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MONOTONE NORMS ON C(Ω) AND
MULTIPLICATIVE FACTORS

Abstract

Let C(Ω) be the algebra of continuous complex-valued functions on a
topological space Ω and let ρ be a function norm on C(Ω). We give nec-
essary and sufficient conditions on the set Aρ = {f ∈ C(Ω) : ρ(f) <∞}
to be an algebra. Also, we prove that every complete function norm is
quasi-submultiplicative provided Aρ is an algebra and we give a charac-
terization of the best multiplicative factor of ρ. Finally we characterize
the infinity norm and we prove that every quasi-submultiplicative func-
tion norm on C(Ω) is equivalent to the infinity norm.

1 Introduction

Let Ω be a topological space and let C(Ω) be the algebra of continuous
complex-valued functions. In a similar way as it was introduced in [3] we are
going to consider a function norm ρ on C(Ω), i.e., a function ρ : C(Ω)→ [0,∞]
which satisfies the usual properties of a norm, including the monotonicity con-
dition

f, g ∈ C(Ω), |f | ≤ |g| ⇒ ρ(f) ≤ ρ(g).

It follows immediately from the definition that ρ(|f |) = ρ(f) for all f ∈ C(Ω).
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Throughout this paper Aρ will denote the following subspace of C(Ω),

Aρ = {f ∈ C(Ω) : ρ(f) <∞},

and B(Ω) will denote the space of bounded complex-valued functions on Ω.
We are interested in giving necessary and sufficient conditions on C(Ω) for
existence of a function norm such that Aρ is an algebra. This problem was
studied for other spaces in [1], and later in [2] and it is related to the existence
of submultiplicative norms, see [4], [5] and [6].

A norm ρ : C(Ω) → [0,∞] will be called σ-subadditive if for all sequences
of functions fn ∈ C(Ω), fn ≥ 0 and

∑∞
1 fn ∈ C(Ω) it follows that

ρ
( ∞∑

1

fn

)
≤
∞∑
1

ρ(fn).

We will say that a norm ρ on C(Ω) is complete if (Aρ, ρ) is complete. It is not
difficult to see that every complete function norm on C(Ω) is σ-subadditive.
See for example [3]. We will say that a norm ρ is quasi-submultiplicative if
there exists a constant K > 0 such that

ρ(fg) ≤ Kρ(f)ρ(g), (1)

for all f, g ∈ C(Ω). In this case we will say that K is a multiplicative factor of ρ.
The infimum of all multiplicative factors of ρ it is called the best multiplicative
factor of ρ. Obviously given a quasi-submultiplicative function norm ρ, with
Aρ 6= {0}, its best multiplicative factor M is again a multiplicative factor of
ρ, in particular M > 0.

One of our main results states that if ρ is a σ-subadditive function norm
on C(Ω) and Aρ is an algebra, Aρ can not contains an unbounded function.
The following example shows that there exist σ-subadditive function norms
on C(Ω) where the subspace Aρ admits unbounded functions. Let Ω be the
interval (0, 1) and

ρ(f) =
(∫

Ω

f2 dx
)1/2

= ‖f‖2,

where dx stands for Lebesgue measure. Clearly, ρ is a σ-subadditive function
norm on C((0, 1)). However there exist unbounded square integrable continu-
ous functions on (0, 1).

We will show that a function norm ρ is quasi-submultiplicative provided
it is a complete norm function and Aρ is an algebra. For the function norm
ρ we are interested in obtaining an alternative, expression for the best multi-
plicative factor of ρ which is easier to handle. Along the way we will give a
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characterization of the best multiplicative factor analogous to the one in [2] in
the case of function norms defined on measurable spaces. More explicitly, we
prove for any non trivial (Aρ 6= {0}) quasi-submultiplicative norm function ρ,
that its best multiplicative factor is given by

Mρ = sup{‖f‖∞ : f ∈ C(Ω), ρ(f) ≤ 1}, (2)

where ‖.‖∞ denote the infinity norm. Note that Mρ is a well defined number
in [0,∞] for any function norm ρ and because Mρ is a finite number it will
characterize quasi-submultiplicative norms.

Finally, we will give a simple characterization of the infinity norm and we
will prove that for every finite complete function norm ρ on C(Ω) the multiples
λρ are submultiplicative norms for λ ≥ Mρ. In general it is easier to decide
that a norm is monotone and complete. Then the previous result gives us a
method to obtain submultiplicative norms.

2 Results and Proofs

Theorem 1. Let ρ be a function norm on C(Ω).

