Péter Komjáth, Department of Computer Science, Eötvös University, Budapest, Rákóczi út 5, 1088, Hungary, e-mail: kope@cs.elte.hu

LIMITS OF TRANSFINITE SEQUENCES OF BAIRE-2 FUNCTIONS

Abstract

It is consistent that CH fails and every function which is the pointwise limit of an ω_2 -sequence of Baire-2 functions is Baire-2. It is also consistent that CH fails and there is a function which is not such a limit.

1 Introduction

W. Sierpiński initiated the investigation of pointwise convergent transfinite sequences of Baire-1 functions [4]. It is easy to observe that the convergence of transfinite sequences of reals is somewhat trivial; $x = \lim\{x_{\alpha} : \alpha < \kappa\}$ holds for some κ of uncountable cofinality iff $x_{\alpha} = x$ is true for $\alpha < \kappa$ large enough. Sierpiński himself proved that the ω_1 -limit of continuous functions is continuous and the ω_1 -limit of Baire-1 functions is Baire-1 again. M. Laczkovich pointed out that this no longer holds for Baire-2 functions. Namely, if $f : A \to \mathbb{R}$ where $A \subseteq \mathbb{R}$ has cardinality ω_1 , then f can be written as $f = \lim\{f_{\alpha} : \alpha < \omega_1\}$ for some Baire-2 functions by the following argument.

Enumerate A as $A = \{a_{\alpha} : \alpha < \omega_1\}$ and let $f_{\alpha}(a_{\beta}) = f(a_{\beta})$ for $\beta < \alpha$, otherwise let f_{α} be identically 0. Clearly the functions $\{f_{\alpha} : \alpha < \omega_1\}$ are Baire-2 and their limit is f. As the characteristic function of a non-Borel set can be obtained in this way, (There is always a non-Borel set of cardinal ω_1 .) we get that the limits can be functions which are not Baire. Also, if CH (the Continuum Hypothesis) holds, then every function is the ω_1 -limit of Baire-2 functions. In Theorem 1 we show that if the cofinality of 2^{ω} (continuum

Key Words: transfinite limits of Baire functions

Mathematical Reviews subject classification: 03E35, 26A21

Received by the editors October 29, 1997

^{*}Research of the author was partially supported by the Hungarian National Science Research Grant No. T019476.

⁴⁹⁷

cardinality) is not ω_1 , then there is a real function which is not the limit of Baire-2 functions. If $cf(2^{\omega}) = \omega_1$, then both possibilities may occur.

Laczkovich also asked what happens if we are interested in ω_2 limits of Baire-2 functions. He remarked that in this case there is no problem if CH is assumed as, then every convergent sequence of functions eventually stabilizes. We show that if the continuum is ω_2 , then both cases may occur; that is, it is consistent that every real function is the ω_2 limit of Baire-2 functions, it is also consistent that only Baire-2 functions can be so obtained.

2 Notation

We use the standard axiomatic set theory notation. Specifically, cardinals are identified with initial ordinals. 2^{ω} denotes the least ordinal of cardinality continuum, therefore, if we well order a set of cardinal continuum into ordinal 2^{ω} , then in that ordering every element is preceded by less than continuum many elements.

When we force with a partial order (P, \leq) , $G \subseteq P$ is generic, and τ is some P-name, then we let τ^G be the realization of τ .

For a set A of ordinals we let F(A) be the notion of forcing adding Cohen reals for the elements of A. That is, $p \in F(A)$ iff p is a function with a domain that is a finite subset of $A \times \omega$ and range that is $\subseteq \{0,1\}$. $p \leq q$ iff p extends q as a function. If $G \subseteq F(A)$ is a generic subset, then we define the Cohen reals as follows; for $\alpha \in A$ let $c_{\alpha} : \omega \to \{0,1\}$ be the function satisfying $c_{\alpha}(n) = p((\alpha, n))$ for some $p \in G$. (Standard forcing facts give that c_{α} is a totally defined function.) We notice that if $A \subseteq B$, then the inclusion $F(A) \subseteq F(B)$ is an order preserving inclusion.

If $A, A' \subseteq B$ are disjoint sets of ordinals, $\pi : A \to A'$ is a bijection, then π can be lifted to an isomorphism $\overline{\pi} : F(B) \to F(B)$ as follows. $\overline{\pi}(p(\alpha, n)) = p(\alpha, n)$ if $\alpha \notin A \cup A'$, $\overline{\pi}(p(\pi(\alpha), n)) = p(\alpha, n)$ if $\alpha \in A$, $\overline{\pi}(p(\pi^{-1}(\alpha), n)) = p(\alpha, n)$ if $\alpha \in A'$.

