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THE HAUSDORFF DIMENSION OF
HILBERT’S COORDINATE FUNCTIONS

Abstract

We characterize the coordinate functions of Hilbert’s space-filling
curve using a directed-graph iterated function system and use this to
analyze their fractal properties. In particular, we show that both coor-
dinate functions have graphs of Hausdorff dimension 3

2
and level sets of

dimension 1
2
.

1 Introduction

Let I = [0, 1] denote the unit interval and let I2 denote the unit square.
Hilbert’s space filling curve is a continuous, surjective function h : I → I2.
The coordinate functions x and y are given by h(t) = (x(t), y(t)). An excellent
general reference for h is [7], where one may find arithmetical expressions for x
and y. More importantly, for this paper, are functional equations given in [7].
We use these to characterize the coordinate graphs using a directed-graph
iterated functions system, henceforth referred to as a DiGraph IFS. This, in
turn, allows us to show that the graphs of x and y have positive, finite 3

2 -
dimensional Hausdorff measure. This is similar to the result in [5] that the
coordinate functions of Peano’s space filling curve are each self-affine, and
also have positive, finite 3

2 -dimensional Hausdorff measure. Our techniques,
however, more closely model those applied to Kiesswetter’s curve in [1].

Let X denote the graph of x and let Y denote the graph of y. We will see
that X may be decomposed into 4 parts: 2 affine images of itself and 2 affine
images of Y . Similarly, Y may be decomposed into 2 affine images of itself
and 2 affine images of X. This is exactly the type of situation which may be
described by a DiGraph IFS. Our treatment follows that of [6] and [2].

Key Words: space filling curves, Hausdorff dimension, self similarity
Mathematical Reviews subject classification: 26A27,28A30, 28A78
Received by the editors October 20, 1998

875



876 Mark McClure

A DiGraph IFS consists of a directed multi-graph, G, together with a
function from Rn to Rn associated with each edge of G. We will assume that
all of these functions are contractions, although this condition may be relaxed
somewhat. The directed multi-graph, G, consists of a finite set, V , of vertices
and a finite set, E, of directed edges. Given two vertices, u and v, denote
the set of all edges from u to v by Euv. We denote the set of all paths of
length n with initial vertex u by Enu . G is called strongly connected if for
every u, v ∈ E, there is a path from u to v. Theorem 4.3.5 of [2] states that
given any DiGraph IFS, there is a unique set of compact sets Kv, one for every
v ∈ V , such that for every u ∈ V

Ku =
⋃

v∈V, e∈Euv

fe(Kv).

Such a set is called the invariant list of the DiGraph IFS. Note that if e ∈ Euv,
then fe maps Kv into Ku. More generally, if α ∈ Enu has terminal vertex v,
then we may form fα : Kv → Ku by composing the functions fe over e ∈ α
taken in reverse order along the path α. If K is any compact set, then the
sets

⋃
α∈En

u

fα(K) converge to Ku in the Hausdorff metric as n→∞.

The sets X and Y will be characterized using affine functions. Define A
and B to be the following matrices.

A =
( 1

4 0
0 1

2

)
B =

( 1
4 0
0 − 1

2

)
Let ~w ∈ R2 represent a column vector and define affine functions using matrix
multiplication as follows.

axx(~w) = A~w +
( 1/4

0
)

ayy(~w) = A~w +
( 1/4

1/2
)

bxx(~w) = A~w +
( 1/2

1/2
)

byy(~w) = A~w +
( 1/2

1/2
)

cxy(~w) = A~w cyx(~w) = A~w

dxy(~w) = B~w +
( 3/4

1
)

dyx(~w) = B~w +
( 3/4

1/2
)

We may associate these functions to the edges in a DiGraph simply by labeling
the edges. We may, also, label the vertices to indicate which one corresponds
to X and which one corresponds to Y . The labeled DiGraph for X and Y is
shown in figure 1.

Lemma 1.1. X and Y form the invariant list of the DiGraph IFS shown in
figure 1.
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Figure 1: The DiGraph for X and Y

Proof. This follows immediately from the fact that x and y satisfy the
following list of functional equations ([7], page 30, ex. 13). We have labeled
the functional equations to clarify the correspondence.

axx : x((1 + t)/4) = x(t)/2 ayy : y((1 + t)/4) = 1/2 + y(t)/2
bxx : x((2 + t)/4) = 1/2 + x(t)/2 byy : y((2 + t)/4) = 1/2 + y(t)/2
cxy : x(t/4) = y(t)/2 cyx : y(t/4) = x(t)/2
dxy : x((3 + t)/4) = 1− y(t)/2 dyx : y((3 + t)/4) = 1/2− x(t)/2

2 Hausdorff Measure and Dimension

In this section, we recall the definitions of Hausdorff measure and dimension,
show that X and Y have dimension ≤ 3/2, and state some useful lemmas.
Our notation has been influenced by [2] and [4], where one may find proofs of
the basic facts.

