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ON THE HAUSDORFF MEASURE OF A
CLASS OF SELF-SIMILAR SETS

Abstract

We develop a new combinatorial method to estimate Hausdorff mea-
sures of various self-similar sets. This method can be applied to the
evaluation of Hausdorff measures which are induced by various Haus-
dorff functions including power functions. Moreover, a few examples
for evaluations of the lower and upper bounds of Hausdorff measures of
uniform Cantor sets are introduced.

1 Introduction

Throughout the paper, we use Ny, N and R to denote the set of all non-
negative integers, of all positive integers and of all real numbers, respectively.
R"™ denotes n-dimensional Euclidean space, and D will be some fixed closed
subset of R™. By d(A) we denote the diameter of any subset A of R™, and the
cardinal number of a set C' will be denoted by #C.

A monotonically increasing function h : [0,00) — [0, 00) is called a Haus-
dorff function if and only if h(¢) > 0 for ¢ > 0, h(0) = 0 and h is continuous
from the right. It is well-known that every Hausdorftf function A induces a
corresponding Hausdorff measure p” as follows

§'(C) = lim inf 3~ h(d(U)), (1)

where we take the infimum over all §-coverings {U;}; of C' (see [10]).
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A mapping S : D — D is called a similarity on D if there is a constant ¢
(0 < ¢ < 1) such that |S(x) — S(y)| = c|Jx — y| for all ,y € D. The constant
¢ is called the (similarity) ratio of S.

Throughout the paper, suppose m (> 1) is a fixed integer. Let {S1,...,Sm}
be a family of similarities on D. We say that a subset F' of D is self-similar
under Si,...,Sy, if

Definition 1. A family {S1,..., S} of similarities on D is said to be disjoint
if S;(D)NS;(D) =0 for all i # j.

Hutchinson [6] proved that for every disjoint family {Si,..., Spn} of simi-
larities on D there exists a unique non-empty compact set which is self-similar
under the S;’s. Many self-similar sets are well-known, e.g., Cantor sets, Cantor
dusts, the Sierpinski gasket, the von Koch curve, etc.

For the time being, let {S1,..., S} be any disjoint family of similarities
on D with the ratios c¢q,...,cn, respectively. Let £ € N be fixed. By Z, we
denote the family of all finite sequences (a;);=1,... ¢ satisfying a; € {1,...,m},
ie.,

yeeey

Ty ={(ai)i=1,..e:a; €{1,...,m}}.

For every finite sequence a = (a;) € Zy, let S, = Sg, © Sq, 0+ -+ 05, with the
convention

Sa(w) = Say (Say (- (Sap () - +))-

We denote by H the class of all Hausdorft functions and by H¢, the class
of all Hausdorff functions satisfying

1
h(et) = —h(t 2)
for all sufficiently small ¢ > 0.

In this paper, a new combinatorial method to estimate Hausdorfl measures
(which are induced not only by power functions but also by other Hausdorff
functions different from power functions) of self-similar sets are investigated
(see Theorem 8), and the method is applied to the estimation of Hausdorff
measures of uniform Cantor sets.
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2 Preliminaries

Definition 2. Suppose {S1,...,Sn} is a disjoint family of similarities on D.
Let C be an arbitrary subset of R™. For any non-negative integer ¢ let
e : Sa D)ccC
a;(C) = lim #ia = (D) }

£— 00 mt

Lemma 1. Let {Sy,...,Sm} be a disjoint family of similarities on D, and let
C be an arbitrary subset of D. For each positive integer i

(a) a;(C) =ma;-1(C),
(b) ai(C) = Q41 (S](C)) (.7 =1,... m);

(c) ai(C) = ai(Uj, 5,(0)).
PROOF. (a) It follows from Definition 2 that

aZ(C) _ elggo m#{a c Iiil;fzr_:lz Sa(D) C C}

(b) Let A, B be arbitrary subsets of D and j € {1,...,m} fixed. If € A\B
and S;(A) C S;(B), then there exists some y € B such that S;(y) = S;(z)
contrary to the injectivity of S;. So S;(A) ¢ S;(B) if A ¢ B. On the other
hand, it is obvious that S;(4) C S;(B) if A C B. Hence, we obtain that
S;(A) € S;(B) if and only if A C B. So, for all j € {1,...,m}, we have

0i(C) = lim #{a €Tive: 5, Ofa(D) C SO}
£— 00 m
Consequently if So(D) C C, then Sj o So(D) C S;(C) C S;(D) and Sj o
So(D) C Sk(C) C Sk(D) for all j,k € {1,...,m}. If j # k, then S;, 0.S,(D) ¢
S;(C), since {S1, ..., S} is disjoint. Thus, combining this fact with the above
equality, we get

= mo;—1 (C)

0u(C) = Jim 2Lt SDIE KO} _ (0.

