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MULTIPLIERS FOR SOME
NON-ABSOLUTE INTEGRALS IN

EUCLIDEAN SPACES

Abstract

In this paper we prove a uniform boundedness theorem and use it to
show that if fg is non-absolutely integrable on an interval in Euclidean
space for each non-absolute integrable function f , then g is almost ev-
erywhere a function of strongly bounded variation on E.

1 Introduction

A general form of a bounded linear functional on the space of all Henstock
integrable function was first given in [7, Theorem 3.2] and was used to show
that if fg is Henstock integrable on a compact interval E in Euclidean space
for each Henstock integrable function f , then g is almost everywhere a func-
tion of strongly bounded variation on E. The integration by parts formula [7,
Theorem 3.1, equation (4)] is a key tool used to prove [7, Theorem 3.2]. How-
ever it is not clear whether integration by parts holds for other non-absolute
integrals, and so the method used in [7] does not seem to generalize easily to
other non-absolute integrals. In this paper, we shall prove a uniform bounded-
ness theorem and use it to extend [7, Theorem 5.1] to some other non-absolute
integrals.

2 Preliminaries

By R and R+ we denote the real line and the positive real line respectively. Let
m be a fixed positive integer. The m-dimensional Euclidean space is denoted
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by Rm. Let E =
m∏
i=1

[ai, bi] be a compact interval in Rm with ai < bi for

1 ≤ i ≤ m. By an interval E0 we mean a compact set of the form
m∏
i=1

[si, ti]

with si < ti for 1 ≤ i ≤ m. If X ⊆ Rm, then int(X), diamX, X and χ
X

denote the interior, the diameter, the closure, the characteristic function of
X respectively. If Z is a subset of E and ξ ∈ E, then dist(ξ, Z) denotes
the distance of ξ from Z. The m-dimensional Lebesgue measure of the set
X ⊆ Rm is denoted by |X|. We shall say that the intervals E1 and E2 are
non-overlapping if int(E1) ∩ int(E2) = ∅. A figure is a finite union of non-
overlapping intervals. Also, B(ξ, r) denotes the open ball with center ξ and
radius r in Rm. If the intervals Ii ⊆ E, i = 1, 2, . . . , k are non-overlapping,
then we say that the set D = {Ii : i = 1, 2, . . . k} is a partial division of E. If,
in addition, ∪ki=1Ii = E, we say that D is a division of E. Given a function
δ : E → R+ and a partial division D, we say that D is δ-fine if for each
interval I from D we have I ⊆ B(ξ, δ(ξ)) where ξ is a vertex of I, and we
write D = {(I, ξ)}. In [2, p.42], it is shown that a δ-fine division of E exists
for each δ : E → R+. Let G be an open set in E. A figure I0 is called a non-
absolute subset of G if there exits δ : E → R+ such that I0 is the complement
of a δ-fine cover of E \G.

All functions considered in this paper will be real-valued. A function
f : E → R is Henstock integrable on E if there is a real number A with
the following property: for every ε > 0, there exists δ : E → R+ such that
|(D)

∑
f(ξ) |I| −A| < ε for each δ-fine division D = {(I, ξ)} of E, and we

write A =
∫
E
f . The family of all Henstock integrable functions on E will be

denoted by H(E). If I is a subinterval of E, we denote the Henstock integral
of f on I by

∫
I
f . We denote by L(E) the family of all Lebesgue integrable

functions f on E, or equivalently, the family of all absolutely Henstock inte-
grable functions on E. It is known that L(E) ⊂ H(E) (see, for example,[2,
p.37]).

For each measurable functionf : E → R, the set of all non-absolute inte-
grability points of f is defined to be

NA(f) = {x ∈ E : f 6∈ L(J) for each J x 6∈ int J}.

In [1], it is shown that for each f ∈ H(E), f is Lebesgue integrable on a
portion of E, so we see that NA(f) is a proper closed subset of E. We say
that f is Cauchy-Lebesgue integrable on E if f ∈ CL(E), where

CL(E) = {f ∈ H(E) : NA(f) is a finite set}.

It is easy to see that L(E) ⊂ CL(E) ⊂ H(E).
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An interval function F is said to satisfy the (SL) condition if for each subset
W ⊂ E of measure zero and ε > 0, there exists δ : W → R+ such that for any
δ-fine partial division D = {(I, ξ)} of W, we have (D)

∑
|F (I)| < ε.