Let s ≥ 0. We will define the s-dimensional Hausdorff measure, Hs, on
Euclidean space, Rn. Let F ⊂ Rn. The diameter of F will be denoted by
diam(F ). Let ε > 0. An ε-cover, C, of F is a countable collection of sets such
that F ⊂ ∪U∈CU and diam(U) ≤ ε for every U ∈ C. Now define

Hsε(F ) = inf
{∑
U∈C

diam(U)s : C is an ε-cover of F
}

and
Hs(F ) = lim

ε→0+
Hsε(F ).

Note that this limit is well defined sinceHsε(F ) increases as ε decreases. It may
be shown that Hs is a Borel outer measure on Rn. We denote its restriction to
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the Hs-measurable sets by Hs, also, and call this the s-dimensional Hausdorff
measure.

The Hausdorff dimension of F , dim(F ), is defined by

dim(F ) = inf
{
s ≥ 0 : Hs(F ) = 0

}
.

If F is an infinite set, this is equivalent to

dim(F ) = sup
{
s ≥ 0 : Hs(F ) =∞

}
.

We will show that 0 < H3/2(X) <∞, so that dim(X) = 3/2, and similarly for
Y . We prove the upper bound here and the lower bound in the next section.

Theorem 2.1. H3/2(X) ≤ 23/4, so dim(X) ≤ 3/2. A similar statement holds
for Y .

Proof. We write the proof for X. The proof for Y is identical. Note that
each of the affine functions in the DiGraph IFS defining X and Y maps I2

into I2. Thus Xn =
⋃

α∈En
X

fα(I2) forms a nested sequence of sets containing

the invariant set X. Furthermore, each set fα(I2) is a rectangle with width
4−n and height 2−n, due to the affine nature of the functions. There are 4n

of these sets since there are 4n paths of length n leaving any vertex in the
DiGraph.

Now, each of the rectangles fα(I2) may be decomposed into 2n squares of
side length 4−n. Thus, we may cover X by 2n4n squares of side length 4−n.
Therefore,

H3/2√
2 4−n

(X) ≤ 2n4n(
√

2 4−n)3/2 = 23/4

and H3/2(X) ≤ 23/4, as n is arbitrary.
Lower bounds for Hausdorff measure are, typically, more difficult. Our

strategy will be to show that H1/2(x−1(z)) > 0 for all z ∈ [0, 1]. The lower
bound for X will then follow from a result of Besicovitch. We will obtain the
lower bound for level sets by using following measure comparison lemma ([4],
page 55).

Lemma 2.1. Let µ be a Borel measure on the Borel set F and suppose that
for some s > 0, there are numbers c, δ > 0 such that µ(U) ≤ c diam(U)s for
all open sets U with diam(U) ≤ δ. Then, Hs(F ) ≥ µ(F )/c.

We will, also, need the following scaling property of Hausdorff measure
([4], page 27).
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Lemma 2.2. If F ⊂ Rn, λ > 0, and λF = {λx : x ∈ F}, then Hs(λF ) =
λsHs(F ).

Finally, we will need Mauldin and Williams’ computation of the Hausdorff
measure of DiGraph self-similar sets. We associate a similarity dimension with
any DiGraph IFS with similarities as follows. Suppose that for each e ∈ E,
fe is a similarity with ratio re. Construct a matrix M(s) whose rows and
columns are indexed by the vertex set V . The element in row u and column v
is
∑
e∈Euv

rse. The similarity dimension of the DiGraph IFS is the unique value

of s such that M(s) has spectral radius 1. This coincides with the Hausdorff
dimension of the corresponding DiGraph self-similar sets, provided an open
set condition is satisfied. The open set condition states that there should be
open sets Uv, one for each v ∈ V , so that Uu ⊃

⋃
e∈Euv

fe(Uv) with this union

disjoint. The following is the main result of [6]. See, also, [2] theorem 6.4.8.

