Soon-Mo Jung, Mathematics Section, College of Science & Technology Hong-Ik University, 339-800 Chochiwon, South Korea. e-mail: smjung@wow.hongik.ac.kr

ON THE HAUSDORFF MEASURE OF A CLASS OF SELF-SIMILAR SETS

Abstract

We develop a new combinatorial method to estimate Hausdorff measures of various self-similar sets. This method can be applied to the evaluation of Hausdorff measures which are induced by various Hausdorff functions including power functions. Moreover, a few examples for evaluations of the lower and upper bounds of Hausdorff measures of uniform Cantor sets are introduced.

1 Introduction

Throughout the paper, we use \mathbb{N}_0 , \mathbb{N} and \mathbb{R} to denote the set of all non-negative integers, of all positive integers and of all real numbers, respectively. \mathbb{R}^n denotes n-dimensional Euclidean space, and D will be some fixed closed subset of \mathbb{R}^n . By d(A) we denote the diameter of any subset A of \mathbb{R}^n , and the cardinal number of a set C will be denoted by #C.

A monotonically increasing function $h:[0,\infty)\to [0,\infty)$ is called a Hausdorff function if and only if h(t)>0 for t>0, h(0)=0 and h is continuous from the right. It is well-known that every Hausdorff function h induces a corresponding Hausdorff measure μ^h as follows

$$\mu^{h}(C) = \lim_{\delta \to 0} \inf \sum_{i} h(d(U_{i})), \tag{1}$$

where we take the infimum over all δ -coverings $\{U_i\}_i$ of C (see [10]).

Key Words: Hausdorff function, Hausdorff measure, self-similar set Mathematical Reviews subject classification: Primary 28A78; Secondary 28A12, 28A80 Received by the editors September 19, 1995

A mapping $S: D \to D$ is called a similarity on D if there is a constant c (0 < c < 1) such that |S(x) - S(y)| = c|x - y| for all $x, y \in D$. The constant c is called the (similarity) ratio of S.

Throughout the paper, suppose m (> 1) is a fixed integer. Let $\{S_1, \ldots, S_m\}$ be a family of similarities on D. We say that a subset F of D is self-similar under S_1, \ldots, S_m if

$$F = \bigcup_{i=1}^{m} S_i(F).$$

Definition 1. A family $\{S_1, \ldots, S_m\}$ of similarities on D is said to be disjoint if $S_i(D) \cap S_j(D) = \emptyset$ for all $i \neq j$.

Hutchinson [6] proved that for every disjoint family $\{S_1, \ldots, S_m\}$ of similarities on D there exists a unique non-empty compact set which is self-similar under the S_i 's. Many self-similar sets are well-known, e.g., Cantor sets, Cantor dusts, the Sierpiński gasket, the von Koch curve, etc.

For the time being, let $\{S_1, \ldots, S_m\}$ be any disjoint family of similarities on D with the ratios c_1, \ldots, c_m , respectively. Let $\ell \in \mathbb{N}$ be fixed. By \mathcal{I}_{ℓ} we denote the family of all finite sequences $(a_i)_{i=1,\ldots,\ell}$ satisfying $a_i \in \{1,\ldots,m\}$, i.e.,

$$\mathcal{I}_{\ell} = \{(a_i)_{i=1,\dots,\ell} : a_i \in \{1,\dots,m\}\}.$$

For every finite sequence $a = (a_i) \in \mathcal{I}_{\ell}$, let $S_a = S_{a_1} \circ S_{a_2} \circ \cdots \circ S_{a_{\ell}}$ with the convention

$$S_a(x) = S_{a_1}(S_{a_2}(\cdots(S_{a_\ell}(x))\cdots)).$$

We denote by \mathcal{H} the class of all Hausdorff functions and by \mathcal{H}_m^c the class of all Hausdorff functions satisfying

$$h(ct) = \frac{1}{m}h(t) \tag{2}$$

for all sufficiently small t > 0.

In this paper, a new combinatorial method to estimate Hausdorff measures (which are induced not only by power functions but also by other Hausdorff functions different from power functions) of self-similar sets are investigated (see Theorem 8), and the method is applied to the estimation of Hausdorff measures of uniform Cantor sets.

2 Preliminaries

Definition 2. Suppose $\{S_1, \ldots, S_m\}$ is a disjoint family of similarities on D. Let C be an arbitrary subset of \mathbb{R}^n . For any non-negative integer i let

$$\alpha_i(C) = \lim_{\ell \to \infty} \frac{\#\{a \in \mathcal{I}_{i+\ell} : S_a(D) \subset C\}}{m^{\ell}}.$$

Lemma 1. Let $\{S_1, \ldots, S_m\}$ be a disjoint family of similarities on D, and let C be an arbitrary subset of D. For each positive integer i

(a)
$$\alpha_i(C) = m\alpha_{i-1}(C)$$
,

(b)
$$\alpha_i(C) = \alpha_{i+1}(S_i(C))$$
 $(j = 1, ..., m)$

(c)
$$\alpha_i(C) = \alpha_i \left(\bigcup_{j=1}^m S_j(C) \right)$$
.

PROOF. (a) It follows from Definition 2 that

$$\alpha_i(C) = \lim_{\ell \to \infty} \frac{m\#\{a \in \mathcal{I}_{i-1+\ell+1} : S_a(D) \subset C\}}{m^{\ell+1}} = m\alpha_{i-1}(C).$$

(b) Let A, B be arbitrary subsets of D and $j \in \{1, ..., m\}$ fixed. If $x \in A \setminus B$ and $S_j(A) \subset S_j(B)$, then there exists some $y \in B$ such that $S_j(y) = S_j(x)$ contrary to the injectivity of S_j . So $S_j(A) \not\subset S_j(B)$ if $A \not\subset B$. On the other hand, it is obvious that $S_j(A) \subset S_j(B)$ if $A \subset B$. Hence, we obtain that $S_j(A) \subset S_j(B)$ if and only if $A \subset B$. So, for all $j \in \{1, ..., m\}$, we have

$$\alpha_i(C) = \lim_{\ell \to \infty} \frac{\#\{a \in \mathcal{I}_{i+\ell} : S_j \circ S_a(D) \subset S_j(C)\}}{m^{\ell}}.$$