For a definition of strongly bounded variation, see [3, Definition 1.1.4]. For
the two dimensional definition of strongly bounded variation, see [7, Section
3].

3 Main Results

In this section, we prove a Banach-Steinhaus Theorem (Theorem 3.6), and an
application will be given in section 4. We begin with a definition.

Definition 3.1. Let {ck} ⊂ E, where ck = (c
(1)
k , c

(2)
k , c

(3)
k , . . . , c

(m)
k ). For a

nondegenerate subinterval Ek ⊂ E with opposite vertices ck, ck+1 , we write

Ek =< ck, ck+1 >. We say that {Ek} is monotone if {c(j)k }∞k=1 is strictly
monotone for each j = 1, 2, . . . ,m. In this case, we say that {ck} is strictly
monotone.

We remark that the two-dimensional version of Definition 3.1 is given in
[7, Section 4].

Throughout this paper, 〈u, v〉 will denote a subinterval of E.
Let X be a linear space of integrable functions whose domain is E, and

equip X with a norm ‖ · ‖X . Suppose the following axioms hold for X.

(I) If f ∈ X, then fχ
I
∈ X for each subinterval I of E.

(II) Every f ∈ X is measurable.

(III) G is a dense linear subspace of X, and if f ∈ G, then so is fχ
I
.

(IV) If {In} is a monotone sequence of subintervals of E, and {fn} ⊂ G,

where fn(x) = 0 for each x 6∈ In, and the series
∞∑
k=1

‖fk‖X converges,

then f =
∞∑
k=1

fk ∈ X.

(V) For each f ∈ X, ‖fχ〈c,cn〉 − fχ〈c,d〉‖X → 0 as cn → d.

(VI) For each f ∈ X, ‖fχ
I
‖X → 0 as |I| → 0, where I is a subinterval of E.

(VII) There exists γ > 0 such that ‖fχ
I
‖X ≤ γ‖f‖X for every subinterval I

of E.
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Two functions f1, f2 ∈ X are regarded as identical if f1 = f2 almost
everywhere in E. For each subinterval J of E, we let

X(J) = {f ∈ X : f vanishes outside J}.

and
G(J) = {f ∈ G : f vanishes outside J}.

A function g defined on E is said to be a multiplier for X if fg ∈ X for each
f ∈ X. Let Y be a normed space.

Definition 3.2. A linear operator T : X → Y is said to be nice if the following
conditions are satisfied.

(N1) Given any subinterval J of E and f ∈ X(J), there exists {f∗n} ⊂ G(J)
such that ‖f∗n − f‖X → 0 and ‖T (f∗nχI

)− T (fχ
I
)‖Y → 0 as n→∞ for

each subinterval I of J .

(N2) Let c, d ∈ E. If {cn} ⊂ int(< c,d >) is strictly monotone with cn → d.
Then

‖T (fχ〈c,cn〉)− T (fχ〈c,d〉)‖Y → 0

as n→∞.

(N3) If f ∈ X, then ‖T (fχ
I
)‖Y → 0 as |I| → 0.

If T : X → Y is a nice operator, we write T ∈ N (X,Y ). We shall use the
concept of nice operator to prove a uniform boundedness theorem for X. We
need some lemmas and theorems.

Lemma 3.3. Let T : X → Y be a nice operator. If p0 is a positive integer
and f ∈ X(< c, d >) with ‖f‖X < 1 and ‖T (f)‖Y > 4p0 , then there exist
cp ∈ int(< c, d >) and fp ∈ G(< c, cp >) such that

(i) ‖fp‖X < 1
2p0 .

(ii) ‖T (fp)‖Y > 2p0 .

Proof. Let {cn} ⊂ int(< c, d >) be strictly monotone with cn → d. Since T
is a nice operator, by (N2) condition,

‖T (fχ
<c,cn>

)− T (fχ
<c,d>

)‖Y → 0 (1)

as n→∞, (1) implies that

‖T (fχ
<c,cn>

)‖Y → ‖T (fχ
<c,d>

)‖Y (2)
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as n→∞, By Axiom (V), we have

‖fχ<c,cn> − fχ<c,d>
‖X → 0 (3)

as cn → d. From (3), we have

‖fχ〈c,cn〉‖X → ‖fχ〈c,d〉‖X (4)

as n→∞.
By our hypothesis, ‖f‖X < 1 and ‖T (fχ

<c,d>
)‖Y > 4p0 , so by (4) and (2),

we may choose a sufficiently large integer, say p, so that

‖fχ〈c,cp〉‖X < 1 (5)

and
‖T (fχ〈c,cp〉)‖Y > 4p0 . (6)