(a) If ρ is σ-subadditive, then Aρ is an algebra if and only if Aρ ⊂ B(Ω),

(b) If Aρ = C(Ω), then C(Ω) ⊂ B(Ω).

(c) If ρ is quasi-submultiplicative, then Aρ ⊂ B(Ω).

Proof. (a) We assume that Aρ is an algebra. Suppose that there exists an
unbounded function f ∈ Aρ. Since ρ(|f |) = ρ(f) we assume that f ≥ 0. The
next argument is similar to the one used in Theorem 1 of [4]. Thus we get a
sequence of elements tn ∈ Ω such that f(tn+1) > f(tn) + 3 for each n ∈ N,

f(t1) > 2 and f(tn)
n2 tends to infinity. Let (In) be the sequence of pairwise

disjoint closed intervals In = [f(tn)−1, f(tn)+1] and for each n ∈ N we choose
a continuous function gn : R→ R with supp(gn) ⊂ Ingn ≥ 0 and ‖gn‖∞ = 1.
Let hn(t) = gn(f(t)). Then hn ∈ C(Ω), 0 ≤ hn(t) ≤ f(t) for all t ∈ Ω, so
hn ∈ Aρ and (fhn)(t) ≥ (f(tn)− 1)hn(t) for all t ∈ Ω. Thus 0 < ρ(hn) < ∞.
Let g =

∑∞
1

hn

n2ρ(hn) . Clearly g ∈ C(Ω). Since ρ is σ-subadditive, we have that

g ∈ Aρ. Then fg ∈ Aρ. On the other hand, by the monotonicity we get

ρ(fg) ≥ ρ(fhn)

n2ρ(hn)
≥ f(tn)− 1

n2
,

which is a contradiction.
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Assume now Aρ ⊂ B(Ω), f and g belong to Aρ. Thus we have ρ(fg) ≤
‖f‖∞ρ(g) <∞. Therefore fg ∈ Aρ.

(b) Suppose that there exists an unbounded function f ∈ C(Ω). By defin-
ing a function g as in (a), we obtain as before a contradiction.

(c) Suppose that there exists an unbounded function f ∈ Aρ. We choose
gn and hn as in (a). Then for some K > 0 we get f(tn − 1)ρ(hn) ≤ ρ(fhn) ≤
Kρ(f)ρ(hn) and we obtain that f(tn − 1) ≤ Kρ(f), which is a contradiction.

Remark. We note that part (c) of Theorem 1, is not a consequence of [4]
or [5], because they used that Aρ = C(Ω). Also, the example given in the
introduction allows us to observe that monotonicity does not implies quasi-
submultiplicative. In fact, ρ is not quasi-submultiplicative, otherwise by (c)
of Theorem 1, the set Aρ should not admit an unbounded function, which
is false. On the other hand there exist non-monotone quasi-submultiplicative
norms. In order to see this, let ρ be the Minkowski’s functional associated to a
bounded balanced convex absorbing set P in R2. If in addition P is a closed set
in R2, it is not difficult to see that ρ is monotone if and only if P is symmetric,
i.e., if (x1, x2) ∈ P , then (ε1x1, ε2x2) ∈ P where εi = ±1, i = 1, 2. Then if
we consider a set P nonsymmetric, the norm ρ is not monotone. However it
is quasi-submultiplicative, since ρ is equivalent to the submultiplicative norm
‖.‖∞.

In the remainder of this section we study existence and characterization of
multiplicative factors.

Theorem 2. Let ρ be a function norm on C(Ω).If any of the two conditions
holds

(a) ρ is a complete norm and Aρ is a subalgebra of C(Ω), or

(b) Aρ = C(Ω) where Ω is a T1-space with a dense set of isolated points
without accumulation points.

Then there exists a constant K such that ‖f‖∞ ≤ Kρ(f), for all f ∈ C(Ω).

Proof. Suppose that (a) holds and the theorem is false. Then there is a non-
negative function sequence fn, with ‖fn‖∞ = an, ρ(fn) = 1 and

∑∞
1

1

(an)
1
2
<

∞. We can assume without lost of generality that a1 ≥ 4 and an+1 > an
for all n ∈ N. Let tn a sequence in Ω be such that fn(tn) > an

2 , and set
Jn = [fn(tn)−1, fn(tn)+1]. For each n ∈ N, let gn be a non negative function
in C(R) with supp(gn) ⊂ Jn, gn(fn(tn)) = an

4 = ‖gn‖∞. We define a function
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hn ∈ C(Ω) by hn(t) = gn(fn(t)). Given t ∈ Ω, if fn(t) ∈ Jn, then

fn(t) ≥ fn(tn)− 1 >
an
2
− 1 ≥ an

4
= ‖gn‖∞ ≥ gn(fn(t)) = hn(t),

while fn(t) /∈ Jn, implies that hn(t) = 0. Therefore hn ≤ fn and hence ρ(hn) ≤
ρ(fn) = 1.