Consequently if $S_a(D) \subset C$, then $S_j \circ S_a(D) \subset S_j(C) \subset S_j(D)$ and $S_k \circ S_a(D) \subset S_k(C) \subset S_k(D)$ for all $j,k \in \{1,\ldots,m\}$. If $j \neq k$, then $S_k \circ S_a(D) \not\subset S_j(C)$, since $\{S_1,\ldots,S_m\}$ is disjoint. Thus, combining this fact with the above equality, we get

$$\alpha_i(C) = \lim_{\ell \to \infty} \frac{\#\{a \in \mathcal{I}_{i+1+\ell} : S_a(D) \subset S_j(C)\}}{m^{\ell}} = \alpha_{i+1}(S_j(C)).$$

(c) Since $\{S_1, \ldots, S_m\}$ is disjoint, by (a) and (b), we obtain

$$\alpha_i \left(\bigcup_{j=1}^m S_j(C) \right) = \sum_{j=1}^m \alpha_i(S_j(C)) = \sum_{j=1}^m \alpha_{i-1}(C) = m\alpha_{i-1}(C) = \alpha_i(C). \quad \Box$$

3 Method of Substitution

Let $D \neq \emptyset$ be a closed subset of \mathbb{R}^n and let $\{S_1, \ldots, S_m\}$ be a disjoint family of similarities on D with common ratio c (0 < c < 1). Suppose D_o is a subset of D with non-empty interior such that $c^{i_*+1}d(D) < d(D_o) \le c^{i_*}d(D)$ for a fixed non-negative integer i_* . Let D_v be a subset of D for which $c^{i_*+1}d(D) < d(D_v) \le c^{i_*}d(D)$, and suppose that there exist an integer $i_v(\ge i_*)$ and a finite sequence $a \in \mathcal{I}_{i_v}$ satisfying $S_a(D) \subset D_v$. (The last hypothesis guarantees that $\alpha_0(D_v) > 0$.)

We now introduce a new method to estimate Hausdorff measures of self-similar sets.

(a) Let $\varepsilon > 0$ be given such that $\varepsilon/(1-\alpha_0(D_v))$ is sufficiently small (cf. the proof of Lemma 2 below). According to Definition 2, it is possible to choose a positive integer i_0 such that

$$m^{i_0}(\alpha_{i_*}(D_o) - \varepsilon) < n_0 = \#\{a \in \mathcal{I}_{i_* + i_0} : S_a(D) \subset D_o\} < m^{i_0}(\alpha_{i_*}(D_o) + \varepsilon).$$

Let $I_0^1, \ldots, I_0^{n_0}$ be an enumeration of the set $\{S_a(D) : S_a(D) \subset D_o; a \in \mathcal{I}_{i_*+i_0}\}$. For every $j = 1, \ldots, n_0$ there is exactly one $a \in \mathcal{I}_{i_*+i_0}$ with $I_0^j = S_a(D)$. Divide each I_0^j $(j = 1, \ldots, n_0)$ into $V_0^j = S_a(D_v)$ (where $a \in \mathcal{I}_{i_*+i_0}$ with $I_0^j = S_a(D)$) and $R_0^j = I_0^j \setminus V_0^j$.

We further describe the process of our method by induction on $\ell=0,1,2,\ldots$

(b) Assume that we have already chosen a sufficiently large integer i_ℓ ($\ell \geq 1$) such that

$$m^{i_{\ell}} \sum_{j=1}^{n_{\ell-1}} \left(\alpha_{i_*+i_0+\dots+i_{\ell-1}}(R^j_{\ell-1}) - \varepsilon \right) < n_{\ell}$$

$$< m^{i_{\ell}} \sum_{j=1}^{n_{\ell-1}} \left(\alpha_{i_*+i_0+\dots+i_{\ell-1}}(R^j_{\ell-1}) + \varepsilon \right),$$

where

$$n_\ell = \#\{a \in \mathcal{I}_{i_*+i_0+\dots+i_\ell} : \text{there exists some } j \in \{1,\dots,n_{\ell-1}\}$$
 with $S_a(D) \subset R^j_{\ell-1}\}.$

Then, let $I^1_\ell,\dots,I^{n_\ell}_\ell$ be an enumeration of the set

$$\{S_a(D): S_a(D) \subset \bigcup_{j=1}^{n_{\ell-1}} R_{\ell-1}^j; a \in \mathcal{I}_{i_*+i_0+\dots+i_\ell}\}.$$

For every $j=1,\ldots,n_\ell$ there exists a unique $a\in\mathcal{I}_{i_*+i_0+\cdots+i_\ell}$ such that $I^j_\ell=S_a(D)$. Divide every I^j_ℓ $(j=1,\ldots,n_\ell)$ into $V^j_\ell=S_a(D_v)$ (where $a\in\mathcal{I}_{i_*+i_0+\cdots+i_\ell}$ with $I^j_\ell=S_a(D)$) and $R^j_\ell=I^j_\ell\setminus V^j_\ell$. By Definition 2, we can again choose a large integer $i_{\ell+1}$ such that

$$m^{i_{\ell+1}} \sum_{j=1}^{n_{\ell}} \left(\alpha_{i_*+i_0+\dots+i_{\ell}}(R^j_{\ell}) - \varepsilon \right) < n_{\ell+1} < m^{i_{\ell+1}} \sum_{j=1}^{n_{\ell}} \left(\alpha_{i_*+i_0+\dots+i_{\ell}}(R^j_{\ell}) + \varepsilon \right),$$

where

$$n_{\ell+1} = \#\{a \in \mathcal{I}_{i_*+i_0+\cdots+i_{\ell+1}} : \text{there exists some } j \in \{1, \dots, n_\ell\}$$

with $S_a(D) \subset R_\ell^j\}$.

(c) Repeat the process (b) for $\ell + 1$.

