Péter Komjáth, ${ }^{\text {Department of Computer Science, Eötvös University, }}$ Budapest, Rákóczi út 5, 1088, Hungary, e-mail: kope@cs.elte.hu

LIMITS OF TRANSFINITE SEQUENCES OF BAIRE-2 FUNCTIONS

Abstract

It is consistent that CH fails and every function which is the pointwise limit of an ω_{2}-sequence of Baire- 2 functions is Baire-2. It is also consistent that CH fails and there is a function which is not such a limit.

1 Introduction

W. Sierpiński initiated the investigation of pointwise convergent transfinite sequences of Baire-1 functions [4]. It is easy to observe that the convergence of transfinite sequences of reals is somewhat trivial; $x=\lim \left\{x_{\alpha}: \alpha<\kappa\right\}$ holds for some κ of uncountable cofinality iff $x_{\alpha}=x$ is true for $\alpha<\kappa$ large enough. Sierpiński himself proved that the ω_{1}-limit of continuous functions is continuous and the ω_{1}-limit of Baire- 1 functions is Baire- 1 again. M. Laczkovich pointed out that this no longer holds for Baire-2 functions. Namely, if $f: A \rightarrow \mathbb{R}$ where $A \subseteq \mathbb{R}$ has cardinality ω_{1}, then f can be written as $f=\lim \left\{f_{\alpha}: \alpha<\omega_{1}\right\}$ for some Baire-2 functions by the following argument.

Enumerate A as $A=\left\{a_{\alpha}: \alpha<\omega_{1}\right\}$ and let $f_{\alpha}\left(a_{\beta}\right)=f\left(a_{\beta}\right)$ for $\beta<\alpha$, otherwise let f_{α} be identically 0 . Clearly the functions $\left\{f_{\alpha}: \alpha<\omega_{1}\right\}$ are Baire-2 and their limit is f. As the characteristic function of a non-Borel set can be obtained in this way, (There is always a non-Borel set of cardinal ω_{1}.) we get that the limits can be functions which are not Baire. Also, if CH (the Continuum Hypothesis) holds, then every function is the ω_{1}-limit of Baire2 functions. In Theorem 1 we show that if the cofinality of 2^{ω} (continuum

[^0]cardinality) is not ω_{1}, then there is a real function which is not the limit of Baire-2 functions. If $\operatorname{cf}\left(2^{\omega}\right)=\omega_{1}$, then both possibilities may occur.

Laczkovich also asked what happens if we are interested in ω_{2} limits of Baire-2 functions. He remarked that in this case there is no problem if CH is assumed as, then every convergent sequence of functions eventually stabilizes. We show that if the continuum is ω_{2}, then both cases may occur; that is, it is consistent that every real function is the ω_{2} limit of Baire-2 functions, it is also consistent that only Baire-2 functions can be so obtained.

2 Notation

We use the standard axiomatic set theory notation. Specifically, cardinals are identified with initial ordinals. 2^{ω} denotes the least ordinal of cardinality continuum, therefore, if we well order a set of cardinal continuum into ordinal 2^{ω}, then in that ordering every element is preceded by less than continuum many elements.

When we force with a partial order $(P, \leq), G \subseteq P$ is generic, and τ is some P-name, then we let τ^{G} be the realization of τ.

For a set A of ordinals we let $F(A)$ be the notion of forcing adding Cohen reals for the elements of A. That is, $p \in F(A)$ iff p is a function with a domain that is a finite subset of $A \times \omega$ and range that is $\subseteq\{0,1\} . p \leq q$ iff p extends q as a function. If $G \subseteq F(A)$ is a generic subset, then we define the Cohen reals as follows; for $\alpha \in A$ let $c_{\alpha}: \omega \rightarrow\{0,1\}$ be the function satisfying $c_{\alpha}(n)=p((\alpha, n))$ for some $p \in G$. (Standard forcing facts give that c_{α} is a totally defined function.) We notice that if $A \subseteq B$, then the inclusion $F(A) \subseteq F(B)$ is an order preserving inclusion.

