced by g. Using linearity,∣∣∣∫ b

a

f dgn −
∫ b

a

f dg
∣∣∣ ≤ ∣∣∣∫ b

a

h dgn −
∫ b

a

h dg
∣∣∣+
∣∣∣∫ b

a

s dgn −
∫ b

a

s dg
∣∣∣

≤ 2
3ε+

∣∣∣∫ b

a

s dgn −
∫ b

a

s dg
∣∣∣ < ε

for all n sufficiently large, since by (ii) the theorem holds when f is the step
function s.

Remarks. Theorem 28 resembles the Helly-Bray Theorem [8, p. 31] in which
f is continuous and the gn are of uniformly bounded variation. Theorem 29
(below) is a generalization of Theorem 28. The hypothesis that gn(x±) →
g(x±) at the discontinuities of f is essential for both these theorems; this is
shown by the following example.

Let a < c < b and cn ↓ c. Let f(c) 6= 1, and

f(x) = 0 if a ≤ x < c , f(x) = 1 if c < x ≤ b ,

gn(x) = 0 if a ≤ x < cn , gn(x) = 1 if cn ≤ x ≤ b ,

g(x) = 0 if a ≤ x ≤ c , g(x) = 1 if c < x ≤ b .

Then Vq(gn; a, b) = 1, and gn(x)→ g(x) as n→∞ because

g(x)− gn(x) =

{
1 if c < x < cn,

0 otherwise;
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it follows that g(c+) − gn(c+) = 1 6= 0. The conclusion of Theorem 28 does
not hold, because by (7), (8) and (9)∫ b

a

f dgn = f(cn)→ 1 but

∫ b

a

f dg = f(c) 6= 1 .

Theorem 29. Let p−1 + q−1 > 1, p ≥ 1, q ≥ 1, fn ∈ Wp and gn ∈ Wq on
[a, b]. Let Vp(fn − f ; a, b)→ 0 as n→∞ and Vq(gn; a, b) be bounded. If

fn(x) → f(x) for one x ∈ [a, b] ,

gn(x) → g(x) for all x ∈ [a, b] ,

gn(x±)→ g(x±) at each discontinuity x of f

and also at x = a and b, then∫ b

a

fn dgn →
∫ b

a

f dg as n→∞.

Proof. By Lemma 13, Vp(f) ≤ Vp(f − fn) + Vp(fn) <∞; so f ∈Wp. Thus
the discontinuities of f are simple and enumerable.

The hypotheses imply that fn(x) → f(x) for all x ∈ [a, b]. For let c be
the one value of x at which this happens by hypothesis, and let hn(x) =
fn(x)− f(x). Then, for each x ∈ [a, b],∣∣hn(x)

∣∣ ≤ ∣∣hn(x)− hn(c)
∣∣+
∣∣hn(c)

∣∣ ≤ Vp(hn; a, b) +
∣∣hn(c)

∣∣→ 0

as n→∞; in particular hn(a)→ 0. Also hn ∈Wp.

Using Lemma 26,

∣∣∣∫ b

a

hn dgn

∣∣∣ ≤ ∣∣∣∫ b

a

{
hn(x)− hn(a)

}
dgn(x)

∣∣∣+
∣∣∣∫ b

a

hn(a) dgn(x)
∣∣∣

≤
{

2ζ(p, q) + 2
}
Vp(hn)Vq(gn) +

∣∣hn(a)
∣∣Vq(gn)→ 0 .

Theorem 28 now gives, as n→∞∫ b

a

fn dgn =

∫ b

a

hn dgn +

∫ b

a

f dgn →
∫ b

a

f dg ,

as required.
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14 Preparations for the Representation Theorem

Such a theorem was given in [4, pp. 248 and 255] for linear functionals on
a certain subspace of Wp. The subspace excluded all discontinuous (and also
some other) functions. Attempts to admit some discontinuous functions were
made in [5, pp. 8 and 33]. No proper representation of a linear functional,
but only an inequality for it, was achieved in one of these attempts [5, p. 8,
Theorem 1] and the other [5, p. 33, Theorem 20] had little more success. The
latter attempt expressed the linear functional as a refinement version of the
(classical) RS-integral, for a class of (possibly) discontinuous functions in Wp

but it too was hampered by the common discontinuity trouble.

In what follows I present such a theorem using the R3S-integral. It is con-
fined to the subspace W ∗p (defined at (45) in §15) of Wp, just as the theorems
mentioned above are but discontinuities are immaterial, and it is a proper rep-
resentation theorem, not just an inequality. It can be regarded as a converse
to Theorem 30 (below), a theorem which is little more than a restatement,
made for motivational purposes, of Theorem 21 and Lemma 26.