Definition 3. Let $h \in \mathcal{H}$. Suppose $\{S_1, \ldots, S_m\}$ is a disjoint family of similarities on D with common ratio c. The above process is called D_v -substitution of D_o with respect to the sequence (i_ℓ) . Every V_ℓ^j $(\ell = 0, 1, 2, \ldots; j = 1, \ldots, n_\ell)$ is called an element of D_v -substitution of D_o . The D_v -substitution of D_o is said to be efficient if

$$\sigma(D_o; D_v) = \lim_{\varepsilon \to 0} \sum_{\substack{V \text{ is an element of} \\ D_v \text{-substitution of } D_o}} h(d(V)) < h(d(D_o)).$$

Remark 1. Obviously, $\{V_{\ell}^j\}$ which was obtained from the above process covers almost all of the self-similar set F under S_1, \ldots, S_m . Indeed, for every $h \in \mathcal{H}$ we can select a covering of F consisting of $\{V_{\ell}^j\}$ and $\{E_j\}$ such that the values of $\sum h(d(E_j))$ and $\sum \alpha_{i_*}(E_j)$ are as small as desired by taking the values of i_{ℓ} 's sufficiently large in the above process.

Lemma 2. For every positive integer ℓ

$$m^{i_0+\dots+i_\ell}(\alpha_{i_*}(D_o)-\varepsilon)(1-\alpha_0(D_v)-\varepsilon)^\ell < n_\ell$$
$$< m^{i_0+\dots+i_\ell}(\alpha_{i_*}(D_o)+\varepsilon)(1-\alpha_0(D_v)+\varepsilon)^\ell.$$

PROOF. By Lemma 1 (b) we have, for every positive integer ℓ ,

$$\alpha_{i_*+i_0+\dots+i_{\ell-1}} \left(R_{\ell-1}^j \right) = \alpha_{i_*+i_0+\dots+i_{\ell-1}} \left(I_{\ell-1}^j \setminus V_{\ell-1}^j \right)$$

$$= \alpha_{i_*+i_0+\dots+i_{\ell-1}} \left(S_a(D) \setminus S_a(D_v) \right)$$

$$= \alpha_{i_*+i_0+\dots+i_{\ell-1}} \left(S_a(D) \right) - \alpha_{i_*+i_0+\dots+i_{\ell-1}} \left(S_a(D_v) \right)$$

$$= 1 - \alpha_0(D_v)$$

where $a \in \mathcal{I}_{i_*+i_0+\cdots+i_{\ell-1}}$ with $S_a(D) = I_{\ell-1}^j$. Combining this result with the inequalities for n_ℓ 's in the above process (b) and by induction on ℓ , we complete the proof.

Theorem 3. Let $\{S_1, \ldots, S_m\}$ be a disjoint family of similarities on D with common ratio c. Suppose $h \in \mathcal{H}_m^c$. If i_* is so large that the relation (2) holds for all $0 < t \le c^{i_*}d(D)$, then we have $\sigma(D_o; D_v) = \alpha_{i_*}(D_o)\frac{h(d(D_v))}{\alpha_{i_*}(D_v)}$.

PROOF. It follows from Definition 3, Lemma 2 and Lemma 1 (a) that

$$\sigma(D_o; D_v) = \lim_{\varepsilon \to 0} \sum_{\ell=0}^{\infty} \sum_{j=1}^{n_{\ell}} h(d(V_{\ell}^j))$$

$$= \lim_{\varepsilon \to 0} \sum_{\ell=0}^{\infty} n_{\ell} h(c^{i_* + i_0 + \dots + i_{\ell}} d(D_v))$$

$$= \lim_{\varepsilon \to 0} \sum_{\ell=0}^{\infty} \frac{n_{\ell}}{m^{i_* + i_0 + \dots + i_{\ell}}} h(d(D_v))$$

$$= \frac{\alpha_{i_*}(D_o)}{m^{i_*}} \frac{h(d(D_v))}{\alpha_0(D_v)}$$

$$= \alpha_{i_*}(D_o) \frac{h(d(D_v))}{\alpha_i(D_v)}.$$

Definition 4. Suppose $\{S_1, \ldots, S_m\}$ is a disjoint family of similarities on D with common ratio c. Let i be a non-negative integer. Define

$$\Phi_i(D_1) = \inf \left\{ \frac{h(d(I))}{\alpha_i(I)} : I \subset D_1; c^{i+1}d(D) < d(I) \le c^i d(D) \right\}$$

for all subsets D_1 of D with $d(D_1) \ge c^i d(D)$, where we follow the convention that if a > 0, then $a/0 := \infty$.

In the definition of Φ_i , the infimum has to be taken over all 'test' sets I whose diameters lie between $c^{i+1}d(D)$ and $c^id(D)$. Therefore, the Φ_i can be defined on the only sets D_1 with $d(D_1) \geq c^i d(D)$.

Definition 5. For any compact subsets A, B of D the distance $\rho(A, B)$ between A and B is defined by $\rho(A, B) = \min\{|x - y| : x \in A; y \in B\}$. Suppose $\{S_1, \ldots, S_m\}$ is a disjoint family of similarities on D with common ratio c. Let $\delta = \min\{\rho(S_i(D), S_j(D)) : i \neq j\}$ and $\tau = \min\{i \in \mathbb{N}_0 : c^{i+1}d(D) \leq \delta\}$. The constant τ is called the index of the self-similar set under S_1, \ldots, S_m .

Lemma 4. Let τ be the index of the self-similar set under S_1, \ldots, S_m with common ratio c. Assume that $i \geq \tau$ and $a \in \mathcal{I}_{i-\tau}$ are fixed. Let $h \in \mathcal{H}$. Then $\Phi_i(S_a(D)) = \Phi_i(D)$, where we set $S_a(D) = D$ for $a \in \mathcal{I}_0$.