{— 00 m

(¢) Since {S1,...,Sn} is disjoint, by (a) and (b), we obtain

Oéi(U S](C)) = ZO&Z(S](C)) = Zai_l(C’) = mozi_l(C) = Oél(C) O

j=1
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3 Method of Substitution

Let D # () be a closed subset of R™ and let {S1,...,S,} be a disjoint family of
similarities on D with common ratio ¢ (0 < ¢ < 1). Suppose D, is a subset
of D with non-empty interior such that ¢***1d(D) < d(D,) < ¢*d(D) for a
fixed non-negative integer i,. Let D, be a subset of D for which ¢**1d(D) <
d(D,) < ¢t+d(D), and suppose that there exist an integer i, (> i.) and a finite
sequence a € Z;  satisfying S,(D) C D,. (The last hypothesis guarantees that
Qp (Dv) > 0)

We now introduce a new method to estimate Hausdorff measures of self-
similar sets.

(a) Let € > 0 be given such that e/(1—ag(D,)) is sufficiently small (cf. the
proof of Lemma 2 below). According to Definition 2, it is possible to choose
a positive integer g such that

mo (i, (Do) —€) <ng=#{a€L; i, : Sa(D) C Dy} < mo (i, (Do) +€).

Let I},...,1J° be an enumeration of the set {S,(D) : So(D) C Dy;a €
Z;.+io}- For every j =1,...,n0 there is exac_tly one a € I;, 14, with I} =
Sa(D). Divide each I (j = 1,...,n0) into V§ = Su(D,) (where a € Z;, 14,
with I} = S,(D)) and R} = I} \ V§.

We further describe the process of our method by induction on £ = 0,1,2, ... .

(b) Assume that we have already chosen a sufficiently large integer i, (¢ >
1) such that

MNe—1
m' (ai*+io+“'+iz—1(‘Ré—1) - 6) <y
j=1
MNe—1 )
<m* (0%‘*+io+~--+u71(3§_1) + 5) ;
j=1
where
ng = #{a € T;, tig+-..+i, : there exists some j € {1,...,ng_1}
with S,(D) C R)_,}.
Then, let I},...,I;'* be an enumeration of the set

Ne—1

{Sa(D) : Sa(D) C U R)_5 a0 €T igtis}-
j=1
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For every j = 1,...,m, there exists a unique a € Z; 4,4...44, such that
I) = S,(D). Divide every I} (j = 1,...,ng) into V] = S,(D,) (where
a € Ti,tipsvi, With I} = S,(D)) and R} = I] \ V/. By Definition 2,
we can again choose a large integer iy4; such that

Ny ne
i E J i E J
me <ai*+io+~-+iz (Ry) — E) < <mi (O‘i*+io+»--+iz (Ry) + 8) ’
=1 i=1
where
ney1 = #{a € Li, yig4yi,,, : there exists some j € {1,...,n.}

with S,(D) C RJ}.
(¢) Repeat the process (b) for £+ 1.

Definition 3. Let h € H. Suppose {S1,...,Sn} is a disjoint family of similar-
ities on D with common ratio c. The above process is called D,-substitution of
D, with respect to the sequence (i¢). Every V/ (¢ =0,1,2,...;j=1,...,n)
is called an element of D,-substitution of D,. The D,-substitution of D, is
said to be efficient if

(Do; Dy) = lim > hd(V)) < h(d(D,)).
V is an element of

D, -substitution of D,

Remark 1. Obviously, {Véj } which was obtained from the above process
covers almost all of the self-similar set F' under Si,...,Sy,. Indeed, for every
h € H we can select a covering of F consisting of {V;} and {E;} such that
the values of ) h(d(E;)) and ) «;_ (E;) are as small as desired by taking the
values of 7,’s sufficiently large in the above process.