Then cp ∈ int(〈c, d〉). Since T is a nice operator, by (N1) condition, there
exists {f∗n} ⊂ G(〈c, cp〉) such that

‖f∗n − fχ〈c,cp〉‖X → 0 (7)

and
‖T (f∗nχ<c,cp>

)− T (fχ
<c,cp>

)‖Y → 0 (8)

as n→∞. From (7), we have

‖f∗n‖X → ‖fχ〈c,cp〉‖X as n→∞. (9)

From (8), we have

‖T (f∗nχ<c,cp>
)‖Y → ‖T (fχ

<c,cp>
)‖Y as n→∞. (10)

By (5), (9), (6) and (10), we may choose a sufficient large integer N = N(p, p0)
so that ‖f∗N‖X < 1 and ‖T (f∗Nχ〈c,cp〉)‖Y > 4p0 Put fp = 1

2p0 f
∗
Nχ<c,cp>

.

Lemma 3.4. Let {Ii}ki=1 be a division of E and Y a normed space. If T ⊂
N (X,Y ) satisfies sup{‖T‖ : T ∈ T } = ∞, then there exists Ip such that

sup{‖T
∣∣∣∣
X(Ip)

‖ : T ∈ T } =∞.

Proof. Suppose not. Then for each 1 ≤ p ≤ k, we have

sup{‖T
∣∣∣∣
X(Ip)

‖ : T ∈ T } <∞. (11)
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Recall that every two elements ofX almost everywhere equal on E are regarded
as identical, and {Ii}ki=1 be a division of E, we have

T (f) =

k∑
i=1

T (fχ
Ii

) (12)

and thus by (12) ‖T (f)‖Y ≤
∑k

i=1 ‖T
∣∣∣∣
X(Ii)

‖‖f‖X and so supT∈T ‖T‖ ≤∑k
i=1 supT∈T ‖T

∣∣∣∣
X(Ii)

‖ <∞ by (11) a contradiction to our original hypothe-

sis.

Lemma 3.5. Let Y be a normed space. If T ⊂ N (X,Y ) satisfies

sup{‖T‖ : T ∈ T } <∞,

then for each subinterval E0 of E, we have sup{‖T
∣∣∣∣
X(E0)

‖ : T ∈ T } <∞.

Proof. Note that by (I), fχ
E0
∈ X for each f ∈ X. Then we have for each

T ∈ T ,

‖T
∣∣∣∣
X(E0)

(f)‖Y = ‖T (fχ
E0

)‖Y ≤ ‖T‖‖fχE0
)‖X ≤ γ‖T‖‖f‖X by (VII).

Consequently, supT∈T ‖T
∣∣∣∣
X(E0)

‖ ≤ γ supT∈T ‖T‖ <∞.

Theorem 3.6. Let Y be a normed space. If T ⊆ N (X,Y ) such that for each
f ∈ X, M(f) = sup{‖T (f)‖Y : T ∈ T } <∞, then sup{‖T‖ : T ∈ T } <∞.

Proof. Suppose the conclusion is false. By Lemma 3.4, there exists a subin-

terval J1 of E such that sup{‖T
∣∣∣∣
X(J1)

‖ : T ∈ T } = ∞ By Lemma 3.4, there

exists a subinterval J2 of J1 such that sup{‖T
∣∣∣∣
X(J2)

‖ : T ∈ T } = ∞. By

induction, we can construct a decreasing sequence {Ji} of subintervals of E

with
∞
∩

j=1
Ji = {y} and for each i,

sup{‖T
∣∣∣∣
X(Ji)

‖ : T ∈ T } =∞. (13)
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We may choose x0 ∈ E so that |< x0, y > ∩Ji| > 0 and

sup{‖T
∣∣∣∣
X(〈x0,y〉∩Ji)

‖ : T ∈ T } =∞ (14)

for infinitely many i. Put

l = min{i : |< x0, y > ∩Ji| > 0 and (14) holds for infinitely many i}.