Acknowledgment. We are grateful to Miklós Laczkovich (Budapest) for his continuing interest in the topic and also for pointing out how to prove Theorems 3 and 4 assuming the results granted for characteristic functions. Our warm thanks also go to the referee and to the careful editor whose remarks and suggestions have greatly improved the exposition.

3 The Results

Theorem 1. If $cf(2^{\omega}) > \omega_1$, then there is a real function which is not the pointwise limit of an ω_1 -sequence of Baire-2 functions.

PROOF. Enumerate \mathbb{R} as $\mathbb{R} = \{r_{\alpha} : \alpha < 2^{\omega}\}$. Enumerate also the Baire-2 (or even Borel) functions as $\{f_{\alpha} : \alpha < 2^{\omega}\}$. Construct $f : \mathbb{R} \to \mathbb{R}$ in such a way that $f(r_{\alpha})$ is different from the less than continuum many values $\{f_{\beta}(r_{\alpha}) : \beta < \alpha\}$. We claim that f is as required. Assume not, and so f is the pointwise limit of some functions $\{f_{\gamma_{\tau}} : \tau < \omega_1\}$. As $cf(2^{\omega}) > \omega_1$ there is an $\alpha < 2^{\omega}$ with $sup\{\gamma_{\tau} : \tau < \omega_1\} < \alpha$ and by the way f was constructed $f(r_{\alpha})$ is different from all the values $\{f_{\gamma_{\tau}}(r_{\alpha}) : \tau < \omega_1\}$; so f is not the limit of those functions. \Box

Theorem 2. It is consistent that $2^{\omega} = \omega_{\omega_1}$ and there is a real function which is not the pointwise limit of an ω_1 -sequence of Baire-2 functions.

PROOF. Let V be a model of CH and let the poset (P, \leq) add ω_{ω_1} Cohen reals, $\{c_{\alpha} : \alpha < \omega_{\omega_1}\}$. If $G \subseteq P$ is generic, let $f : \mathbb{R} \to \mathbb{R}$ be a function satisfying $f(c_{2\alpha}) = c_{2\alpha+1}$ for $\alpha < \omega_{\omega_1}$. We claim that f is not the ω_1 -limit of Baire-2 functions. Assume it is, $f = \lim\{f_{\gamma} : \gamma < \omega_1\}$. As f_{γ} is a Baire-2 function there is a real number in V[G] from which it can be defined. There is a countable set $A_{\gamma} \subseteq \omega_{\omega_1}$ such that this real is an element of the model $V[G \cap F(A_{\gamma})]$. Set $A = \bigcup\{A_{\gamma} : \gamma < \omega_1\}$. Select $\alpha < \omega_{\omega_1}$ such that $2\alpha + 1 \notin A$. Then $f(c_{2\alpha})$ is an element of $V[G \cap F(A \cup \{2\alpha\})]$ which contradicts the standard forcing theory fact $c_{2\alpha+1} \notin V[G \cap F(A \cup \{2\alpha\})]$.

Theorem 3. It is consistent that $2^{\omega} = \omega_{\omega_1}$ and every real function is the pointwise limit of an ω_1 -sequence of Baire-2 functions.

