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EVERYWHERE OF SECOND CATEGORY
SETS

Abstract

The main result of this paper states the following. For each natural
number i, let Gi be a proper additive subgroup of the reals, Ai a set
that contains no arithmetic progression of length three, Hi a basis for
the vector space R over the field of rationals, and E+(Hi) the set of
all finite linear combinations from the elements of Hi with nonnegative
rational coefficients. Then the complement of a finite union of sets
Gi ∪Ai ∪E+(Hi) is everywhere of second category. We also prove that
the complement of a union of fewer than continuum many translates of
sets that have distinct distances is everywhere of second category.

1 Introduction

P. Erdös and S. Kakutani [3] showed that the continuum hypothesis is equiv-
alent to the statement that the set R of real numbers can be partitioned into
countably many pieces such that each piece has distinct distances. (That is, if
x, y, z, w are real numbers with | x−y |=| z−w |, then {x, y} = {z, w}.) Under
the assumption of the continuum hypothesis, K. Kunen [6] generalized that,
for each positive integer n, Rn can be partitioned into countably many pieces
such that each piece has distinct distances. It is interesting to note that, by
using the fact that the set R can be partitioned into countably many sets such
that each set contains no arithmetic progression of length three [1, Thm 1.1],
K. Ciesielski [2, Thm 3] showed that there exists a uniformly anti-Schwartz
function from the reals R to the natural numbers N.
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It is natural to look at the thickness of the complement of a finite union
of the above mentioned sets. Suppose H is a basis for the vector space R over
the field of rationals, P is a subset of R that has distinct distances, A is a
subset of R that has no arithmetic progression of length three, G is a proper
additive subgroup of R, and E+(H) is the set of all finite linear combinations
from the elements of H with nonnegative rational coefficients. Note that any
H set is a P set and any P set is an A set.

In this paper we prove that the complement of a finite union of sets of
the form A ∪G ∪E+(H) is everywhere of second category. This is a general-
ization of a classical result of Sierpiński “the complement of a Hamel basis is
everywhere of second category” and a result in [9] “the complement of a finite
union of Hamel bases is everywhere of second category.” We also prove that
the complement of a union of fewer than continuum many translates of sets of
the form P +G is everywhere of second category and this is a generalization
of Theorem 7 in [7] that the complement of a union of fewer than continuum
many translates of Hamel bases is everywhere of second category.

It is interesting to note that there is an additive subgroup, namely, the
group generated by the set H, which is everywhere of second category. The
proof of this follows from the proof of Theorem 1 in [4] with minor suitable
modification. Under the assumption of the continuum hypothesis, E+(H) is
a Lusin set for some set H (see [4]). Under the assumption of Martin’s axiom,
E+(H) is a meager set for some set H (see [8]).

2 Notation

R denotes the set of all real numbers, N is the set of all natural numbers and Q
is the set of all rational numbers. Let A and B be subsets of R. The symbols
A−B and AB stand for the sets {x− y : x ∈ A and y ∈ B} and {xy : x ∈ A
and y ∈ B}, respectively. For r ∈ R, A + r = {x + r : x ∈ A}. The notation
A\B stands for the set-theoretic difference of sets A and B. All sets considered
in this paper are subsets of reals.

3 Results

Theorem 1. For each i ∈ N, let Gi be a proper additive subgroup of the reals,
Ai a set that contains no arithmetic progression of length three, Hi a basis
for the vector space R over the field of rationals, and E+(Hi) the set of all
finite linear combinations from the elements of Hi with nonnegative rational
coefficients. Then the complement of a finite union of sets Gi ∪ Ai ∪ E+(Hi)
is everywhere of second category.
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First, we prove the following lemmas.

Lemma 1. Let I be a nonempty open interval and let F be a meager subset of
R. Then the set N(I\F ) contains a translated copy of every countable bounded
subset of R.

Proof. Let B be a countable bounded subset of R. Then for some nonempty
open interval J , J + B ⊆ mI for sufficiently large m ∈ N. Since NF − B
is meager, J is not contained in the set NF − B. Let j be an element of
J\(NF −B). Then j +B ⊆ (NI)\(NF ) ⊆ N(I\F ).

Lemma 2. Let κ be an infinite cardinal number smaller than the cardinality
of the continuum and let B be a subset of R of size κ. If a subset C of R
contains a translated copy of every bounded subset of R of size κ, then so does
the set C\(E+(H) +B). (Note that E+(H) is defined in Theorem 1.)

Proof. Assume that the conclusion of the lemma is false. Then, for some
bounded subset D of R of size κ, the set (D+ r)∩ (E+(H) +B) is nonempty
for every r in {t ∈ R : D + t ⊆ C}. For simplicity denote {t ∈ R : D + t ⊆ C}
by Tr(D,C).

(1) Hence Tr(D,C) ⊆ E+(H) +B −D.