Lemma 2. For every positive integer £
miot i (o (D) —e)(1 — ag(Dy) — )’ < ny
< miot e (q; (D) +e)(1 — ao(Dy) +¢)".

PROOF. By Lemma 1 (b) we have, for every positive integer £,

Qi+ +ip_q (R%71> = Qi tiot-+io1 (szl \ ‘/ijl)
= i, tigttie—1 (Sa(D)\ Sa(Dy))

= O t+ig+-+ig_1 (SG(D)) = Qg tig_y (SH(DU))
=1- OéQ(DU)
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where a € T, yit-ti,_, With S,(D) = Ig_l. Combining this result with
the inequalities for n,’s in the above process (b) and by induction on ¢, we
complete the proof. O

Theorem 3. Let {S1,...,Sn} be a disjoint family of similarities on D with

C

common ratio c. Suppose h € HE . If i, is so large that the relation (2) holds
for all 0 < t < ¢d(D), then we have o(Do; D,) = ai*(Do)%.
PrOOF. It follows from Definition 3, Lemma 2 and Lemma 1 (a) that

oo Ny

o0(Dy; Dy) = 811_I>I(1) Z Z h(d(sz))

0=0 j=1

_h buAioH---Fie
= 811_1>r(1J g neh(c d(D,))

o0

li Ty

= 1m T ———
e—0 m1*+710+"'+12

h(d(Dy))

Qi (Do) h(d(Dv>)
mi=  ag(Dy)
h(d(Dv))

Qg (Dv) .

= Oy, (Do) D

Definition 4. Suppose {Si,...,Sm,} is a disjoint family of similarities on D
with common ratio c. Let ¢ be a non-negative integer. Define

h(d(1))
Ozl(I)

®;(D,) = inf{ :1C Dy; (D) < d(I) < cid(D)}
for all subsets Dy of D with d(Dy) > c¢'d(D), where we follow the convention
that if @ > 0, then a/0 := co.

In the definition of ®;, the infimum has to be taken over all ‘test’ sets I
whose diameters lie between ¢'*t1d(D) and c¢'d(D). Therefore, the ®; can be
defined on the only sets Dy with d(D;) > c¢td(D).

Definition 5. For any compact subsets A, B of D the distance p(A, B) be-
tween A and B is defined by p(A, B) = min{|z —y|: z € A; y € B}. Suppose
{S1,...,Sm} is a disjoint family of similarities on D with common ratio ¢. Let
§ = min{p(S;(D),S;(D)) : i # j} and 7 = min{i € Ny : ¢/*1d(D) < 6}. The
constant 7 is called the index of the self-similar set under Si,...,S,.
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Lemma 4. Let 7 be the index of the self-similar set under Si,...,S,, with
common ratio c. Assume that i > 7 and a € Z;_ are fized. Let h € H. Then
D,;(S4(D)) = ®,(D), where we set Sq(D) = D for a € 1.

PrOOF. If i = 7, the statement of the lemma is obvious. Now, let i > 7, then
we have by the fact that Si,...,S,, are similarities with common ratio ¢ and
by Definition 5
min{p(Sy(D), Sy (D)) : b,b € T; ;b #b'}
— ¢~ min{p(S, (D), k(D)) : j # k}
2 Ci—'r—lcr—i-ld(D)

= c'd(D).

3)

For any subset A of D let
Ci(A)={ICcD:IcA; (D) <d()<cd(D)},
Co(A)={ICD:INA#0; I ¢ A; ¢'d(D) < d(I) < c'd(D)}

and
C3(A)={ICcD:INA=0; ¢Td(D) < d(I) < 'd(D)}.

Then we have

am)= {J asm)u | o) Uc3( U sbw)).

beZ;_ beZ; - bel; -

Since the structure in S, (D) is congruent to that in S, (D) and (3) implies that if
I € Co(Sp(D)), then #(I NSy (D)) < 1 for any b’ € Z;_, with b’ # b, the
above equality implies that

sup{a;(I) : I € C1(D)} = sup{e;(I) : I € C1(S.(D))}.