As
∑∞
n=1

ρ(hn)√
an
≤
∑∞

1
1

/
√
an

< ∞, the function sk :=
∑k
n=1

hn√
an

belongs

to Aρ and (sk) is a Cauchy sequence. Since Aρ is a complete space, there
exists s ∈ Aρ such that ρ(sk − s)→ 0. Moreover, as in part (b) of the proof of
theorem 4.8 in [3], we have s ≥ sk, for every k. Then

‖s‖∞ ≥ ‖sk‖∞ ≥
‖hk‖∞√

ak
≥
√
ak
4
→∞.

Therefore s is not bounded, contrary to (a) of Theorem 1.
Now we assume (b) and suppose the theorem is false. Then there exists a

sequence of functions fn ∈ Aρ, fn ≥ 0 such that ρ(fn) = 1 and ‖fn‖∞ →∞ for
n→∞. Thus we can get a sequence of isolated points tn such that fn(tn)→∞
and tn has no accumulation points. If δn is the characteristic function of the
unitary set {tn}, then the function δn is continuous. We let h =

∑∞
1 fn(tn)δn.

Since the set {tn : n ∈ N} has no accumulation points, it follows that h ∈ C(Ω).
On the other hand, ‖h‖∞ ≥ fn(tn) for all n ∈ N. Therefore h /∈ B(Ω), contrary
to part (b) of Theorem 1.

In particular, the hypothesis (b) of Theorem 2 holds on Ω when Ω = Z,
the set of integers with the discrete topology.

Corollary 3. Let ρ be a function norm on C(Ω).

(a) If ρ is complete, then Aρ is a subalgebra of C(Ω) if and only if ρ is
quasi-submultiplicative.

(b) If Ω is a T1 space with a dense set of isolated points without accumulation
points, such that Aρ = C(Ω), then ρ is quasi-submultiplicative.

Proof. We only prove (a) since (b) follows by analogous arguments. Suppose
that Aρ is a subalgebra of C(Ω). Let f, g ∈ Aρ. By Theorem 2 there exists a
constant M such that ‖h‖∞ ≤Mρ(h) for all h ∈ C(Ω). It follows that ρ(fg) ≤
‖f‖∞ρ(g) ≤ Mρ(f)ρ(g), i.e. ρ is quasi-submultiplicative. The remaining of
the statement is obvious.

The condition that ρ be complete cannot be substituted by the weaker
condition of σ-subadditive, though Aρ = C(Ω), as the next example shows.



220 Héctor H. Cuenya and Felipe Zó

Example. Let Ω = [0, 1] and define a function norm ρ on C(Ω) by ρ(f) =∫
Ω
|f |dµ = ‖f‖1. Clearly, Aρ = C(Ω) and ρ is σ-subadditive. We can construct

a sequence (fn) ∈ C(Ω) such that ‖fn‖2‖fn‖1 is arbitrarily large. Thus there is no

constant K such that ρ(f2) ≤ K(ρ(f))2 for all f ∈ C(Ω). Consequently ρ is
not quasi-submultiplicative.

Next we will give a characterization of the best multiplicative factor. If
f ∈ C(Ω)and K is a nonnegative real number, we consider the following subset
of Ω, A(f,K) = {t ∈ Ω : f(t) > Kρ(f)}.

Lemma 4. Let ρ be a quasi-submultiplicative function norm on C(Ω) and let
f ∈ C(Ω). If K is a multiplicative factor of ρ and A(f,K) is nonempty, then
there exists a function b ∈ Aρ, b 6= 0 such that ρ(bf) = Kρ(b)ρ(f).

Proof. We may assume without lost of generality that f ≥ 0. SinceA(f,K) 6=
∅, the function f ∈ Aρ is by Theorem 1 a bounded function. Now set

r = inf{f(t) : t ∈ A(f,K)}.