Each nonzero real number can be written uniquely as a finite linear com-
bination of elements of H with nonzero rational coefficients. For each nonzero
t ∈ B − D, let supp(t) = {h ∈ H : qh 6= 0}, where t =

∑
h∈H

qhh. Let X

be a bounded subset of −(H\
⋃

t∈B−D

supp(t)) of size κ. Since | D + X |= κ,

by the definition of C, we have D + X + r ⊆ C for some r in R and hence
X + r ⊆ Tr(D,C). (In fact Tr(D,C) contains a translated copy of every
bounded subset of R of size κ.) According to (1),

(2) X + r ⊆E+(H) +B −D for some r in R.

Since supp(r) is finite and X is an infinite subset of −H, there exists an
element h1 in H such that −h1 ∈ X and h1 /∈ supp(r). It follows from the
definition of X that h1 /∈ supp(t) for all t ∈ (B −D). By (2),

−h1 + r ∈ E+(H) +B −D,

which is impossible, because every element of E+(H) is a finite linear com-
bination from the elements of H with nonnegative rational coefficients and
h1 /∈ supp(r) ∪

⋃
t∈(B−D)

supp(t).
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Lemma 3. If a subset C of R contains a translated copy of every finite subset
of R, so does C\G, where G is any proper additive subgroup of R.

Proof. Let X be a finite subset of R and let

Tr(X,C) = {r ∈ R : X + r ⊆ C}.

It is easy to see that Tr(X,C) − Tr(X,C) = R. If (X + r) ∩ G is nonempty
for every element r ∈ Tr(X,C), then

R = Tr(X,C)− Tr(X,C) ⊆ (G−X)− (G−X) = G−X +X,

which contradicts the fact that the index of any proper additive subgroup of
R is infinite. (To see this fact, assume that R = G+M , where G is a proper
subgroup of R and M is a finite subset of R. Then for each m ∈M,∃nm ∈ N
such that nmm ∈ G. Let n be the least common multiple of the integers nm.
Then R = nR = nG + nM ⊆ G + nM = G, which is a contradiction.) Thus
X + t ⊆ C\G for some t in Tr(X,C).

Lemma 4. Let I be a nonempty open interval and let F be a meager subset
of R. Given a positive integer n, let M be a finite subset of N so that if M
is partitioned into n classes, then at least one class contains an arithmetic
progression of length three. (Existence of such a set M follows from Van
der Waerden’s Theorem, see [5, p.28].) Then there exists a nonzero rational
number d and a nonempty open interval J such that dM + j ⊆ I\F for all j
in J except for a meager subset of J .

Proof. Let a and b be two distinct elements of I. Then there exist a nonzero
rational number d and a real number r such that dM + r ⊆ (a

2 ,
b
2 ). Let

F1 = (a
2 ,

b
2 )∩ (F − dM − r). Then F1 is meager and, ∀x ∈ (a

2 ,
b
2 )\F1, we have

dM + r+x ⊆ I\F . Consequently, if we let J = (a
2 ,

b
2 )+ r, then dM + j ⊆ I\F

for all j in J except for a meager subset of J .

Lemma 5. For some j in J , we have (dM + j) ⊆ (I\F ) and

(dM + j) ∩
n⋃

i=1

(Gi ∪ E+(Hi)) = ∅

where d,M,F, I, J are defined in Lemma 4 and Gi, E
+(Hi) are defined in

Theorem 1.

Proof. Assume that the conclusion of the lemma is false. Then, according

to Lemma 4, (dM + j) ∩
n⋃

i=1

(Gi ∪ E+(Hi)) is nonempty for all j in J except
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for a meager subset of J . This implies that, for some meager set F2,

J\F2 ⊆
n⋃

i=1

(Gi ∪ E+(Hi))− dM.

Consequently, because N(Gi ∪ E+(Hi)) ⊆ (Gi ∪ E+(Hi)), we have

N(J\F2) ⊆
n⋃

i=1

(Gi ∪ E+(Hi))− NdM.

According to Lemma 1, N(J\F2) contains a translated copy of every countable
bounded subset of R. By applying Lemma(2) n times, we obtain that the set

N(J\F2)\
n⋃

i=1

(E+(Hi)− NdM)

contains a translated copy of every countable bounded subset of R. Note that
for any proper additive subgroup G of R, the set G− NdM is contained in a
proper additive subgroup of R. For, since M is a subset of N, the set G−NdM
is contained in the subgroup G + Zd. If G + Zd = R, since d is rational,
G + Z = R, which is impossible. (For, if R = G + Z, then 1

2 = g + x for
some g ∈ G and x ∈ Z. Consequently, 0 6= 2x− 1 ∈ G. This implies that the
index of G is finite, which is a contradiction.) Now by applying Lemma 3 to

N(J\F2)\
n⋃

i=1

(E+(Hi)− NdM), we obtain that the set

(N(J\F2)\
n⋃

i=1

(E+(Hi)− NdM))\
n⋃

i=1

(Gi − NdM)

contains a translated copy of every finite subset of R, but

(N(J\F2)\
n⋃

i=1

(E+(Hi)− NdM))\
n⋃

i=1

(Gi − NdM) =

N(J\F2)\
n⋃

i=1

((Gi ∪ E+(Hi))− NdM)

is an empty set. This contradiction completes the proof of the lemma.