For p ≥ 1 and f ∈Wp on [a, b], define

‖f‖ = |f(a)|+ Vp(f ; a, b) ; (41)

this is known (and easily verified) to be a norm on Wp. Also define, for
a ≤ x ≤ b, the Heaviside functions x and x (different from one used in [5]) as
follows.

x(t) = 1 if t ≤ x , x(t) = 0 if t > x ,

x(t) = 1 if t < x , x(t) = 0 if t ≥ x .
(42)

It follows that x(x) = 0 < 1 = x(x).
It is convenient here to use the notation of Banach and Riesz for linear

functionals, rather than modern notation.

Theorem 30. If p−1 + q−1 > 1, p ≥ 1, q ≥ 1, f ∈ Wp and g ∈ Wq on

[a, b], then f ∈ R3S(g). The R3S-integral L(f) =
∫ b

a
f dg has the following

properties, for fixed g.

• L is a bounded linear functional on the space Wp normed by (41).

• If, for x and x as in (42), g and g are the functions

g(x) = L(x) and g(x) = L(x) ,

then g and g are simply discontinuous in [a, b] and

g(x) = g(x+) = g(x+) , g(x) = g(x−) = g(x−) .
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Proof. (i) Linearity of L has been taken for granted throughout this paper.
For boundedness on Wp, Lemma 26 gives, writing K for 2ζ(p, q) + 2 so that
K > 1, ∣∣L(f)

∣∣ ≤ ∣∣∣∫ b

a

f(a) dg(x)
∣∣∣+KVp(f ; a, b)Vq(g; a, b)

=
∣∣f(a)

∣∣ ∣∣g(b)− g(a)
∣∣+KVp(f ; a, b)Vq(g; a, b)

≤ KVq(g; a, b)
{
|f(a)|+ Vp(f ; a, b)

}
= M‖f‖

where M denotes the constant KVq(g; a, b) .
(ii) Since x and x are step functions, (40) gives, after some algebra,

g(x) =

∫ b

a

x dg = g(x+)− g(a) and g(x) =

∫ b

a

x dg = g(x−)− g(a) .

Let a < x < y < 1
2 (x + b) < b. Then a < x < y < 2y − x < b and

g ∈Wq(x, b); so, keeping x fixed,∣∣g(y+)− g(x+)
∣∣ ≤ Vq(g;x+, 2y − x)→ 0 as y → x+ .

Hence g(y+)→ g(x+) as y → x+. Thus

g(x+) = lim
y→x+

g(y) = lim
y→x+

{
g(y+)− g(a)

}
= g(x+)− g(a) = g(x)

which gives one of the required relations. For another,

g(x+)− g(x+) = lim
y→x+

{
g(y)− g(y)

}
= lim

y→x+

(∫ b

a

y dg −
∫ b

a

y dg
)

= lim
y→x+

∫ b

a

(y − y) dg = lim
y→x+

{
g(y+)− g(y−)

}
.

If a < x < y < 1
2 (x+ b), then y < 2y − x and, as above,∣∣g(y+)− g(y−)

∣∣ ≤ Vq(g;x+, 2y − x)→ 0 as y → x+ .

Thus g(x+)− g(x+) = 0, another of the required relations.
The other two relations can be proved similarly.

Definitions. Following [5, §12, p. 29], for p ≥ 1 and f ∈Wp(a, b), let

V ∗p (f) = V ∗p (f ; a, b) = inf
P

( l∑
n=1

Vp
(
f ;xn−1, xn

)p) 1
p

, (43)
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the lower bound being taken for all partitions P of [a, b]. Also let

Sp(f) = Sp(f ; a, b) =

=

(∑
n

{∣∣f(sn+)− f(sn)
∣∣p +

∣∣f(sn)− f(sn−)
∣∣p}) 1

p

,
(44)

where the summation is taken over the enumerable set of discontinuities sn of
f , and f(a−) and f(b+) are understood to be f(a) and f(b) respectively. It
is easily shown that Sp(f) ≤ V ∗p (f) ≤ Vp(f) .

Define W ∗p to be the set of functions f in Wp for which

Sp(f) = V ∗p (f) , (45)

and let Wp− be the union of all Wr with 1 ≤ r < p. It is shown in [5, §12,
p. 32] that, for p > 1,

Wp− ⊂W ∗p ⊂Wp . (46)

It can also be shown that W ∗p is a closed subspace of Wp, by means of theorems
on approximation to functions in W ∗p by step functions [5, Theorems 18 and
19], one of which is quoted below (see Lemma 33).