PROOF. If $i = \tau$, the statement of the lemma is obvious. Now, let $i > \tau$, then we have by the fact that S_1, \ldots, S_m are similarities with common ratio c and by Definition 5

$$\min\{\rho(S_{b}(D), S_{b'}(D)) : b, b' \in \mathcal{I}_{i-\tau}; \ b \neq b'\}$$

$$= c^{i-\tau-1} \min\{\rho(S_{j}(D), S_{k}(D)) : j \neq k\}$$

$$\geq c^{i-\tau-1} c^{\tau+1} d(D)$$

$$= c^{i} d(D).$$
(3)

For any subset A of D let

$$C_1(A) = \{ I \subset D : I \subset A; \ c^{i+1}d(D) < d(I) \le c^i d(D) \},$$

$$C_2(A) = \{ I \subset D : I \cap A \ne \emptyset; \ I \not\subset A; \ c^{i+1}d(D) < d(I) < c^i d(D) \}$$

and

$$\mathcal{C}_3(A) = \{ I \subset D : I \cap A = \emptyset; \ c^{i+1}d(D) < d(I) \le c^i d(D) \}.$$

Then we have

$$C_1(D) = \bigcup_{b \in \mathcal{I}_{i-\tau}} C_1(S_b(D)) \cup \bigcup_{b \in \mathcal{I}_{i-\tau}} C_2(S_b(D)) \cup C_3 \left(\bigcup_{b \in \mathcal{I}_{i-\tau}} S_b(D)\right).$$

Since the structure in $S_b(D)$ is congruent to that in $S_a(D)$ and (3) implies that if $I \in \mathcal{C}_2(S_b(D))$, then $\#(I \cap S_{b'}(D)) \leq 1$ for any $b' \in \mathcal{I}_{i-\tau}$ with $b' \neq b$, the above equality implies that

$$\sup\{\alpha_i(I): I \in \mathcal{C}_1(D)\} = \sup\{\alpha_i(I): I \in \mathcal{C}_1(S_a(D))\}.$$

Further, since the structure in $S_b(D)$ is congruent to that in $S_a(D)$, we see that

$$\inf \left\{ \frac{h(d(I))}{\alpha_i(I)} : I \in \mathcal{C}_1(S_b(D)) \right\} = \inf \left\{ \frac{h(d(I))}{\alpha_i(I)} : I \in \mathcal{C}_1(S_a(D)) \right\}$$

for any $b \in \mathcal{I}_{i-\tau}$. As it was already stated, (3) implies that if $I \in \mathcal{C}_2(S_b(D))$, then $\#(I \cap S_{b'}(D)) \le 1$ and hence $\alpha_i(I \cap S_{b'}(D)) = 0$ for each $b' \in \mathcal{I}_{i-\tau}$ with $b' \ne b$. Hence, we get

$$\inf\left\{\frac{h(d(I))}{\alpha_i(I)}: I \in \mathcal{C}_2(S_b(D))\right\} \geq \inf\left\{\frac{h(d(I))}{\alpha_i(I)}: I \in \mathcal{C}_1(S_a(D))\right\}.$$

Trivially, we have

$$\inf \left\{ \frac{h(d(I))}{\alpha_i(I)} : I \in \mathcal{C}_3 \left(\bigcup_{b \in \mathcal{I}_{i-\tau}} S_b(D) \right) \right\} = \infty.$$

Therefore, we may conclude that

$$\Phi_{i}(D) = \inf \left\{ \frac{h(d(I))}{\alpha_{i}(I)} : I \in \mathcal{C}_{1}(D) \right\}$$

$$= \inf \left\{ \frac{h(d(I))}{\alpha_{i}(I)} : I \in \mathcal{C}_{1}(S_{a}(D)) \right\}$$

$$= \Phi_{i}(S_{a}(D)). \qquad \Box$$

Lemma 5. Suppose $\{S_1, \ldots, S_m\}$ is a disjoint family of similarities on D with common ratio c. Let $h \in \mathcal{H}_m^c$. Suppose i_* is given such that (2) holds for all $0 < t \le c^{i_*}d(D)$. Assume that D_1, D_2 are subsets of D such that

$$c^{i_*+1}d(D) < d(D_1) \le c^{i_*}d(D); \ c^{i_*+1}d(D) < d(D_2)$$

$$\le c^{i_*}d(D); \ \frac{h(d(D_1))}{\alpha_{i_*}(D_1)} < \frac{h(d(D_2))}{\alpha_{i_*}(D_2)}.$$

- (a) There exists an efficient D_1 -substitution of D_2 .
- (b) There exists no efficient D_2 -substitution of D_1 .

PROOF. (a) Using Theorem 3 we obtain

$$\sigma(D_2; D_1) = \alpha_{i_*}(D_2) \frac{h(d(D_1))}{\alpha_{i_*}(D_1)} < \alpha_{i_*}(D_2) \frac{h(d(D_2))}{\alpha_{i_*}(D_2)} = h(d(D_2)).$$

(b) As in the proof of (a), it is easy to see

$$\sigma(D_1; D_2) = \alpha_{i_*}(D_1) \frac{h(d(D_2))}{\alpha_{i_*}(D_2)} > \alpha_{i_*}(D_1) \frac{h(d(D_1))}{\alpha_{i_*}(D_1)} = h(d(D_1))$$

by using Theorem 3 again.

Lemma 6. Let τ be the index of the self-similar set under S_1, \ldots, S_m with common ratio c. Let $h \in \mathcal{H}_m^c$. Suppose $i (\geq \tau)$ is a given positive integer such that (2) holds for all $0 < t \leq c^{i-\tau}d(D)$. Then we have $m^i\Phi_i(D) = m^{i+1}\Phi_{i+1}(D)$.

PROOF. By Lemma 1 (a) and (b) we obtain, for any $j \in \{1, ..., m\}$,

$$\Phi_{i}(D) = \inf \left\{ \frac{h(d(I))}{\alpha_{i}(I)} : I \subset D; c^{i+1}d(D) < d(I) \le c^{i}d(D) \right\} \\
= m \cdot \inf \left\{ \frac{h(d(S_{j}(I)))}{\alpha_{i+1}(S_{j}(I))} : I \subset D; c^{i+1}d(D) < d(I) \le c^{i}d(D) \right\} \\
\ge m \cdot \inf \left\{ \frac{h(d(J))}{\alpha_{i+1}(J)} : J \subset D; c^{i+2}d(D) < d(J) \le c^{i+1}d(D) \right\} \\
= m\Phi_{i+1}(D), \tag{4}$$

where the second equality holds because, by (2) and our hypothesis for i, we have

$$h(d(S_j(I))) = (1/m)h(d(I))$$
 and $\alpha_{i+1}(S_j(I)) = \alpha_i(I)$.