PROOF. Let V be a model of GCH (the Generalized Continuum Hypothesis). We are going to construct a finite support iterated forcing of length ω_1 , $\{P_{\alpha} : \alpha \leq \omega_1\}$. Assume that we have constructed P_{α} , $2^{\omega} = \omega_{\alpha+1}$ in $V^{P_{\alpha}}$, and GCH holds above $\kappa = \omega_{\alpha+1}$. Let \mathbb{R}_{α} be the set of reals in $V^{P_{\alpha}}$. Enumerate, in $V^{P_{\alpha}}$, all subsets of \mathbb{R}_{α} as $\{X_{\xi} : \xi < \kappa^+\}$. Let R_{ξ} be a ccc forcing of cardinality κ making X_{ξ} a relative F_{σ} subset of \mathbb{R}_{α} (see [1,3]). (Notice that after the first step \mathbb{R}_{α} will cease being the set of all reals.) Let Q_{α} be the finite support iteration of these posets. Notice that if $X = H \cap \mathbb{R}_{\alpha}$ (with H an F_{σ} set) is once achieved, then it will survive later extensions even though we have to redefine H (but not \mathbb{R}_{α}). As Q_{α} is the iteration of ccc posets, it is ccc as well. $|Q_{\alpha}| = \kappa^+$; so the number of reals in $V^{P_{\alpha}}$ is $\kappa(\kappa^+)^{\omega} = \kappa^+ = \omega_{\alpha+1}$ and we can continue the definition. Our final model is V^P with $P = P_{\omega_1}$. It suffices to show that if $f : \mathbb{R} \to [0,1]$ is a function in V^P , then it is the limit of an ω_1 -sequence of Baire-2 functions. We first show this for two-valued functions; that is, for $f : \mathbb{R} \to \{0,1\}$. As in the intermediate model $V[G \cap P_{\alpha}]$ the set \mathbb{R}_{α} of all reals has cardinality $\omega_{\alpha+1}$ we can find an enumeration of the set of reals in the final model as $\mathbb{R} = \{r_{\xi} : \xi < \omega_{\omega_1}\}$ such that $\mathbb{R}_{\alpha} = \{r_{\xi} : \xi < \omega_{\alpha+1}\}$, this part of enumeration is in $V[G \cap P_{\alpha}]$, and $\mathbb{R}_{\alpha} \setminus \bigcup \{\mathbb{R}_{\beta} : \beta < \alpha\}$ is mapped onto the ordinal interval $[\omega_{\alpha}, \omega_{\alpha+1})$.

Fix a name τ for f. For every $\xi < \omega_{\omega_1}$ choose a maximal antichain $\{p_i^{\xi} : i < \omega\} \subseteq P$ of conditions determining the value of $f(r_{\xi})$. (This antichain is countable as (P, \leq) is a ccc forcing.) Pick an ordinal $\alpha(\xi) < \omega_1$ such that $\xi < \omega_{\alpha(\xi)+1}$ and also $\{p_i^{\xi} : i < \omega\} \subseteq P_{\alpha(\xi)}$. Then r_{ξ} and $f(r_{\xi})$ are determined in $V[G \cap P_{\alpha(\xi)}]$.

We now define the functions $\{f_{\alpha} : \alpha < \omega_1\}$ as follows. The domain of f_{α} is the set $\{r_{\xi} : \alpha(\xi) \leq \alpha\}$ and $f_{\alpha}(r_{\xi}) = 0$ (or 1) if the unique $p_i^{\xi} \in G$ forces that value. The function f_{α} is in $V[G \cap P_{\alpha}]$ and the forcing Q_{α} will make the set $f_{\alpha}^{-1}(0)$ a relative F_{σ} subset of \mathbb{R}_{α} . Then f_{α} is the restriction of a Baire-2 function to \mathbb{R}_{α} and so f is the limit of Baire-2 functions.

Having proved the result for two-valued functions let $f : \mathbb{R} \to [0, 1]$ be an arbitrary function in V[G]. So f can be written as $f(x) = g_1(x) + g_2(x) + \cdots$ with $g_n(x) \in \{0, 2^{-n}\}$. As g_n is a two-valued function it can be written as $g_n = \lim\{g_\alpha^n : \alpha < \omega_1\}$ where the functions $\{g_\alpha^n : \alpha < \omega_1\}$ are Baire-2 functions. Now $f_\alpha = \sum\{g_\alpha^n : 1 \le n < \omega\}$ is a Baire-2 function as it is the uniform limit of Baire-2 functions. And finally, $f = \lim\{f_\alpha : \alpha < \omega_1\}$. \Box

Theorem 4. It is consistent with $2^{\omega} = \omega_2$ that every real function is the pointwise limit of an ω_2 -sequence of Baire-2 functions.

PROOF. We deduce the statement from the axiom $\operatorname{MA}_{\omega_1}$ and $2^{\omega} = \omega_2$. Assume that $f : \mathbb{R} \to [0, 1]$ and enumerate \mathbb{R} as $\{r_{\alpha} : \alpha < \omega_2\}$. A well known corollary of $\operatorname{MA}_{\omega_1}$ is that in every set of reals of cardinality at most ω_1 every subset is a relative F_{σ} set (i.e., every set of cardinality at most ω_1 is a Q-set, see [1]). With the argument as in the proof of Theorem 3 we can find a Baire-2 function f_{α} which agrees with f on $\{r_{\beta} : \beta < \alpha\}$ for every $\alpha < \omega_2$; so f is the limit of the f_{α} 's.