If $A, A^{\prime} \subseteq B$ are disjoint sets of ordinals, $\pi: A \rightarrow A^{\prime}$ is a bijection, then π can be lifted to an isomorphism $\bar{\pi}: F(B) \rightarrow F(B)$ as follows. $\bar{\pi}(p(\alpha, n))=$ $p(\alpha, n)$ if $\alpha \notin A \cup A^{\prime}, \bar{\pi}(p(\pi(\alpha), n))=p(\alpha, n)$ if $\alpha \in A, \bar{\pi}\left(p\left(\pi^{-1}(\alpha), n\right)\right)=$ $p(\alpha, n)$ if $\alpha \in A^{\prime}$.

Acknowledgment. We are grateful to Miklós Laczkovich (Budapest) for his continuing interest in the topic and also for pointing out how to prove Theorems 3 and 4 assuming the results granted for characteristic functions. Our warm thanks also go to the referee and to the careful editor whose remarks and suggestions have greatly improved the exposition.

3 The Results

Theorem 1. If $\operatorname{cf}\left(2^{\omega}\right)>\omega_{1}$, then there is a real function which is not the pointwise limit of an ω_{1}-sequence of Baire-2 functions.

Proof. Enumerate \mathbb{R} as $\mathbb{R}=\left\{r_{\alpha}: \alpha<2^{\omega}\right\}$. Enumerate also the Baire2 (or even Borel) functions as $\left\{f_{\alpha}: \alpha<2^{\omega}\right\}$. Construct $f: \mathbb{R} \rightarrow \mathbb{R}$ in such a way that $f\left(r_{\alpha}\right)$ is different from the less than continuum many values $\left\{f_{\beta}\left(r_{\alpha}\right): \beta<\alpha\right\}$. We claim that f is as required. Assume not, and so f is the pointwise limit of some functions $\left\{f_{\gamma_{\tau}}: \tau<\omega_{1}\right\}$. As $\operatorname{cf}\left(2^{\omega}\right)>\omega_{1}$ there is an $\alpha<2^{\omega}$ with $\sup \left\{\gamma_{\tau}: \tau<\omega_{1}\right\}<\alpha$ and by the way f was constructed $f\left(r_{\alpha}\right)$ is different from all the values $\left\{f_{\gamma_{\tau}}\left(r_{\alpha}\right): \tau<\omega_{1}\right\}$; so f is not the limit of those functions.

Theorem 2. It is consistent that $2^{\omega}=\omega_{\omega_{1}}$ and there is a real function which is not the pointwise limit of an ω_{1}-sequence of Baire-2 functions.

Proof. Let V be a model of CH and let the poset (P, \leq) add $\omega_{\omega_{1}}$ Cohen reals, $\left\{c_{\alpha}: \alpha<\omega_{\omega_{1}}\right\}$. If $G \subseteq P$ is generic, let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function satisfying $f\left(c_{2 \alpha}\right)=c_{2 \alpha+1}$ for $\alpha<\omega_{\omega_{1}}$. We claim that f is not the ω_{1}-limit of Baire-2 functions. Assume it is, $f=\lim \left\{f_{\gamma}: \gamma<\omega_{1}\right\}$. As f_{γ} is a Baire-2 function there is a real number in $V[G]$ from which it can be defined. There is a countable set $A_{\gamma} \subseteq \omega_{\omega_{1}}$ such that this real is an element of the model $V\left[G \cap F\left(A_{\gamma}\right)\right]$. Set $A=\bigcup\left\{A_{\gamma}: \gamma<\omega_{1}\right\}$. Select $\alpha<\omega_{\omega_{1}}$ such that $2 \alpha+1 \notin A$. Then $f\left(c_{2 \alpha}\right)$ is an element of $V[G \cap F(A \cup\{2 \alpha\})]$ which contradicts the standard forcing theory fact $c_{2 \alpha+1} \notin V[G \cap F(A \cup\{2 \alpha\})]$.