On the other hand, let I be a subset of D with $c^{i+2}d(D) < d(I) \le c^{i+1}d(D)$. Case I. Assume that there exists a finite sequence $a = (a_1, \ldots, a_{i+1-\tau}) \in \mathcal{I}_{i+1-\tau}$ such that $I \subset S_a(D)$. Then we may choose a subset I' of $S_{a_2} \circ \cdots \circ S_{a_{i+1-\tau}}(D)$ such that $I = S_{a_1}(I')$. Hence, using the properties of S_j and Lemma 1 (b) we have d(I) = cd(I') and $\alpha_{i+1}(I) = \alpha_i(I')$ and so, using the properties of h

$$\frac{h(d(I))}{\alpha_{i+1}(I)} = \frac{1}{m} \frac{h(d(I'))}{\alpha_i(I')}.$$
(5)

Case II. Now assume that every $S_a(D)$, $a \in \mathcal{I}_{i+1-\tau}$, does not include I. In view of (3) we have

$$\min\{\rho(S_b(D), S_{b'}(D)) : b, b' \in \mathcal{I}_{i+1-\tau}; b \neq b'\} \ge c^{i+1}d(D) \ge d(I).$$

Therefore, we may merely consider the case where there exists a unique $a \in \mathcal{I}_{i+1-\tau}$ such that the interior of the intersection of I and $S_a(D)$ is non-empty. Due to the properties of the self-similar sets there exists a set $I_1 \subset \mathbb{R}^n$ similar to I with $\alpha_i(I_1) = \alpha_i(I_1 \cap D) = \alpha_{i+1}(I)$ and $cd(I_1) = d(I)$. Thus, we may choose a subset I' of D including $I_1 \cap D$ and satisfying $\alpha_i(I') \geq \alpha_{i+1}(I)$ and cd(I') = d(I). Since

$$d(I_1) = c^{-1}d(I) \le c^i d(D) < d(D),$$

we may select an appropriate subset I_2 of D such that $d((I_1 \cap D) \cup I_2) = d(I_1)$. If we put $I' = (I_1 \cap D) \cup I_2$, then I' satisfies the desired properties. Hence, using the properties of h

$$\frac{h(d(I))}{\alpha_{i+1}(I)} \ge \frac{1}{m} \frac{h(d(I'))}{\alpha_i(I')}.$$
(6)

Finally, by (5) and (6)

$$\begin{split} \Phi_{i+1}(D) &= \inf \left\{ \frac{h(d(I))}{\alpha_{i+1}(I)} : I \subset D; \ c^{i+2}d(D) < d(I) \le c^{i+1}d(D) \right\} \\ &\ge \frac{1}{m} \cdot \inf \left\{ \frac{h(d(I'))}{\alpha_{i}(I')} : I' \subset D; \ c^{i+1}d(D) < d(I') \le c^{i}d(D) \right\} \\ &= \frac{1}{m} \cdot \Phi_{i}(D). \end{split}$$

The assertion of the lemma follows from (4) and the last inequality. \Box

Lemma 7. Let F be the self-similar set under S_1, \ldots, S_m with common ratio c and let τ be the index of F. Let $h \in \mathcal{H}_m^c$. Suppose $i (> 2\tau)$ is a given integer such that (2) holds for all $0 < t \le c^{i-2\tau}d(D)$. Then for any $a \in \mathcal{I}_{i-\tau}$

$$\Phi_{i-\tau}(D) = \inf \left\{ \sum_{j} h(d(U_j)) : \{U_j\} \text{ is a } c^i d(D)\text{-covering of } F \cap S_a(D) \right\}.$$

PROOF. Let $\varepsilon > 0$ be arbitrarily small, and let \mathcal{U}_i be the set of all $c^i d(D)$ -coverings of $F \cap S_a(D)$. By Definition 4, we can choose a subset D' of D such that

$$c^{i-\tau+1}d(D) < d(D') \le c^{i-\tau}d(D)$$

and

$$\Phi_{i-\tau}(D) \le \frac{h(d(D'))}{\alpha_{i-\tau}(D')} \le \Phi_{i-\tau}(D) + \varepsilon. \tag{7}$$

Let $\mathcal{U}_i^{\varepsilon}$ be the set of all $c^i d(D)$ -coverings of $F \cap S_a(D)$ consisting of $\{U_j\}$ and $\{V_j\}$ with the properties

(i) if $c^{k+1}d(D) < d(U_j) \le c^k d(D)$, then there exists some $b \in \mathcal{I}_{k-i+\tau}$ such that

$$\frac{h(d(U_j))}{\alpha_k(U_j)} \le \frac{h(d(S_b(D')))}{\alpha_k(S_b(D'))}; \tag{8}$$

(ii) $\{V_j\}$ satisfies

$$\sum_{j} h(d(V_j)) < \varepsilon; \quad \sum_{j} \alpha_{i-\tau}(V_j) < \varepsilon. \tag{9}$$

Now assume $\{B_i\} \in \mathcal{U}_i$ such that there exists a j_0 satisfying

$$\frac{h(d(B_{j_0}))}{\alpha_k(B_{j_0})} > \frac{h(d(S_b(D')))}{\alpha_k(S_b(D'))}$$

for some $b \in \mathcal{I}_{k-i+\tau}$ with $c^{k+1}d(D) < d(B_{j_0}) \le c^k d(D)$. Then by taking $i_* = k$ in Lemma 5 (a), there exists an efficient $S_b(D')$ -substitution $\{B'_j\}$ of $B_{j_0} \cap D$. In particular, we may choose a $c^i d(D)$ -covering $\{E_j\}$ of $(F \cap S_a(D) \cap B_{j_0}) \setminus \bigcup B'_j$ such that $\sum h(d(E_j)) < \varepsilon/2^{j_0}$ and $\sum \alpha_{i-\tau}(E_j) < \varepsilon/2^{j_0}$ (cf. Remark 1). We now replace the B_{j_0} in the covering $\{B_j\}$ by $\{B'_j\} \cup \{E_j\}$.