The definition of Sp(a; 1, k) in (17) is also needed. Repeating it here, it is
the pth root of

Sp(a; 1, k)p = max

l∑
r=1

∣∣∣∣ h(r)∑
i=h(r−1)+1

ai

∣∣∣∣p , (47)

where the complex numbers ai are components of the vector a = (ai), and the
maximum is taken for all integer sequences

0 = h(0) < h(1) < h(2) < . . . < h(l) = k .

This means that the sequence a1, a2, . . . , ak is partitioned into sums in all
possible ways preserving order, and then the pth powers of moduli of the sums
added together.

A minor extension of (47) is to define Sp(a; 2, k) in the same way except
that the value of h(0) is changed from 0 to 1. It is evident that

Sp(a; 2, k) ≤ Sp(a; 1, k) . (48)

Lemma 31. If p−1 + q−1 = 1, p > 1, q > 1, A > 0, B > 0, k is a positive
integer and b is a complex vector (bi) such that (see (47))

Sq(b) = Sq(b; 1, k) ≥ 3 ,
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then there is a vector a = (ai) (real if b is real) such that

Sp(a; 1, k) ≤ A and

∣∣∣∣ ∑
0<i≤j≤k

aibj

∣∣∣∣ ≥ AB/21+1/q .

This is the lemma in [4, p. 249]. It is obviously analogous to a form of
the classical “converse of Hölder’s inequality” and it is, in a similar sense, a
converse of Theorem 17. It has some minor extensions, not needed here, which
allow p−1 + q−1 < 1 and omission of the modulus signs in the final inequality.
In the sixth line of [4, p. 249], aK should be aN .

Lemma 32. If an are complex, a1 + a2 + . . . + am + am+1 = 0 , a = (an),
p > 0 and Sp is defined as in (47) and (48), then

Sp(a; 2,m+ 1) ≤ 21/pSp(a; 1,m) .

Proof. By definition Sp(a; 2,m+ 1)p is the greatest of the sums

Tm + |am+1|p , Tm−1 +
∣∣am + am+1

∣∣p , Tm−2 +
∣∣am−1 + am + am+1

∣∣p ,
. . . , T2 +

∣∣a3 + a4 + . . . + am+1

∣∣p , ∣∣a2 + a3 + . . . + am+1

∣∣p , (49)

where Tn stands for any sum like the inner sums in (47) but restricted to
a2, a3, . . . , an. In (49) all the sums which involve am+1 have been separated
out and written explicitly. Now for 2 ≤ n ≤ m

Tn ≤ Tm ≤ Sp(a; 2,m)p ≤ Sp(a; 1,m)p

and consequently Sp(a; 2,m+ 1)p is at most equal to

Sp(a; 1,m)p + max
{∣∣am+1

∣∣p , ∣∣am + am+1

∣∣p , ∣∣am−1 + am + am+1

∣∣p ,
. . . ,

∣∣a3 + . . . + am+1

∣∣p , ∣∣a2 + a3 + . . . + am+1

∣∣p}
= Sp(a; 1,m)p + max

{∣∣a1 + a2 + . . . + am

∣∣p , ∣∣a1 + a2 + . . . + am−1

∣∣p ,
∣∣a1 + a2 + . . . + am−2

∣∣p , . . . ,
∣∣a1 + a2

∣∣p , ∣∣a1

∣∣p}
≤ Sp(a; 1,m)p + Sp(a; 1,m)p .

The stated inequality follows from this.
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Lemma 33. If p > 1 and f ∈ W ∗p then, given ε > 0 there is a step function
s such that

Vp(f − s) < ε . (50)

Further, there is a partition P (ε) such that, for all P ⊃ P (ε) and all P ∗

associated with P as in §11, the step function s given by

s(xn) = f(xn) and s(x) = f(ξn) for xn−1 < x < xn ,

satisfies (50)

This is [5, p. 30, Theorem 18] with one difference, that the associated
points ξn of P ∗ are confined to the open interval (xn−1, xn); this simply omits
a little of what is proved in [5]. There is a converse [5, p. 32, Theorem 19],
but it is not needed here.

15 A Riesz-type Representation Theorem

Theorem 34. If p−1 + q−1 = 1, p > 1, L is a bounded linear functional on
W ∗p (a, b) normed as in (41), x and x are the Heaviside functions in (42), and
the functions g and g defined by

g(x) = L(x) and g(x) = L(x) (51)

satisfy the equations

g(x) = 1
2

{
g(x+) + g(x+)

}
for a ≤ x < b

and

g(x) = 1
2

{
g(x−) + g(x−)

}
for a < x ≤ b ,

 (52)

then there is g ∈Wq such that L(f) = (R3S)
∫ b

a
f dg for all f ∈W ∗p .