Lemma 2.3. Let {Kv}v∈V be the invariant list of a self-similar DiGraph
IFS arising from a strongly connected directed multi-graph and with similarity
dimension s. Then Hs(Kv) < ∞ for all v ∈ V . If, in addition, the open set
condition is satisfied, then Hs(Kv) > 0 for all v ∈ V .

Note that self-similarity is the special case of DiGraph self-similarity where
the DiGraph has one vertex. In this case, lemma 2.3 reduces to the standard
formula for similarity dimension.

3 The Structure of Level Sets

We now turn our attention to the structure of level sets. We first consider
the sets x−1(0), y−1(0), x−1(1), and, y−1(1) and show they all have Hausdorff
dimension 1/2. Then, we will use the DiGraph structure of X and Y to extend
these results to other sets.

Consider the functions axx, cxy, cyx, and dyx. These are the four affine
transformations from figure 1 which leave the x-axis invariant. They are all
similarities of ratio 1

4 when restricted to R. Thus, the sets x−1(0) and y−1(0)
form the invariant list of the corresponding self-similar DiGraph IFS. The open
set condition is satisfied using the open unit interval. Lemma 2.3 shows that

0 < H1/2(x−1(0)) <∞ and 0 < H1/2(y−1(0)) <∞.

In fact, note that H1/2(x−1(0)) ≤ 1 since x−1(0) may be covered by 2n inter-
vals of length 4−n for any n. A similar statement holds for y.
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We need to highlight a certain regularity in these sets in order to extend
results to other sets.

Lemma 3.1. H1/2(x−1(0) ∩ U) ≤ 4 diam(U)1/2 for all Borel sets U ⊂ I. A
similar statement holds for y.

Proof. First, consider the case where U is a closed interval of the form

[i/4n, (i+ 1)/4n] where i, n ∈ N and0 ≤ i < 4n.

Then, either H1/2(x−1(0)∩U) = 0 or x−1(0)∩U is a set similar to x−1(0) or
y−1(0) scaled by a factor 4−n. In either case,

H1/2(x−1(0) ∩ U) ≤ (4−n)1/2 H1/2(x−1(0)) = diam(U)1/2.

Now, suppose that U satisfies 4−(n+1) ≤ diam(U) < 4−n. Then, U may be
covered by at most 2 intervals of the form [i/4n, (i+ 1)/4n]. Thus,

H1/2(x−1(0) ∩ U) ≤ 2(4−n)1/2 = 4(4−(n+1))1/2 ≤ 4 diam(U)1/2.

Next, consider the sets x−1(1) and y−1(1). We see that x−1(1) is isometric
to x−1(0) by using another of Sagan’s functional equations: x(t)+x(1− t) = 1
([7], ex. 13, page 30). In particular, if t satisfies x(t) = 0, then 1 − t satisfies
x(1 − t) = 1. Therefore, 0 < H1/2(x−1(1)) ≤ 1 and x−1(1) satisfies the
conclusions of lemma 3.1.

Finally, y−1(1) is a self-similar set for the similarities ayy and byy restricted
to the horizontal line y = 1. Again, 0 < H1/2(y−1(1)) ≤ 1 and y−1(1) satisfies
the conclusions of lemma 3.1.

We now consider the extension to other level sets.

Lemma 3.2. Suppose that n ∈ N and that j is an odd integer satisfying
1 ≤ j < 2n. Then, x−1(j/2n) and y−1(j/2n) both consist of 2n+1 sets which
are similar to one of the basic sets x−1(0), y−1(0), x−1(1), or, y−1(1), scaled
by a factor 4−n.

Proof. First, note that the result is true for n = 1, as x−1(1/2) consists of a
copy of y−1(1) over [0, 1/4], a copy of x−1(1) over [1/4, 1/2], a copy of x−1(0)
over [1/2, 3/4], and a copy of y−1(1) over [3/4, 1]. This may be seen from the
action of the DiGraph IFS. Similarly, y−1(1/2) consists of a copy of x−1(1), 2
copies of y−1(0), and a copy of x−1(0).

Proceeding by induction, suppose the result is true for n ∈ N. Let j be an
odd integer satisfying 1 ≤ j < 2n+1.



Hilbert’s Coordinate Functions 881

Case 1: j < 2n. Then, x−1(j/2n+1) consists of a copy of y−1(j/2n) over
[0, 1/4] and a copy of x−1(j/2n) over [1/4, 1/2], each scaled by a factor 1/4.