As described above, we may ultimately transform the given covering $\{B_j\} \in \mathcal{U}_i$ into some $\{U_i\} \cup \{V_i\} \in \mathcal{U}_i^{\varepsilon}$. Therefore, we have

$$\inf \left\{ \sum_{j} h(d(U_{j})) : \{U_{j}\} \cup \{V_{j}\} \in \mathcal{U}_{i}^{\varepsilon} \right\}$$

$$\leq \inf \left\{ \sum_{j} h(d(U_{j})) : \{U_{j}\} \in \mathcal{U}_{i} \right\}$$

$$\leq \inf \left\{ \sum_{j} h(d(U_{j})) + \sum_{j} h(d(V_{j})) : \{U_{j}\} \cup \{V_{j}\} \in \mathcal{U}_{i}^{\varepsilon} \right\}.$$

$$(10)$$

The first inequality in (10) follows from the above consideration, and the fact $\mathcal{U}_i^{\varepsilon} \subset \mathcal{U}_i$ implies the second inequality in (10).

Now, let $\{U_j\} \cup \{V_j\} \in \mathcal{U}_i^{\varepsilon}$ be given such that there exists a sequence (k_j) , $k_j \geq i$, satisfying $c^{k_j+1}d(D) < d(U_j) \leq c^{k_j}d(D)$. By (8), Lemma 1 (a) and (7) in order, we have for some $b \in \mathcal{I}_{k_j-i+\tau}$

$$h(d(U_j)) \leq \alpha_{k_j}(U_j) \frac{h(d(S_b(D')))}{\alpha_{k_j}(S_b(D'))}$$

$$= \alpha_{i-\tau}(U_j) \frac{h(d(S_b(D')))}{\alpha_{i-\tau}(S_b(D'))}$$

$$= \alpha_{i-\tau}(U_j) \frac{h(d(D'))}{\alpha_{i-\tau}(D')}$$

$$\leq \alpha_{i-\tau}(U_j) (\Phi_{i-\tau}(D) + \varepsilon).$$

Since $\inf\{\sum \alpha_{i-\tau}(U_j): \{U_j\} \cup \{V_j\} \in \mathcal{U}_i^{\varepsilon}\} \leq 1$, condition (9), together with the above inequality, implies

$$\inf \left\{ \sum_{j} h(d(U_{j})) + \sum_{j} h(d(V_{j})) : \{U_{j}\} \cup \{V_{j}\} \in \mathcal{U}_{i}^{\varepsilon} \right\}$$

$$\leq \inf \left\{ \sum_{j} \alpha_{i-\tau}(U_{j}) : \{U_{j}\} \cup \{V_{j}\} \in \mathcal{U}_{i}^{\varepsilon} \right\} \cdot \left(\Phi_{i-\tau}(D) + \varepsilon \right) + \varepsilon$$

$$\leq \Phi_{i-\tau}(D) + 2\varepsilon.$$

Since $\varepsilon > 0$ may be sufficiently small, we obtain

$$\inf \left\{ \sum_{j} h(d(U_j)) + \sum_{j} h(d(V_j)) : \{U_j\} \cup \{V_j\} \in \mathcal{U}_i^{\varepsilon} \right\} \le \Phi_{i-\tau}(D). \tag{11}$$

On the other hand, if $\{U_j\} \cup \{V_j\}$ belongs to $\mathcal{U}_i^{\varepsilon}$, then for some k with $c^{k+1}d(D) < d(U_j) \le c^k d(D)$

$$\frac{h(d(U_j))}{\alpha_k(U_j)} \ge \Phi_k(D). \tag{12}$$

Thus, it follows from (12), Lemma 1 (a) and Lemma 6 that

$$h(d(U_j)) \ge \alpha_k(U_j)\Phi_k(D) = \alpha_{i-\tau}(U_j)\Phi_{i-\tau}(D).$$

Hence, as $\sum \alpha_{i-\tau}(U_j) \geq 1 - \varepsilon$ by (9), we get

$$\sum_{j} h(d(U_j)) \ge \Phi_{i-\tau}(D) \sum_{j} \alpha_{i-\tau}(U_j) \ge \Phi_{i-\tau}(D)(1-\varepsilon)$$

and so

$$\inf\left\{\sum_{j} h(d(U_j)) : \{U_j\} \cup \{V_j\} \in \mathcal{U}_i^{\varepsilon}\right\} \ge \Phi_{i-\tau}(D). \tag{13}$$

The assertion of the lemma follows from (10), (11) and (13). \square Now, we shall prove the main result of this paper.

Theorem 8. Suppose F is the self-similar set under S_1, \ldots, S_m with common ratio c and let τ be the index of F. Let $h \in \mathcal{H}^c_m$. Suppose $i (\geq \tau)$ is a positive integer such that (2) holds for all $0 < t \leq c^{i-\tau}d(D)$. Then for any $a \in \mathcal{I}_{i-\tau}$ $\mu^h(F) = m^i\Phi_i(S_a(D))$.

PROOF. Let j (> 2τ) be a sufficiently large integer for which (2) holds for all $0 < t \le c^{j-2\tau}d(D)$. By (3), we get

$$\min\{\rho(S_b(D), S_{b'}(D)) : b, b' \in \mathcal{I}_{i-\tau}; b \neq b'\} \ge c^j d(D).$$

Hence, by Lemma 7, we have

$$\inf \left\{ \sum_{k} h(d(U_k)) : \{U_k\} \text{ is a } c^j d(D) \text{-covering of } F \right\}$$

$$= \sum_{b \in \mathcal{I}_{j-\tau}} \inf \left\{ \sum_{k} h(d(U_k)) : \{U_k\} \text{ is a } c^j d(D) \text{-covering of } F \cap S_b(D) \right\}$$

$$= m^{j-\tau} \Phi_{j-\tau}(D).$$

Thus, it follows from Lemma 6 and Lemma 4 that

$$\mu^{h}(F) = \lim_{j \to \infty} \inf \left\{ \sum_{k} h(d(U_{k})) : \{U_{k}\} \text{ is a } c^{j}d(D)\text{-covering of } F \right\}$$

$$= \lim_{j \to \infty} m^{j-\tau} \Phi_{j-\tau}(D)$$

$$= m^{i} \Phi_{i}(D)$$

$$= m^{i} \Phi_{i}(S_{a}(D)).$$

4 Applications

First, we introduce the definition of the uniform Cantor set. Let $m (\geq 2)$ be a given integer, and we choose positive real numbers c and d such that mc + (m-1)d = 1. In this section, let D = [0,1] and define the similarities $S_i : D \to D$ $(i = 1, \ldots, m)$ by $S_i(x) = (i-1)(c+d) + cx$. Then c is the common ratio of the similarities S_1, \ldots, S_m and the family of those similarities is disjoint. The self-similar set F under the S_i 's is called a uniform Cantor set.