Further, since the structure in Sy(D) is congruent to that in S,(D), we see

that
o [ h(d(I)) _ i S PA)
1nf{ az(]) : IECl(Sb(D))} = f{ al([) .IECl(Sa(D))}

for any b € Z,_,. As it was already stated, (3) implies that if I € C3(Sy(D)),
then #(I N Sy (D)) <1 and hence a;(I NSy (D)) =0 for each &’ € Z,_, with
b #b. Hence, we get

(b)) (R
1nf{ az([) S Cg(sb(D))} > f{ az([) I e Cl(Sa(D))} .
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Trivially, we have

inf {

Therefore, we may conclude that

h(d(1))

= Q.

:IECg( U Sb(D)>}

beZ;,

h(d(1))

®;(D) = inf {

= inf{ (D)
= (I)i(Sa(D))'

:IeCl(D)}

1 e Cl(Sa(D))}

O
Lemma 5. Suppose {S1,...,Sm} s a disjoint family of similarities on D with
common ratio c. Let h € HE,. Suppose i, is given such that (2) holds for all
0<t< ci*d(D). Assume that D1, Dy are subsets of D such that

¢ (D) < d(D) < ¢d(D); ¢**d(D) < d(D2)

<c-dD) LUBT < LT
(a) There exists an efficient Dq-substitution of Ds.
(b) There exists no efficient Do-substitution of D .
PROOF. (a) Using Theorem 3 we obtain
o(Dai D) = . (00) 28 2 < i, (02) "2 — (o))
(b) As in the proof of (a), it is easy to see
(D1 D2) = i, () MUB) o (0 WA — i)
by using Theorem 3 again. O
Lemma 6. Let 7 be the index of the self-similar set under Si,...,S,, with

common ratio c¢. Let h € HE, . Suppose i (> T) is a given positive integer

such that (2) holds for all 0 < t < ¢=7d(D).

mi+1(1)i+1 (D)

Then we have m'®;(D)
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PrROOF. By Lemma 1 (a) and (b) we obtain, for any j € {1,...,m},

(D) = inf{ho(j((;))) LT C D; (D) < d(I) < Cid(D)}
=m-in M . . ci—‘rl Ci
a f{am(sj(f)) I CD; ™ d(D) <d(l) < d(D)} "
m - in hd(J)) . e it
- f{ozz'+1(J) JC D d(D) <d(J) < d(D)}
=m®;41(D),

where the second equality holds because, by (2) and our hypothesis for ¢, we
have

h(d(S;(1))) = (1/m)h(d(I)) and  ai1(S;(1)) = (D).

On the other hand, let I be a subset of D with ¢i*2d(D) < d(I) < ¢*t1d(D).
Case I. Assume that there exists a finite sequence a = (ay,...,a;41-7) €
Zi+1—+ such that I C S,(D). Then we may choose a subset I’ of S,, 00
Sais1_. (D) such that I = S, (I'). Hence, using the properties of S; and
Lemma 1 (b) we have d(I) = ed(I’) and a;41(I) = a;(I') and so, using the
properties of h
h(d(I)) _ 1 h(d(I")) 5
aip(I) — m oa(I") ©)

Case II. Now assume that every S, (D), a € Z;+1—,, does not include I. In
view of (3) we have

min{p(Sy(D), Sy (D)) : b,b' € Tix1_,;b# '} > (D) > d(I).

Therefore, we may merely consider the case where there exists a unique a €
Z;+1—- such that the interior of the intersection of I and S, (D) is non-empty.
Due to the properties of the self-similar sets there exists a set Iy C R™ similar
to I with o;(I1) = a;(I1 N D) = a;41() and ed(I1) = d(I). Thus, we may
choose a subset I’ of D including I; N D and satisfying «;(I') > «;11(I) and
cd(I') = d(I). Since

d(I) = ¢~ 'd(I) < 'd(D) < d(D),
we may select an appropriate subset Iz of D such that d((I;ND)U L) = d(Iy).