Then for each w ∈ int(〈x0, y〉∩Jl) , we have < w, y >⊃< x0, y > ∩Jp for some
p and (14) holds with i = p. By (14) and Lemma 3.5,

sup{‖T
∣∣∣∣
X(〈w,y〉)

‖ : T ∈ T } =∞. (15)

Choose x1 ∈ int(〈x0, y〉). Then by (15) with w = x1, there exists f∗1 ∈
X(〈x1, y〉) and T1 ∈ T such that ‖f∗1 ‖X < 1 and ‖T1(f∗1 )‖Y > 4. By Lemma
3.3 with p0 = 1, there exists x2 ∈ int(〈x1, y〉), f1 ∈ G(〈x1, x2〉) such that
‖f1‖X < 1

2 and ‖T1(f1)‖Y > 2 By (15) with w = x2, there exists f∗2 ∈
X(〈x2, y〉) and T2 ∈ T such that ‖f∗2 ‖X < 1 and ‖T2(f∗2 )‖Y > 42. By Lemma
3.3 with p0 = 2, there exists x3 ∈ int(〈x2, y〉), f2 ∈ G(〈x2, x3〉) such that
‖f2‖X < 1

22 and ‖T2(f2)‖Y > 22. Proceeding in this way and and by Lemma
3.3, we can construct

(i) a strictly monotone sequence of points {xn} in (< x1, y >) converging
to y with xn+1 ∈ int(< xn, y >) and

(ii) a sequence {fn} ⊂ G and {Tn} ⊆ T such that fn ∈ G(< xn, xn+1 >)
with ‖fn‖X < 1

2n and ‖Tn(fn)‖Y > 2n.

Since
∞∑
k=1

‖fk‖X <∞, by (i), (ii) and (IV), we have f =
∑∞

k=1 fk ∈ X Claim.

There is a subsequence {fnk
} such that for k ≥ 1 :

(a) ‖Tnk+1
(fnk+1

)‖Y > 1 + k +
k∑

j=1

M(fnj ) and

(b) sup
1≤i≤k

‖Tni
(fnk+1

)‖Y < 2−k−1.

The proof of the claim is done by induction. Choose n1 = 1. Since f ∈ X,
and |< xn, xn+1 >| → 0 as n → ∞, by (VI), ‖fχ〈xn,xn+1〉‖X → 0 as n → ∞.

By (N3), ‖T (fχ〈xn,xn+1〉)‖Y → 0 for each T ∈ T . Note that we have fn =
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fχ〈xn,xn+1〉 for all n. Recall also that ‖Tn(fn)‖Y > 2n for all n ≥ 1. We may

choose fn2 ∈ {fn} and Tn2 such that

‖Tn2
(fn2

)‖Y > 1 + 1 +M(f1) and ‖Tn1
(fn2

)‖Y < 2−1−1;

so the claim holds when k = 1.
Now suppose that the claim is valid for some positive integer k = q for

some {f1, fn2 , . . . , fnq , fnq+1} and {T1, Tn2 , . . . , Tnq+1}. Since f ∈ X, and
|< xn, xn+1 >| → 0 as n → ∞, by (VI), ‖fχ〈xn,xn+1〉‖X → 0 as n → ∞.

By (N3), ‖T (fχ〈xn,xn+1〉)‖Y → 0 for each T ∈ T . Note that fn = fχ〈xn,xn+1〉

and ‖Tn(fn)‖Y > 2n for all n ≥ 1. We may choose fnq+2 ∈ {fn} and Tnq+2

such that

‖Tnq+2(fnq+2)‖Y > 1+q+1+

q+1∑
j=1

M(fnj ) and sup
1≤i≤q+1

‖Tni(fnq+2)‖Y < 2−(1+q)−1

so the claim holds when k = q + 1. By induction, the claim is proved.

Since
∞∑
k=1

‖fk‖X < ∞, the series
∞∑
k=1

‖fnk
‖X < ∞, so by Axiom (IV),

f0 =
∞∑
k=1

fnk
∈ X. Now, for k ≥ 1,

‖Tnk+1
(f0)‖Y = ‖

k∑
j=1

Tnk+1
(fnj ) + Tnk+1

(fnk+1
) +

∞∑
j=k+2

Tnk+1
(fnj

)‖Y

= ‖Tnk+1
(fnk+1

)− {−
k∑

j=1

Tnk+1
(fnj )−

∞∑
j=k+2

Tnk+1
(fnj )}‖Y

≥ ‖Tnk+1
(fnk+1

)‖Y − ‖
k∑

j=1

Tnk+1
(fnj

) +

∞∑
j=k+2

Tnk+1
(fnj

)‖Y

≥ 1 + k +

k∑
j=1

M(fnj
)− {

k∑
j=1

M(fnj
) + ‖

∞∑
j=k+2

Tnk+1
fnj
‖Y }

≥ 1 + k −
∞∑

j=k+2

2−j−1 ≥ k.