Let C be a compact subset of \mathbb{R} and let t > 0 be given. The t-entropy of C is defined by

$$E(C,t) = \min\{n \in \mathbb{N} : \{U_1,\ldots,U_n\} \text{ is a } t\text{-covering of } C\}.$$

Mycielski [8] and Kahnert [7] have considered the Hausdorff function

$$h_C(t) = \begin{cases} 1/E(C,t) & \text{for } t > 0, \\ 0 & \text{for } t = 0 \end{cases}$$

to construct an invariant Hausdorff measure μ^{h_C} . From now on, we write μ^C instead of μ^{h_C} . For some interesting properties of such a measure. See [3, 4, 8, 9].

It is easy to see $\mu^D(F) = 0$. Obviously, the Cantor set F can be covered by m^n intervals of the length c^n for every positive integer n. Since $h_D(c^n) \leq c^n$, (1) implies $\mu^D(F) \leq \lim_{n \to \infty} m^n c^n = 0$.

Analogously, we can easily prove $\mu^F(D) = \infty$: Let $\{U_i\}$ be a c^n -covering of D. Then $\sum d(U_i) \geq 1$. Let $n_i \geq n$ be an integer with $c^{n_i+1} < d(U_i) \leq c^{n_i}$ for every i. Then

$$h_F(d(U_i)) \ge m^{-(n_i+1)} = c^{n_i} m^{-1} (mc)^{-n_i} > d(U_i) m^{-1} (mc)^{-n_i}$$

and hence

$$\sum_{i} h_F(d(U_i)) \ge m^{-1} (mc)^{-n} \sum_{i} d(U_i) \ge m^{-1} (mc)^{-n}.$$

Therefore, (1) implies $\mu^F(D) \ge \lim_{n\to\infty} m^{-1}(mc)^{-n} = \infty$.

Similarly, we can show $\mu^D(D)=1$ and $\mu^F(F)\leq 1$, but it is virtually impossible to determine the exact value of $\mu^F(F)$ by using formula (1). However, we can use Theorem 8 to evaluate the lower and upper bounds for the set $\{\mu^F(F): F \text{ is a uniform Cantor set}\}$ as well as the exact values of $\mu^F(F)$ for many special cases. Moreover, Theorem 8 might provide us with a possibility to evaluate the value of $\mu^F(F)$ within a given error.

Remark 2. Let C be a compact subset of \mathbb{R} with a positive Lebesgue measure. Then we can also prove that $\mu^{C}(C) = 1$.

In the following lemma, we prove $h_F \in \mathcal{H}_m^c$.

Lemma 9. $h_F \in \mathcal{H}_m^c$.

PROOF. Let n = E(F,t). Suppose $\{U_i\}_{i=1,...,n}$ is a t-covering of F. Then $\{S_j(U_i)\}_{i=1,...,n}$ is a ct-covering of $F \cap S_j(D)$ for any j=1,...,m. Hence, we obtain $E(F,ct) \leq mE(F,t)$.

On the other hand, let $n = E(F \cap S_j(D), ct)$ and suppose $\{U_i\}_{i=1,\dots,n}$ is a ct-covering of $F \cap S_j(D)$ for some $j = 1, \dots, m$. Then $\{S_j^{-1}(U_i)\}_{i=1,\dots,n}$ is a t-covering of F. Hence, if 0 < t < d/c, then since ct < d

$$E(F,t) \le E(F \cap S_j(D), ct) = \frac{1}{m} E(F, ct).$$

Let τ be the index of F. According to Theorem 8 and Lemma 9, the value of $\mu^F(F)$ can be evaluated by the formula

$$\mu^{F}(F) = m^{i} \cdot \inf \left\{ \frac{h_{F}(d(I))}{\alpha_{i}(I)} : I \subset [0, c^{i-\tau}]; \ c^{i+1} < d(I) \le c^{i} \right\}$$
 (14)

where $i \ (> \tau)$ is a sufficiently large integer.

Theorem 10. For any uniform Cantor set F $1/2 \le \mu^F(F) < 1$.

PROOF. (a) First, assume that $I \subset [0, c^{i-\tau}]$ is an interval with

$$(k+1)c^{i+1} + kc^i d < d(I) \le (k+1)(c^{i+1} + c^i d)$$

for some $k \in \{0, 1, ..., m-2\}$. By considering the structure of F and the fact $E(S_a(D), d(I)) \leq [(m+k)/(k+1)]$ $(a \in \mathcal{I}_i)$, where [x] denotes the greatest integer which does not exceed x, we conclude

$$E(F, d(I)) \le m^i \left\lceil \frac{m+k}{k+1} \right\rceil$$
 and $\alpha_i(I) \le \frac{k+1}{m}$.

Hence, the fact $m \leq (k+1)[(m+k)/(k+1)] \leq m+k \leq 2m-2$ implies

$$m^{i} \frac{h_{F}(d(I))}{\alpha_{i}(I)} \ge \frac{m}{(k+1)[(m+k)/(k+1)]} > \frac{1}{2}.$$
 (15)

Now, assume that $I (\subset [0, c^{i-\tau}])$ is an interval with

$$k(c^{i+1} + c^i d) < d(I) \le (k+1)c^{i+1} + kc^i d$$

for some $k \in \{1, 2, ..., m-1\}$. As in the previous case, we obtain

$$E(F,d(I)) \leq m^i \left\lceil \frac{m+k-1}{k} \right\rceil, \quad \alpha_i(I) \leq \frac{k+1}{m},$$

and hence the inequality

$$m^{i} \frac{h_{F}(d(I))}{\alpha_{i}(I)} \ge \frac{m}{(k+1)[(m+k-1)/k]} \ge \frac{1}{2}$$
 (16)

follows from the fact $\frac{m+k-1}{k} \leq \frac{2m}{k+1}$ which can be easily proved under the assumption $m \geq k+1$.

