A 1-DIMENSIONAL SUBSET OF THE REALS THAT INTERSECTS EACH OF ITS TRANSLATES IN AT MOST A SINGLE POINT

Abstract

We construct a compact subset of \mathbf{R} with Hausdorff dimension 1 that intersects each of its non-identical translates in at most one point. Moreover, one can make the set to be linearly independent over the rationals.

In 1984 P . Mattila [2] constructed compact subsets A and B of \mathbf{R} with Hausdorff dimension 1 such that the intersection of A and any translate of B contains at most one point. In this note we show that - if we allow only non-identical translations - one can also have $A=B$.

We call a set of 3 or 4 real numbers $x_{1}<x_{2} \leq x_{3}<x_{4}$ a rectangle if $x_{2}-x_{1}=x_{4}-x_{3}$.

Note that a set intersects each of its translates in at most one point if and only if the set does not contain a rectangle. (Here and in the sequel by set we will always mean a subset of \mathbf{R} and by translate a non-identical translate.)

Theorem 1. There exists a compact set with Hausdorff dimension 1 that intersects each of its translates in at most one point.

Proof. Let $\delta_{m}=1 /\left(6^{m-1} m!\right)$. We inductively define compact sets A_{m} as disjoint unions of closed intervals $\left[n_{i_{1} \ldots i_{m}} \delta_{m},\left(n_{i_{1} \ldots i_{m}}+1\right) \delta_{m}\right.$] for $1 \leq i_{k} \leq k$, $1 \leq k \leq m$. We will denote by $I_{1}^{m}, I_{2}^{m}, \ldots, I_{m!}^{m}$ the intervals of A_{m} and by $\left(J_{1}, J_{2}, \ldots\right)$ the sequence $\left(I_{1}^{1}, I_{1}^{2}, I_{2}^{2}, I_{1}^{3}, \ldots, I_{3!}^{3}, \ldots\right)$.

[^0]Let $n_{1}=0$. (Then $A_{1}=I_{1}^{1}=J_{1}=[0,1]$.) Assume that A_{1}, \ldots, A_{m} have already been defined. If $n_{i_{1} \ldots i_{m}} \delta_{m} \notin J_{m}$ then let

$$
\begin{equation*}
n_{i_{1} \ldots i_{m} i}=6(m+1) n_{i_{1} \ldots i_{m}}+6 i-6 \quad(i=1, \ldots, m+1) \tag{1}
\end{equation*}
$$

and if $n_{i_{1} \ldots i_{m}} \delta_{m} \in J_{m}$ then let

$$
\begin{equation*}
n_{i_{1} \ldots i_{m} i}=6(m+1) n_{i_{1} \ldots i_{m}}+6 i-3 \quad(i=1, \ldots, m+1) \tag{2}
\end{equation*}
$$

Thus

$$
\left[n_{i_{1} \ldots i_{m} i} \delta_{m+1},\left(n_{i_{1} \ldots i_{m} i}+1\right) \delta_{m+1}\right] \subset\left[n_{i_{1} \ldots i_{m}} \delta_{m},\left(n_{i_{1} \ldots i_{m}}+1\right) \delta_{m}\right]
$$

for $i=1, \ldots, m+1$, which means that the intervals of A_{m+1} are contained in the intervals of A_{m}.

Let $A=\cap_{l=1}^{\infty} A_{m}$. Then A has Hausdorff dimension 1, cf. [1] Example 4.6. Hence, by our previous remark, it is enough to show that A does not contain a rectangle.

Let $x_{1}<x_{2} \leq x_{3}<x_{4}$ be points of A. Take an m such that $\delta_{m}<x_{2}-x_{1}$. Then if $x_{1} \in I_{j}^{m}=J_{M}$ then none of x_{2}, x_{3} and x_{4} is in I_{j}^{m}. Thus, when we defined A_{M+1}, we used (2) for defining the interval that contains x_{1} and (1) for defining the intervals that contain x_{2}, x_{3} and x_{4}. This implies that x_{1} is of the form $\left(6 N_{1}+3\right) \delta_{M}+\varepsilon_{1}$ but x_{2}, x_{3} and x_{4} are of the form $6 N_{j} \delta_{M}+\varepsilon_{j}$, where N_{1}, \ldots, N_{4} are integers and $0 \leq \varepsilon_{i} \leq \delta_{M}$ for $i=1, \ldots, 4$. Thus $x_{2}-x_{1} \neq$ $x_{4}-x_{3}$, which means that $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is not a rectangle.

Remark 2. Slightly modifying the above construction (by replacing 6 with a slowly increasing sequence of even numbers) one can also get a compact set with Hausdorff dimension 1 which is linearly independent over the rationals. (The existence of a linearly independent perfect set is well known, even in any non-discrete locally compact abelian group, see e. g. [3].)

References

[1] K. Falconer, Fractal Geometry, John Wiley \& Sons, 1990.
[2] P. Mattila, Hausdorff dimension and capacities of intersections of sets in n-space, Acta Math., 152 (1984), 77-105.
[3] W. Rudin, Fourier Analysis on Groups, Interscience Publishers, New York - London, 1962.

[^0]: Key Words: Hausdorff dimension, translation, linearly independent, intersection
 Mathematical Reviews subject classification: 28A78
 Received by the editors June 8, 1998
 *This research was done while the author was visiting the University College London having a Royal Society/NATO Postdoctoral Fellowship award.