We have two cases, r > Kρ(f) or r = Kρ(f).
In the first case, we take a nonnegative function g ∈ C(R) such that g(x) = 0
for x ≤ Kρ(f) and ‖g‖∞ = g(r) = r. Now, we define b(t) = g(f(t)) for t ∈ Ω.
Clearly b ∈ C(Ω) and b 6= 0. If t ∈ A(f,K), we have Kρ(f) ≤ (f)(t), otherwise
we have b(t) = 0. Thus (bf)(t) ≥ Kρ(f)b(t) for all t ∈ Ω.
In the second case there is t0 ∈ Ω such that Kρ(f) < f(t0) ≤ ‖f‖∞. Here we
choose a nonnegative function g ∈ C(R) with supp(g) ⊂ [r, ‖f‖∞], g(f(t0)) 6=
0 and ‖g‖∞ = r. We define a function b in C(Ω) by b(t) = g(f(t)). Then if
t ∈ A(f,K), we have Kρ(f) < f(t) ≤ ‖f‖∞, while for t /∈ A(f,K) we have
b(t) = 0. Again we get Kρ(f)b(t) ≤ (bf)(t) for all t ∈ Ω.

Thus, in both cases we obtain a function b ∈ Aρ, b 6= 0 such that (bf)(t) ≥
Kρ(f)b(t) for all t ∈ Ω. Finally, since ρ is monotone and K is a multiplicative
factor we obtain Kρ(f)ρ(b) ≤ ρ(bf) ≤ Kρ(f)ρ(b), and this concludes the
proof.

Theorem 5. Let ρ a quasi-submultiplicative function norm on C(Ω) with
Aρ 6= {0}. Then the best multiplicative factor is given by (2).

Proof. Since Aρ 6= {0}, it is easy to see that there exists a best multiplicative
factor and it is given by M = sup{ρ(fg) : ρ(f) ≤ 1, ρ(g) ≤ 1} and M > 0.
Now ρ(fg) ≤ ‖f‖∞ρ(g) for all f, g ∈ Aρ which implies that M ≤Mρ. We are
going to show that M ≥ Mρ. Let f 6= 0 be a function in Aρ and ε > 0. Then
the set A(f,M + ε) is empty. In fact if this where not so, by Lemma 4 there
exists b ∈ Aρ, b 6= 0 such that ρ(bf) = (M+ε)ρ(b)ρ(f), which is contradiction.
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Hence, we must have A(f,M + ε) = ∅. Therefore ‖f‖∞ ≤ (M + ε)ρ(f). Thus
Mρ ≤M + ε, for every ε > 0.

Corollary 6. Let ρ be a function norm on C(Ω) with Aρ 6= {0} and which sat-
isfies the conditions (a) or (b) of Theorem 2. Then ρ is quasi-submultiplicative
and the best multiplicative factor is given by (2).

Proof. It follows immediately from Corollary 3 and Theorem 5.

Corollary 7. Let ρ be a norm on C(Ω) and Aρ 6= {0}. Then ρ is quasi-
submultiplicative (submultiplicative) if and only if Mρ <∞, (Mρ ≤ 1). More-
over if Mρ < ∞ and λ > 0, the function norm λρ is submultiplicative if and
only if λ ≥Mρ.

Proof. If Mρ < ∞, (Mρ ≤ 1) the monotonicity of ρ implies that ρ is
quasi-submultiplicative (submultiplicative). The converse statement follows
by Theorem 5. Observe that λ > 0 and Aρ 6= {0}. Then Mλρ = 1

λMρ. Thus
the proof is completed.

Theorem 8. (a) Let ρ be a function norm on C(Ω). If 1 ∈ Aρ and Mρ

satisfies ρ(1)Mρ = 1, then ‖f‖∞ = Mρρ(f), for all f ∈ C(Ω).

(b) The infinity norm is the unique submultiplicative function norm on C(Ω)
such that ρ(1) = 1.

(c) Every quasi-submultiplicative function norm ρ on C(Ω) such that 1 ∈ Aρ,
is equivalent to infinity norm.

Proof. Since ‖f‖∞ ≤Mρρ(f) ≤Mρρ(1)‖f‖∞, we have (a).
Now, by Theorem 5 the best multiplicative factor for a quasi-submultiplicative
function norm ρ is given by Mρ. As ρ is submultiplicative Mρ ≤ 1. On the
other hand, since ρ(1) ≤Mρ(ρ(1))2 and ρ(1) = 1, we have Mρ ≥ 1. Thus, (b)
follows from (a). Finally (c) is a direct consequence of Theorem 5 and of the
monotonicity of ρ.
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