If we put I' = (I; N D) U I, then I’ satisfies the desired properties. Hence,
using the properties of h

1 h(d(1)
m a;(I') (©)

W) |

i+1(1)
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Finally, by (5) and (6)

®;41(D) = inf { nd(l)) : 1 C D; ¢2d(D) < d(I) < ci+1d(D)}

a1 (1)
1) i1 i
> p. ~1nf{ o (1) :I' C D; (D) < d(I') < ¢'d(D)
1
=—-9,(D).
(D)
The assertion of the lemma follows from (4) and the last inequality. O
Lemma 7. Let F be the self-similar set under S1, ..., Sy, with common ratio ¢

and let T be the index of F. Let h € HE,. Suppose i (> 2T) is a given integer
such that (2) holds for all 0 < t < ¢"=27d(D). Then for any a € Z;_,

o, (D)= inf{z h(d(U;)) : {U;} is a c'd(D)-covering of F N Sa(D)}.

PROOF. Let ¢ > 0 be arbitrarily small, and let I; be the set of all c'd(D)-
coverings of F'NS,(D). By Definition 4, we can choose a subset D’ of D such
that ' 4
A~™4(D) < d(D') < ¢77d(D)
e (D)
o, (D)< ———= <, (D .
(D)< SO < B (D) +¢ )

Let Uf be the set of all ¢!d(D)-coverings of F'N S, (D) consisting of {U;}
and {V;} with the properties

(i) if **1d(D) < d(U;) < ¢*d(D), then there exists some b € Zj_; 1, such

that
h(d(U;)) _ h(d(Sp(D"))) .
)~ anG(D)) ®)
(if) {V;} satisfies
S v <& Y ai (V) <e. (9)

Now assume {B;} € U; such that there exists a jy satistying

h(d(Bj,)) _ h(d(Sy(D")))
ar(Bj,) ar(Sp(D"))
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for some b € Tj,_; 4~ with c*T1d(D) < d(Bj,) < c*d(D). Then by taking i, = k
in Lemma 5 (a), there exists an efficient S (D’)-substitution {B’} of Bj, N D.
In particular, we may choose a ¢'d(D)-covering { E;} of (FNS,(D)NBj,)\U Bj
such that Y h(d(E;)) < €/2% and Y a;—,(E;) < €/27%° (cf. Remark 1). We
now replace the Bj, in the covering {B;} by {B’} U{E;}.

As described above, we may ultimately transform the given covering {B;} €
U; into some {U;} U {V;} € Us. Therefore, we have

1nf{Zh {U}u{V}eUf}

< inf{z h(d(U;)) : {U,} € Ui} (10)

J

ginf{z +Zh {U}U{V}elf}

J

The first inequality in (10) follows from the above consideration, and the fact
UF C U; implies the second inequality in (10).

Now, let {U;} U{V;} € U be given such that there exists a sequence (k;),
k; > i, satisfying c**t1d(D) < d(U;) < c*id(D). By (8), Lemma 1 (a) and (7)
in order, we have for some b € Zy, ;-

h(d(Sy(D")))
A, (Sb(D')

)
— o () MdEDY))
= aziT(Uj)ai—T(Sb D/))
_|_

h(d(U;)) < a,; (Uj)

= ai—T(Uj)m

< a;—7(U;)(®i—-(D)

(
h(d(D"))
’)

£).

Since inf{}" a;_(U;) : {U;} U{V;} € U} < 1, condition (9), together with
the above 1nequahty, implies

1nf{Zh +Zh {U}U{V}euf}

<1nf{2az . {U}U{V}GZ/{E} (@7 (D) +e) +¢

S (I)i—T(D) + 26.
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Since € > 0 may be sufficiently small, we obtain
mf{Zh +Zh {U}u{V}ew} <®;_,(D). (11)

On the other hand, if {U;} U {V;} belongs to U, then for some k with
(D) < d(U;) < Fd(D)

> &, (D). (12)

Thus, it follows from (12), Lemma 1 (a) and Lemma 6 that
Wd(U;)) = ax(U;)@x(D) = @ir(U;) @i~ (D).

Hence, as )" a;—,(U;) > 1 —¢€ by (9), we get

Zh )) > B ( Zal AU;) > ®;_(D)(1—¢)

and so

mf{z h(d(U;))  {U;Y U {V;} € Zf} > &, (D). (13)

The assertion of the lemma follows from (10), (11) and (13). O
Now, we shall prove the main result of this paper.