Theorem 5. It is consistent that the pointwise limit of an ω_2 -sequence of Baire-2 functions is Baire-2 again.

PROOF. We add ω_2 Cohen reals to a model of CH. Let $P = F(\omega_2)$ be the applied notion of forcing, V[G] the enlarged model and $\{c_{\alpha} : \alpha < \omega_2\}$ the

Cohen reals. Assume that $\mathbf{1}_P$ forces that $\{f_\alpha : \alpha < \omega_2\}$ is a set of Baire-2 functions converging to $f : \mathbb{R} \to \mathbb{R}$.

For every $\alpha < \omega_2$ there is a countable set $A_{\alpha} \subseteq \omega_2$ such that the behavior of f_{α} is completely determined by the restriction of G to A_{α} . Every function f_{α} can be written as $f_{\alpha} = \lim_{m \to \infty} \lim_{n \to \infty} g_{m,n}^{\alpha}$, with $g_{m,n}^{\alpha}$ continuous, and let, for q, q' rational numbers, $\{p(\alpha, m, n, q, q', i) : i < \omega\}$ be a maximal antichain of conditions determining the truth value of the statement $g_{m,n}^{\alpha}(q) < q'$.

By shrinking the index set and using the Δ -system lemma (p. 49 in [2]) we can assume that our sets form a Δ -system; that is, $A_{\alpha} = A \cup B_{\alpha}$ with the sets $\{A, B_{\alpha} : \alpha < \omega_2\}$ disjoint. We can also assume that $A = \emptyset$ (by passing to the model $V[G \cap F(A)]$). Using CH again and again shrinking the index set we can also assume that the above structures on the sets B_{α} are isomorphic. This means that if $\alpha < \beta < \omega_2$ are given, then the isomorphism of the ordered sets $\pi : (B_{\alpha}, <) \to (B_{\beta}, <)$ naturally extends to an isomorphism π' between the parts of P with supports in B_{α} and B_{β} , respectively such that $\pi'(p(\alpha, m, n, q, q', i)) = p(\beta, m, n, q, q', i)$ holds for all values of m, n, q, q', and i.

If $x \in V[G]$ is a real, then there is a countable set $T(x) \subseteq \omega_2$ such that x is determined in $V[G \cap F(T(x))]$. By the disjointness assumption the set $d(x) = \{\alpha < \omega_2 : T(x) \cap B_\alpha \neq \emptyset\}$ is countable. We claim that if $\alpha, \beta \notin d(x)$, then $f_\alpha(x) = f_\beta(x)$. In any case, the value of $f_\alpha(x)$ is determined in the model $V[G \cap F(T(x) \cup B_\alpha)]$ while the value of $f_\beta(x)$ is likewise determined in the model $V[G \cap F(T(x) \cup B_\alpha)]$. This implies that the status of $f_\alpha(x) = f_\beta(x)$ is determined in $V[G \cap F(T(x) \cup B_\beta)]$. This implies that the status of $f_\alpha(x) = f_\beta(x)$ is determined in $V[G \cap F(T(x) \cup B_\alpha)]$. Assume that our claim fails and so $p \parallel - f_\alpha(x) \neq f_\beta(x)$ for some condition $p \in F(T(X) \cup B_\alpha \cup B_\beta)$. If we now select α', β' in such a way that $B_{\alpha'}, B_{\beta'}$ are disjoint from T(x), and $\{\alpha', \beta'\} \cap \{\alpha, \beta\} = \emptyset$, then there is an automorphism $\pi : P \to P$ which is the identity on P|T(x) and carries B_α to $B_{\alpha'}, B_\beta$ to $B_{\beta'}, \pi(p)$ is compatible with p. As the structures are isomorphic $\pi(p) \parallel - f_{\alpha'}(x) \neq f_{\beta'}(x)$. This way, working in $V[G \cap F(T(x)],$ we can find ω_2 such pairs $\{\{\alpha'_{\xi}, \beta'_{\xi}\} : \xi < \omega_2\}$ with the corresponding isomorphisms

$$\pi_{\xi}: F(T(x) \cup B_{\alpha} \cup B_{\beta}) \to F(T(x) \cup B_{\alpha_{\xi}} \cup B_{\beta_{\xi}}).$$