So we have M(f0) ≥ supk≥1 ‖Tnk+1
(f0)‖ =∞ a contradiction.

In Section 4, we shall give an application in which Theorem 3.6 holds
but the classical Banach-Steinhaus Theorem (Corollary 3.7) does not seem to
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apply. Denoting the space of all bounded linear operators from X into Y by
B(X,Y ), we have the following assertion.

Corollary 3.7. Let Y be a normed space. If T ⊆ B(X,Y ) such that for each
f ∈ X, M(f) = sup{‖T (f)‖Y : T ∈ T } <∞, then sup{‖T‖ : T ∈ T } <∞.

Proof. By (I), (III), (V), (VI) and (VII), every bounded linear operator is
nice.

4 An Application

Definition 4.1. An interval function F is said to be continuous if whenever
|I| → 0, we have |F (I)| → 0.

By using [8, Theorem 6], it is easy to see that if f ∈ H(E), then the
interval function F defined by F (I) =

∫
I
f is continuous on E. Hence the

space H(E) as well as its subspace CL(E) can be equipped with the norm
‖ · ‖, where ‖f‖ = sup

I

∣∣∫
I
f
∣∣ for each f ∈ H(E), where the supremum is taken

over all subinterval I of E.

The next result gives a characterization of all Cauchy-Lebesgue integrable
functions on E.

Lemma 4.2. f ∈ CL(E)⇐⇒ there exists an additive continuous interval
function F and a finite subset Q of E such that f is Lebesgue integrable on
every subinterval J with

∫
J
f = F (J), where J ∩Q = ∅.

Proof. (=⇒) For each f ∈ CL(E), we let F (I) = (CL)
∫
I
f for every interval

I ⊂ E, and Q = NA(f).

(⇐=) Since Q is finite and since F is continuous, it is easy to verify that F
satisfies (SL) condition on Q. Hence for ε > 0, there exists δ : Q → R+ such
that for any δ-fine partial division D = {(I, ξ)} of Q, we have (D)

∑
|F (I)| <

ε. We claim that [6, Theorem 3] applies here. Define δ0 : E → R+ by δ0(ξ) =
δ(ξ) if ξ ∈ Q and δ0(ξ) = dist(ξ,Q) otherwise. Take A = F (E) and G = E−Q.
Then for any non-absolute subset I0 of G involving δ0, we have for some δ0-fine
cover D0 = {(I, ξ)} of Q,

|F (I0)− F (E)| =
∣∣∣(D0)

∑
F (I)

∣∣∣ ≤ (D0)
∑
|F (I)| < ε

since F is an additive interval function satisfying (SL). Since f is Lebesgue
integrable on every subinterval J with

∫
J
f = F (J), where J ∩ Q = ∅, [6,
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Theorem 3] holds. Thus f is Henstock integrable on E with F (I) =
∫
I
f for

each subinterval I of E. Hence Q = NA(f) and consequently f ∈ CL(E).

Lemma 4.2. If f ∈ CL(E), then there exists a sequence {Kn} of figures

such that for all n, Kn ⊂ Kn+1 ⊂ E with
∞⋃

n=1
Kn = E, f ∈ L(Kn) and

limn→∞‖fχKn
− f‖ = 0.

Proof. Let F (I) = (CL)
∫
I
f and Q = NA(f) = {x1, x2, . . . , xl}. Since F

satisfies (SL) on Q, for each n, there exists δn : Q → R+ such that for any
δn-fine division Dn of Q, we have (Dn)

∑
|F (I)| < 1

n . We may assume that
δ1 > δ2 > · · · > δn > . . . . For each n, we fix a δn-fine division Dn of Q. Put
Pn =

⋃
{J : (J, x) ∈ Dn}. Then there are at most l2m interval-point pairs

in each Dn, and |∂Pn| = 0. Put Kn = E − Pn. Then {Kn} is a sequence

of figures with
∞⋃

n=1
Kn = E. Note that as n → ∞, |Pn| = |E −Kn| → 0.

Consequently, by the continuity of F , we have ‖fχ
Kn
− f‖ = ‖fχ

Pn
‖ →

0 as n→∞.

Lemma 4.3. If g is a multiplier for CL(E), and {Kn} be given as in Lemma
4.3. Then limn→∞‖fgχKn

− fg‖ = 0.

Proof. Repeat the proof of Lemma 4.3 with the following modifications.