Theorem 8. Suppose F' is the self-similar set under S1, ..., Sy, with common
ratio ¢ and let T be the index of F. Let h € HE,. Suppose i (> T) is a positive
integer such that (2) holds for all 0 < t < ¢'=7d(D). Then for any a € Z;_,

W'(F) = m'®,(S,(D)).

a(D)
PrOOF. Let j (> 27‘) be a sufficiently large integer for which (2) holds for
all 0 <t < #=27d(D). By (3), we get

min{p(Sy(D), Sy (D)) : b,b' € T, _.; b#V'} > Jd(D).

Hence, by Lemma 7, we have

inf { Zh(d(Uk)) : {Uy} is a ¢/d(D)-covering of F}
k

= Z inf { Z h(d(Uy)) : {Uy} is a ¢?d(D)-covering of F N Sb(D)}
k

bGIj—T
=m!~7®;_,(D).
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Thus, it follows from Lemma 6 and Lemma 4 that

p(F) = lim inf{z h(d(Uy)) : {Uy} is a ¢/d(D)-covering of F}
k

Jj—o0
= lim m/~7®;_,(D)
Jj—o0
= m'®;(D)
= m'®;(S,(D)). O

4 Applications

First, we introduce the definition of the uniform Cantor set. Let m (> 2)
be a given integer, and we choose positive real numbers ¢ and d such that
me + (m — 1)d = 1. In this section, let D = [0,1] and define the similarities
S;i:D — D (i=1,...,m) by Si(x) = ({ — 1)(¢c + d) + cx. Then c is the
common ratio of the similarities S, ..., S, and the family of those similarities
is disjoint. The self-similar set F' under the S;’s is called a uniform Cantor
set.

Let C be a compact subset of R and let ¢ > 0 be given. The t-entropy of
C is defined by

E(C,t) = min{n € N: {Uy,...,U,} is a t-covering of C}.

Mycielski [8] and Kahnert 7] have considered the Hausdorff function

1/E(C,t) fort >0,
he(t) =
c(t) { 0 for t = 0

to construct an invariant Hausdorff measure x"¢. From now on, we write u¢
instead of /©. For some interesting properties of such a measure. See [3, 4,
8, 9].

It is easy to see u” (F) = 0. Obviously, the Cantor set F' can be covered by
m'™ intervals of the length ¢™ for every positive integer n. Since hp(c") < ",
(1) implies pP (F) < lim,, o, m™c™ = 0.

Analogously, we can easily prove uf' (D) = oo: Let {U;} be a c"-covering
of D. Then 3" d(U;) > 1. Let n; (> n) be an integer with ¢! < d(U;) < ¢™
for every i. Then

hp(d(U;)) = m~F) = i = (me) ™ > d(Uy)m ™ (me) ™



134 SOON-MO JUNG

and hence

Z hp(d(U;)) > m™ (me)™ Z d(U;) > m™(me) ™",

Therefore, (1) implies (D) > lim,, oo m~*(mec) ™™ = co.

Similarly, we can show p?(D) = 1 and pf'(F) < 1, but it is virtually
impossible to determine the exact value of ' (F) by using formula (1). How-
ever, we can use Theorem 8 to evaluate the lower and upper bounds for the set
{uF(F) : F is a uniform Cantor set} as well as the exact values of puf'(F) for
many special cases. Moreover, Theorem 8 might provide us with a possibility
to evaluate the value of uf'(F) within a given error.

Remark 2. Let C be a compact subset of R with a positive Lebesgue measure.
Then we can also prove that u©(C) = 1.

In the following lemma, we prove hp € HS,.
Lemma 9. hr € H¢,.

PRrROOF. Let n = E(F,t). Suppose {U;}i=1,...n is a t-covering of F. Then
{S;(U;)}i=1,....n is a ct-covering of F'NS;(D) for any j = 1,...,m. Hence, we
obtain E(F,ct) < mE(F,t).

On the other hand, let n = E(F N .S;(D), ct) and suppose {U; }i=1,...n is a
ct-covering of F' N S;(D) for some j = 1,...,m. Then {Sj_l(Ui)}ian_,n is a
t-covering of F. Hence, if 0 < ¢t < d/c, then since ct < d

E(F,t) < E(F N S;(D),ct) = %E(F, ct). O

Let 7 be the index of F. According to Theorem 8 and Lemma 9, the value
of uf'(F) can be evaluated by the formula

hr(d(1))

pt (F) mi~inf{ ai(D) (1 C[0,d77); ¢ < d(I) < Ci} (14)

where i (> 7) is a sufficiently large integer.
Theorem 10. For any uniform Cantor set F 1/2 < pf'(F) < 1.