Case 2: j > 2n. Then, x−1(j/2n+1) consists of a copy of x−1(1 − j/2n)
over [1/2, 3/4] and a copy of y−1(j/2n) over [3/4, 1], each scaled by a factor
1/4.

In both cases, the induction hypotheses shows that we have a total of 2n+2

copies of the basic sets scaled by a factor 4−(n+1). A similar argument applies
to y.

Now, let

m = min{H1/2(x−1(0)),H1/2(y−1(0)),H1/2(x−1(1)),H1/2(y−1(1))}.

Corollary 3.1. If z is a dyadic rational and U is a Borel set, then

m ≤ H1/2(x−1(z)) ≤ 2

and
H1/2(x−1(z) ∩ U) ≤ 4 diam(U)1/2.

Proof. This follows immediately from the scaling lemma 2.2 and lemma 3.2.

The fact that H1/2(x−1(z)) > 0 for all z ∈ I now follows from the following
lemma, which generalizes a technique applied to Kiesswetter’s curve by Edgar.

Lemma 3.3. Let s > 0 and let f be a continuous, real valued function defined
on some closed interval J . Suppose there are numbers a and b such that

0 < a ≤ Hs(f−1(z)) ≤ b

for all z in some dense subset D ⊂ range(f). Suppose further that there is a
c > 0 such that for all z ∈ D and for all open sets U we have

Hs(f−1(z) ∩ U) ≤ c diam(U)s.

Then, Hs(f−1(z)) ≥ a/c for all z ∈ range(f).

Proof. Fix z ∈ range(f) and choose a sequence (zn) from D such that
zn 6= z for any n, and zn → z as n → ∞. For each n ∈ N, define the Borel
measure µn on J to be µn = Hs|f−1(zn), the restriction of Hs to f−1(zn).
Since a ≤ µn(J) ≤ b for every n, this sequence has some weak-∗ cluster point,
say µ, satisfying a ≤ µ(J) ≤ b.

We claim that µ is supported on f−1(z). Suppose U is an open set con-
taining f−1(z). Then there is an open set V such that f−1(z) ⊂ V ⊂ V ⊂ U .
By the continuity of f , we have f−1(zn) ⊂ V for large enough n. Thus,

µ(J \ U) ≤ µ(J \ V ) ≤ lim inf
n→∞

µn(J \ V ) = 0
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and µ(J \ f−1(z)) = 0. Furthermore, if U ⊂ J is any open set, then

µ(U) ≤ lim inf
n→∞

Hs(f−1(zn) ∩ U) ≤ c diam(U)s.

Thus, Hs(f−1(z)) ≥ a/c by lemma 2.1.

Corollary 3.2. H1/2(x−1(z)) ≥ m/4 > 0 and H1/2(y−1(z)) ≥ m/4 > 0 for
all z ∈ I.

Proof. Simply combine corollary 3.1 and lemma 3.3.
The following lemma is Theorem 5.8 of [3], but is originally due to Besi-

covitch. We will need it to transfer results to X and Y . If F ⊂ R2, where R2

is the xz plane, then Fz = {x ∈ R : (x, z) ∈ F} represents a level set.

Lemma 3.4. Let F be a subset of the xz plane and let A be any subset of the
z-axis. Suppose that if z ∈ A, then Ht(Fz) > c, for some constant c. Then

Hs+t(F ) ≥ b c Hs(A),

where b depends only on s and t.

Corollary 3.3. H3/2(X) > 0 and H3/2(Y ) > 0.

Proof. This follows immediately from corollary 3.2 and lemma 3.4 by taking
A to be [0, 1], t = 1/2, and s = 1.

Comments
We have proved that 0 < H3/2(X) < ∞ and similarly for Y . More that

this, we have obtained the stronger fact that 0 < H1/2(x−1(z)) for all z ∈ [0, 1].
Not only does this imply that 0 < H3/2(X), but the reverse implication is not
true in general. Indeed, all of the vertical cross-sections of X are singletons
and, therefore, zero dimensional.

The fact that H3/2(X) < ∞, implies H1/2(x−1(z)) < ∞ for almost all
z ∈ [0, 1]. This statement is easily improved. Consider the rectangular covers
of X used in the proof of theorem 2.1. One may prove by induction that any
horizontal line intersects at most 2 · 2n of the rectangles of width 4−n. Thus,
for any z ∈ [0, 1],

H1/2
4−n(x−1(z)) ≤ 2 · 2n(4−n)1/2 = 2

and H1/2(x−1(z)) ≤ 2 since n is arbitrary.
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