To conclude the proof of the theorem, suppose, to the contrary, that

R\
n⋃

i=1

(Gi ∪Ai ∪E+(Hi)) is meager in a nonempty open interval I. Then, for
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some meager set F , the set I\F is contained in the set
n⋃

i=1

(Gi ∪Ai ∪E+(Hi)).

Consequently, (I\F )\
n⋃

i=1

(Gi∪E+(Hi)) ⊆
n⋃

i=1

Ai. Now according to Lemma 5,

dM + j ⊆
n⋃

i=1

Ai for some real numbers d, j and d 6= 0. Hence

M ⊆ 1
d

(
n⋃

i=1

Ai − j).

By the definition of M (see Lemma 4), for some i, the set 1
d (Ai − j) contains

an arithmetic progression of length three, which is impossible by the definition
of Ai.

Theorem 2. Let G be a subset of R with cardinal smaller than the cardinality
of the continuum and let P1, ..., Pn be subsets of R that have distinct distances.
(That is, if {x, y, z, w} ⊆ Pn and | x − y |=| z − w |, then {x, y} = {z, w}.)
Then (P1 +G) ∪ . . . ∪ (Pn +G) cannot be residual in an interval.

First, we prove the following lemma.

Lemma 6. Let κ be an infinite cardinal number smaller than the cardinality
of the continuum and let G be a subset of the reals such that | G |<| R |. If
P is a set that has distinct distances and C is a set that contains a translated
copy of every set of size κ, so does C\(P +G).

Proof. Assume that the conclusion of the lemma is false. Then, for some
subset X of R of size κ, the set (X + r) ∩ (P + G) is nonempty for every
r ∈ {t ∈ R : X + t ⊆ C}. Denote the set {t ∈ R : X + t ⊆ C} by Tr(X,C)
and the set G − X by Y . Then Tr(X,C) ⊆ P + G − X ⊆ P + Y . Let
a ∈ R\Q(Y − Y ) and let B = {t ∈ R : {a,−a} + t ⊆ Tr(X,C)}. Then
{a,−a}+B ⊆ Tr(X,C) ⊆ P + Y.

Claim. | B |=| R |
To justify the claim, assume that | B |<| R |. Let S be the group generated

by the set B. Then | S |<| R | . Let d ∈ R\S. Since | X+{a,−a}+{0, d} |= κ,
by the definition of C, for some r ∈ R, we have

X + {a,−a}+ {0, d}+ r ⊆ C.

This implies that {a,−a}+ {0, d}+ r ⊆ Tr(X,C). Now, by the definition of
B, 0+r and d+r belong to the set B and hence r and d+r are in the additive
subgroup S. Consequently, d ∈ S, which contradicts the choice that d ∈ R\S.
Thus | B |=| R | . To conclude the proof of the lemma, recall that



Everywhere of Second Category Sets 613

(3) {a,−a}+B ⊆ P + Y, | Y |<| R | and | B |=| R |.

For y in Y , let B(y) = {b ∈ B : a+b ∈ P +y}. Since
⋃

y∈Y

B(y) = B, by (3),

there exists y1 ∈ Y such that | B(y1) |>| Y |. Note that a+ B(y1) ⊆ P + y1.
Now, −a+B(y1) ⊆ P + Y and | B(y1) |>| Y | imply that there exists y2 ∈ Y
and an infinite subset E of B(y1) such that −a + E ⊆ P + y2. We have
a + E ⊆ P + y1 and −a + E ⊆ P + y2. For each e ∈ E, a + e − y1 and
−a+ e− y2 are distinct points in P and

| (a+ e− y1)− (−a+ e− y2) |=| 2a− y1 + y2 |

is a constant, which contradicts the property of P.
To conclude the proof of the theorem, assume that the conclusion of the

theorem is false. Then for some nonempty open interval I and a meager set

F, we have I\F ⊆
n⋃

i=1

(Pi +Gi). Now,

(4) R\(F + Q) = (I + Q)\(F + Q) ⊆ (I\F ) + Q ⊆
n⋃

i=1

(Pi +Gi + Q).

Since F+Q is meager, it is easy to see that R\(F+Q) contains a translated
copy of every countable subset of R. By applying Lemma 6 n times, we obtain

that (R\(F+Q))\
n⋃

i=1

(Pi+Gi+Q) contains a translated copy of every countable

subset of R, but according to (4), (R\(F + Q))\
n⋃

i=1

(Pi +Gi + Q) is an empty

set.
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