PROOF. (a) First, assume that I (C [0,¢"~7]) is an interval with

(k4 D™+ kéld < d(I) < (k4 1)(T! 4 cid)
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for some k € {0,1,...,m —2}. By considering the structure of F and the fact
E(S.(D),d(I)) < [(m+k)/(k+1)] (a € Z;), where [z] denotes the greatest
integer which does not exceed z, we conclude

i m+Ek k+1

<m'|—— ; < —-.
E(F,d(I)) <m {k—i—l] and (1) < -

Hence, the fact m < (k+ D)[(m+k)/(k+1)] <m + k < 2m — 2 implies
hp(d(I)) m 1
! > > -
") T k+)[m+k)/k+1)] 2
Now, assume that I (C [0,¢~7]) is an interval with

k(T + cfd) < d(I) < (k4 1) + kc'd

(15)

for some k € {1,2,...,m — 1}. As in the previous case, we obtain

E+1
m

B(ram) < m "L o <

)

and hence the inequality
ihr(d(I)) m

>
a;(I) — (k+D[(m+k—1)/k
follows from the fact %’H < ,f—fl which can be easily proved under the
assumption m > k + 1.
Altogether, Theorem 8, together with (15) and (16), implies uf (F) > 1/2.
(b) Consider an interval I = [0, ¢’ — ¢*!]. By (3) we have

min{p(Sy(D), Sy (D)) : b,b' € T;_,; b# b} > .

v

5 (16)

Therefore, if a € Z;_,, then

E(F,d(I)) =m" TE(F N S.(D),d(I)) >m " (m™ +1) (17)
and i
ai(l) = T——. (18)

Hence, by (14), (17) and (18), we obtain
;hr(d(])) < m” m?

F
F) < . <1
wE) s m a;(I) ~“mm+1mi—1
because ¢ can be arbitrarily large. O

As we can see in the following theorem, 1/2 is the best possible estimation
of the lower bound for pf'(F) in Theorem 10.
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Theorem 11. Let 7 be the index of the uniform Cantor set F.
(a) If T =0, then uf'(F) = 1/2.
(b) u¥(F) =1 as 7 — .

PROOF. (a) Let i, k be positive integers. Choose an interval I = [0, ¢! — c¢'*].

Clearly, we obtain hp(d(I)) = 55, a;(I) =1 — -3 and hence
k

ihe(dI)) 1 _m
m == .
a; (1) 2mk —1
By letting & — oo in (19) and considering (14) and Theorem 10, we conclude
pf(F) =1/2. '
(b) Let 7 and ¢ (> 7) be sufficiently large integers. Suppose I (C [0,¢"7]) is
an interval for which there exists an n € NU{oo} such that ¢,,(k;) —c*t"~1d <
d(I) < £, (k;) with

(19)

en(kj]) _ ij (Ci-‘rj + Ci+j—1d)
=1

where k; € {0,1,...,m — 1}, k1k, # 0 and k; = 0 for any j > n (for the case
of n € N) and we follow the convention ¢*>°~1 = 0 (for n = c0). In view of
(3) we have

. et T . cT+1
E(F,d(I) <m' " - 1) <m 7"
(F.d(1)) <m (fn(kj)—cl"‘”_ld_'_ > =" Rt ke -
k1 ko
) < M
a;(I) < s e R
and hence
he(dD) _(me) (ke + ke 4-+) (k1 ko !
> J— —_— e
" a;(I)  — 1+cm m+m2+
(me)”
>
_1+CTH(T)
where g(7) > las 7 — 00 (¢ = 1/m as 7 — o0). By (14) we get
F > (me)”
W (F) 2 15 g(r). (20)

From mc+ (m —1)d =1 and ¢"*! < d < ¢ (see Definition 5) it follows that
(me)™ — 1 as 7 — oo. Consequently, by Theorem 10 and (20), we conclude
that uf'(F) — 1 as 7 — oc. O
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