Altogether, Theorem 8, together with (15) and (16), implies $\mu^F(F) \ge 1/2$. (b) Consider an interval $I = [0, c^i - c^{2i}]$. By (3) we have

$$\min\{\rho(S_b(D), S_{b'}(D)) : b, b' \in \mathcal{I}_{i-\tau}; \ b \neq b'\} \ge c^i.$$

Therefore, if $a \in \mathcal{I}_{i-\tau}$, then

$$E(F, d(I)) = m^{i-\tau} E(F \cap S_a(D), d(I)) \ge m^{i-\tau} (m^{\tau} + 1)$$
(17)

and

$$\alpha_i(I) = \frac{m^i - 1}{m^i}. (18)$$

Hence, by (14), (17) and (18), we obtain

$$\mu^{F}(F) \le m^{i} \frac{h_{F}(d(I))}{\alpha_{i}(I)} \le \frac{m^{\tau}}{m^{\tau} + 1} \frac{m^{i}}{m^{i} - 1} < 1$$

because i can be arbitrarily large.

As we can see in the following theorem, 1/2 is the best possible estimation of the lower bound for $\mu^F(F)$ in Theorem 10.

Theorem 11. Let τ be the index of the uniform Cantor set F.

(a) If $\tau = 0$, then $\mu^F(F) = 1/2$.

(b)
$$\mu^F(F) \to 1$$
 as $\tau \to \infty$.

PROOF. (a) Let i, k be positive integers. Choose an interval $I = [0, c^i - c^{i+k}]$. Clearly, we obtain $h_F(d(I)) = \frac{1}{2m^i}$, $\alpha_i(I) = 1 - \frac{1}{m^k}$ and hence

$$m^i \frac{h_F(d(I))}{\alpha_i(I)} = \frac{1}{2} \frac{m^k}{m^k - 1}.$$
 (19)

By letting $k \to \infty$ in (19) and considering (14) and Theorem 10, we conclude $\mu^F(F) = 1/2$.

(b) Let τ and i (> τ) be sufficiently large integers. Suppose I ($\subset [0, c^{i-\tau}]$) is an interval for which there exists an $n \in \mathbb{N} \cup \{\infty\}$ such that $\ell_n(k_j) - c^{i+n-1}d \le d(I) \le \ell_n(k_j)$ with

$$\ell_n(k_j) = \sum_{i=1}^{\infty} k_j \left(c^{i+j} + c^{i+j-1} d \right)$$

where $k_j \in \{0, 1, \dots, m-1\}$, $k_1 k_n \neq 0$ and $k_j = 0$ for any j > n (for the case of $n \in \mathbb{N}$) and we follow the convention $c^{i+\infty-1} = 0$ (for $n = \infty$). In view of (3) we have

$$E(F, d(I)) \le m^{i-\tau} \left(\frac{c^{i-\tau}}{\ell_n(k_j) - c^{i+n-1}d} + 1 \right) \le m^{i-\tau} \frac{c^{-\tau} + 1}{k_1 c + k_2 c^2 + \cdots},$$

$$\alpha_i(I) \le \frac{k_1}{m} + \frac{k_2}{m^2} + \cdots$$

and hence

$$m^{i} \frac{h_{F}(d(I))}{\alpha_{i}(I)} \ge \frac{(mc)^{\tau} (k_{1}c + k_{2}c^{2} + \cdots)}{1 + c^{\tau}} \left(\frac{k_{1}}{m} + \frac{k_{2}}{m^{2}} + \cdots \right)^{-1}$$
$$\ge \frac{(mc)^{\tau}}{1 + c^{\tau}} g(\tau)$$

where $g(\tau) \to 1$ as $\tau \to \infty$ $(c \to 1/m \text{ as } \tau \to \infty)$. By (14) we get

$$\mu^F(F) \ge \frac{(mc)^{\tau}}{1 + c^{\tau}} g(\tau). \tag{20}$$

From mc + (m-1)d = 1 and $c^{\tau+1} \le d < c^{\tau}$ (see Definition 5) it follows that $(mc)^{\tau} \to 1$ as $\tau \to \infty$. Consequently, by Theorem 10 and (20), we conclude that $\mu^F(F) \to 1$ as $\tau \to \infty$.

Acknowledgment. The author would like to thank the referee for his/her careful reading of early versions of this paper and valuable suggestions.

References

- [1] E. Best, On sets of fractal dimension III, Proc. London Math. Soc. (2) **47** (1942), 436–454.
- [2] K. J. Falconer, Fractal geometry, John Wiley & Sons N.Y. 1990.
- [3] J. W. Fickett and J. Mycielski, A problem of invariance for Lebesgue measure, Colloq. Math. 42 (1979), 123–125.
- [4] J. W. Fickett, Approximate isometries on bounded sets with an application to measure theory, Studia Math. 72 (1981), 37–46.
- [5] A. Gierl, Über das Hausdorffsche Maß gewisser Punktmengen in der Zifferntheorie, J. Reine Angew. Math. 202 (1959), 183–195.
- [6] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–747.
- [7] D. Kahnert, *Haar-Mass und Hausdorff-Mass*, Lecture Notes in Math. **541**, Springer 1976, 13–23.
- [8] J. Mycielski, Remarks on invariant measures in metric spaces, Colloq. Math. **32** (1974), 109–116.
- [9] J. Mycielski, A conjecture of Ulam on the invariance of measure in Hilbert's cube, Studia Math. **60** (1977), 1–10.
- [10] C. A. Rogers, Hausdorff measures, Cambridge Univ. Press 1970.