Then

$$p_{\xi} = \pi_{\xi}(p) \parallel - f_{\alpha_{\xi}}(x) \neq f_{\beta_{\xi}}(x).$$

If we show that ω_2 of conditions p_{ξ} are in G, then we get that $f_{\alpha}(x)$ does not stabilize in V[G], and so we reach a contradiction. So assume that some $q \leq p$ forces that $\{\xi < \omega_2 : p_{\xi} \in G\}$ is of cardinal $\leq \omega_1$. We can as well assume that q forces that $\sup\{\xi < \omega_2 : p_{\xi} \in G\} = \gamma$ for some $\gamma < \omega_2$. Then there is some

 $\xi > \gamma$ such that p_{ξ} is compatible with q and so a common extension forces a contradiction.

We now make a further extension of V[G] by adding countably many (to be more exact, $|B_{\alpha}|$ many for any $\alpha < \omega_2$) Cohen reals. This makes it possible to construct a further Baire-2 function, f_{ω_2} in the following way. Let the index set of the extra Cohen reals be $B_{\omega_2} = [\omega_2, \omega_2 + \nu)$ where $\nu = |B_{\alpha}|$ (any α) is either ω or some natural number. We define f_{ω_2} as the B_{ω_2} counterpart of any f_{α} . That is, choose some $\alpha < \omega_2$, set $\pi : B_{\alpha} \to B_{\omega_2}$ a bijection. Let π' be the corresponding isomorphism between the parts of P with supports in B_{α} and B_{ω_2} . Define $f_{\omega_2} = \lim_m \lim_n g_{m,n}^{\omega_2}$ where the continuous functions $g_{m,n}^{\omega_2}$ are determined by the conditions $p(\omega_2, m, n, q, q', i) = \pi'(p(\alpha, m, n, q, q', i))$ for the suitable values of m, n, q, q', i.

Using our previous claim, if $x \in V[G]$, $\alpha \notin d(x)$, then $f_{\alpha}(x) = f_{\omega_2}(x)$. That is, our function $f \in V[G]$ is extended to a Baire-2 function in the further extension. We show that then f is already Baire-2 in V[G] (and this concludes the proof). It is well known that a function is Baire-2 if and only if all the level sets are of the form $\bigcap_i \bigcup_j F_{i,j}$ for some closed sets $F_{i,j}$; so it suffices to show the following claim.

Assume that V is a model of set theory, $X \subseteq \mathbb{R}$, P is a countable notion of forcing, and in V^P there is a set $H = \bigcap_i \bigcup_j F_{i,j}$ with $F_{i,j}$ closed, such that $X = H \cap \mathbb{R}^V$. Then there is such a set already in V.

Assume that $\mathbf{1}_P$ forces that H, F_{ij} satisfy the requirements. We argue that $X = \{x : \forall p \forall i \exists p' \leq p \exists j, p' \parallel w \in F_{i,j}\}$. Indeed, if $x \in X$, then $1 \parallel w \in H$; so for every $p \in P$ and $i < \omega$ there are some $p' \leq p$ and $j < \omega$ that $p' \parallel w \in F_{i,j}$. On the other hand, if $x \notin X$, then there are $p \in P$ and $i < \omega$ that $p' \parallel w x \notin F_{i,j}$. But then no $p' \leq p$ can force with some $j < \omega$ that $x \in F_{ij}$.

Having proved the above formula for X as the indicated unions and intersections are countable, we only need to show that the sets $\{x : p' \mid \mid m x \in F_{i,j}\}$ are closed (for fixed p', i, j). Indeed, if $x_n \to x$ and $p' \mid m x_n \in F_{i,j}$ for every n then if $G \subseteq P$ is some generic set with $p' \in G$, then in V[G] the convergence $x_n \to x$ still holds, and F_{ij} is a closed set containing every x_n , containing therefore x as well. That is, p' forces $x \in F_{i,j}$.

References

 D. H. Fremlin, Consequences of Martin's axiom, Cambridge Univ. Press, 1984.

- [2] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, 1980.
- [3] A. W. Miller, Descriptive Set Theory and Forcing, Lecture Notes in Logic, 4, Springer, 1995.
- [4] W. Sierpiński, Sur les suites transfinies convergentes de fonctions de Baire, Fund. Math., 1(1920), 132–141.