(a) f is replaced by fg and

(b) F (I) =
∫
I
f is replaced by F1(I) = (CL)

∫
I
fg.

Observing that F1 satisfies (SL) on Q, we have the result.

We shall next apply our uniform boundedness theorem (Theorem 3.6) to
prove Theorem 4.5. Note that Corollary 3.7 does not seem to apply.

Theorem 4.4. If g is a multiplier for CL(E), then T : CL(E) → R defined
by T (f) =

∫
E
fg is a bounded linear functional on CL(E).

Proof. We first show that T : CL(E)→ R is a nice operator (see Definition
3.2) with G = L(E), X = CL(E) and Y = R. Since each f ∈ CL(E) ⊂ H(E),
we see that T satisfies conditions (N2), (N3) of definition 3.2. It remains to
verify that condition (N1) holds for T . Now, let J be any subinterval of E
and for any subinterval I of J ,

∣∣∫
I
fχ

Kn
−
∫
I
f
∣∣ ≤ ‖fχ

Kn
− f‖ which tends to

zero as n→∞ by Lemma 4.3. So the first condition of (N1) is satisfied.
Next we will prove that the second condition of (N1) is satisfied. We

observe that∣∣T (fχ
Kn
χ

I
)− T (fχ

I
)
∣∣ =

∣∣∣∣∫
I

fχ
Kn
g −

∫
I

fg

∣∣∣∣ ≤ ‖fχKn
g − fg‖
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which tends to zero by Lemma 4.4. Thus (N1) condition is satisfied. The
theorem then follows from Theorem 3.6 with X(E) = CL(E), G(E) = L(E),
Axioms (I) to (VII) hold and note that Axiom (IV) holds by [7, Lemma 4.1]
and Lemma 4.2.

Corollary 4.5. If fg ∈ CL(E) for each f ∈ CL(E), then g is almost every-
where a function of strongly bounded variation on E.

Proof. By Theorem 4.5, the linear functional T : CL(E) → R defined by
T (f) =

∫
E
fg is bounded on CL(E). Although the spaces (CL(E), ‖ · ‖) and

(H(E), ‖ · ‖) are not complete, we may still apply the Hahn-Banach Theorem
to normed spaces. See, for example, [9, Theorem 3.3]. By Hahn-Banach
Theorem [9, Theorem 3.3.], there exists a bounded linear functional T1 on
H(E) such that T (f) = T1(f) for all f ∈ CL(E). By [7, Theorem 3.2], there
exists a function g0 of strongly bounded variation on E such that

T1(f) =

∫
E

fg0 for all f ∈ H(E).

As T (f) = T1(f) for all f ∈ L(E) ⊂ CL(E), we have
∫
E
fg =

∫
E
fg0 for all

f ∈ L(E). Hence g = g0 almost everywhere on E and we are done.

From the proof of Corollary 4.6, we also have the following.

Corollary 4.6. If T ∈ CL(E)∗, the conjugate space of CL(E), then there
exists a function of strongly bounded variation on E such that T (f) =

∫
E
fg

for all f ∈ CL(E).

We can now give the main result of this section.

Theorem 4.7. Suppose CL(E) ⊂ X(E). If g is a multiplier for X, then g is
almost everywhere a function of strongly bounded variation on E.

Proof. By (II) and repeating the proof of [5, Theorem 12.8], g is almost
everywhere bounded on E. Since g is almost everywhere bounded on E, we
can verify that NA(fg) ⊂ NA(f). Note that f ∈ CL(E), NA(f) is a finite
set and so is NA(fg). By the continuity of the X-primitive of fg ((VI)) and
Lemma 4.2, fg ∈ CL(E). By Corollary 4.6, we have the result.

5 Remarks on One Dimensional Results

The first theorem is well known.
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Theorem 5.1. If g ∈ BV ([a, b]) and F is continuous on [a, b], then g is
Riemann-Stieltjes integrable with respect to F on [a, b] with

(RS)

∫ b

a

g dF = F (b)g(b)− F (a)g(a)− (RS)

∫ b

a

Fdg.

By using the integration by substitution theorem for non-absolute integral
(see for example [4, page 186, Exercise 2], we have the next theorem.

Remark 5.2. Every function of bounded variation on [a, b] is a multiplier for
non-absolute integral (with a continuous primitive).

By Corollary 4.6 and Remark 5.2, we see that the multipliers for non-
absolute integrals (with a continuous primitive) are essentially the space of all
essentially bounded variation on [a, b].
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