Proof. I prove first that g and g are in Wq. This ensures that they are
simply discontinuous, so that equations (52) have meaning.

(i) Suppose that g /∈ Wq. Let M be a bound of L on W ∗p . There is a
partition P such that

l∑
n=1

∣∣g(xn)− g(xn−1)
∣∣q > 23q+1Mq .

Taking bn, A and B in Lemma 31 as g(xn)− g(xn−1), 1 and 23+1/qM respec-
tively, there is a = (an) such that Sp(a; 1, l) ≤ 1 and∣∣∣∣ ∑

0<i≤j≤l

ai
{
g(xj)− g(xj−1)

}∣∣∣∣ ≥ 4M .
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Writing Aj =
∑j

i=1 ai this gives, since each xj ∈W1 ⊂W ∗p by (46),

4M ≤
∣∣∣ l∑
j=1

Aj

{
g(xj)− g(xj−1)

}∣∣∣
=
∣∣∣L( l∑

j=1

Aj(xj − xj−1)
)∣∣∣ ≤M∥∥∥ l∑

j=1

Aj

(
xj − xj−1

)∥∥∥ ; (53)

this leads to the contradiction

4 ≤ Vp
( l∑
j=1

Aj

(
xj − xj−1

))
= Sp(a; 1, l) ≤ 1 . (54)

The middle equality in (54) holds because xj −xj−1 is the characteristic func-
tion of (xj−1, xj ], so that the linear combination of these in (53) is the step
function which has jumps aj at xj−1 for j = 1, 2, . . . , l. The contradiction (54)
proves that g ∈Wq.

(ii) A proof that g ∈ Wq is exactly like (i) as far as (53), the function
occurring in (53) being replaced, on account of (51), by

l∑
j=1

Aj

(
xj − xj−1

)
.

Now xj − xj−1 is the characteristic function of [xj−1, xj), so this linear com-
bination is the step function with jumps a2 at x1, a3 at x2, . . ., aj at xj−1. It
has no jump at x0, but as the other end-point xl is approached it jumps from
Al to 0. Denoting this last jump −Al by al+1,

a1 + a2 + . . .+ al + al+1 = 0 .

Instead of (53) and (54) I now have, using (41) and Lemma 32,

4 ≤ |a1|+ Vp

( l∑
j=1

Aj

(
xj − xj−1

))
= |a1|+ Sp(a; 2, l + 1)

≤ |a1|+ 21/pSp(a; 1, l)

≤
(

1 + 21/p
)
Sp(a; 1, l)

≤ 21/p + 21/p = 21+1/p < 4 .
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This contradiction shows that g ∈Wq.
(iii) Given f ∈W ∗p and ε > 0, Lemma 33 provides a partition P (ε/M) such

that Vp(f − s) < ε/M whenever s is the step function

s =

l∑
n=0

f(xn)
(
xn − xn

)
+

l∑
n=1

f(ξn)
(
xn − xn−1

)
,

xn−1 < ξn < xn for each n, and the partition P is a refinement of P (ε/M).
By (51),

L(s) =

l∑
n=0

f(xn)
{
g(xn)− g(xn)

}
+

l∑
n=1

f(ξn)
{
g(xn)− g(xn−1)

}
. (55)

Define g by g(a) = g(a), g(b) = g(b), and

g(x) = 1
2

{
g(x) + g(x)

}
for a < x < b . (56)

Then g ∈Wq by (i) and (ii); and by (52)

g(x+) = g(x) for a ≤ x < b ,

g(x−) = g(x) for a < x ≤ b .

These with (55) give

L(s) =f(a)
{
g(a+)− g(a)

}
+ f(b)

{
g(b)− g(b−)

}
+

l−1∑
n=1

f(xn)
{
g(xn+)− g(xn−)

}
+

l∑
n=1

f(ξn)
{
g(xn−)− g(xn−1+)

}
which is equal to S(P ∗) in the notation of (7) and (8). Thus∣∣L(f)− S(P ∗)

∣∣ =
∣∣L(f − s)

∣∣ ≤M‖f − s‖ = MVp(f − s) < ε

whenever P ⊃ P (ε/M) and P ∗ is associated with P . So by (9) and (10),
f ∈ R3S(g) and L(f) is the value of the R3S-integral.

Remark. By (56) and (51),

g(x) = L
{

1
2 (x+ x)

}
= L(h) for a ≤ x ≤ b ,

where h is the Heaviside function

h(t) = 1 for t < x , h(x) = 1
2 , h(t) = 0 for t > x .
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