Theorem 3. It is consistent that $2^{\omega}=\omega_{\omega_{1}}$ and every real function is the pointwise limit of an ω_{1}-sequence of Baire-2 functions.

Proof. Let V be a model of GCH (the Generalized Continuum Hypothesis). We are going to construct a finite support iterated forcing of length $\omega_{1},\left\{P_{\alpha}\right.$: $\left.\alpha \leq \omega_{1}\right\}$. Assume that we have constructed $P_{\alpha}, 2^{\omega}=\omega_{\alpha+1}$ in $V^{P_{\alpha}}$, and GCH holds above $\kappa=\omega_{\alpha+1}$. Let \mathbb{R}_{α} be the set of reals in $V^{P_{\alpha}}$. Enumerate, in $V^{P_{\alpha}}$, all subsets of \mathbb{R}_{α} as $\left\{X_{\xi}: \xi<\kappa^{+}\right\}$. Let R_{ξ} be a ccc forcing of cardinality κ making X_{ξ} a relative F_{σ} subset of $\mathbb{R}_{\alpha}($ see $[1,3])$. (Notice that after the first step \mathbb{R}_{α} will cease being the set of all reals.) Let Q_{α} be the finite support iteration of these posets. Notice that if $X=H \cap \mathbb{R}_{\alpha}$ (with H an F_{σ} set) is once achieved, then it will survive later extensions even though we have to redefine H (but not \mathbb{R}_{α}). As Q_{α} is the iteration of ccc posets, it is ccc as well. $\left|Q_{\alpha}\right|=\kappa^{+}$; so the number of reals in $V^{P_{\alpha}}$ is $\kappa\left(\kappa^{+}\right)^{\omega}=\kappa^{+}=\omega_{\alpha+1}$ and we can continue the definition.

Our final model is V^{P} with $P=P_{\omega_{1}}$. It suffices to show that if f : $\mathbb{R} \rightarrow[0,1]$ is a function in V^{P}, then it is the limit of an ω_{1}-sequence of Baire-2 functions. We first show this for two-valued functions; that is, for $f: \mathbb{R} \rightarrow\{0,1\}$. As in the intermediate model $V\left[G \cap P_{\alpha}\right]$ the set \mathbb{R}_{α} of all reals has cardinality $\omega_{\alpha+1}$ we can find an enumeration of the set of reals in the final model as $\mathbb{R}=\left\{r_{\xi}: \xi<\omega_{\omega_{1}}\right\}$ such that $\mathbb{R}_{\alpha}=\left\{r_{\xi}: \xi<\omega_{\alpha+1}\right\}$, this part of enumeration is in $V\left[G \cap P_{\alpha}\right]$, and $\mathbb{R}_{\alpha} \backslash \bigcup\left\{\mathbb{R}_{\beta}: \beta<\alpha\right\}$ is mapped onto the ordinal interval $\left[\omega_{\alpha}, \omega_{\alpha+1}\right)$.

Fix a name τ for f. For every $\xi<\omega_{\omega_{1}}$ choose a maximal antichain $\left\{p_{i}^{\xi}\right.$: $i<\omega\} \subseteq P$ of conditions determining the value of $f\left(r_{\xi}\right)$. (This antichain is countable as (P, \leq) is a ccc forcing.) Pick an ordinal $\alpha(\xi)<\omega_{1}$ such that $\xi<\omega_{\alpha(\xi)+1}$ and also $\left\{p_{i}^{\xi}: i<\omega\right\} \subseteq P_{\alpha(\xi)}$. Then r_{ξ} and $f\left(r_{\xi}\right)$ are determined in $V\left[G \cap P_{\alpha(\xi)}\right]$.

We now define the functions $\left\{f_{\alpha}: \alpha<\omega_{1}\right\}$ as follows. The domain of f_{α} is the set $\left\{r_{\xi}: \alpha(\xi) \leq \alpha\right\}$ and $f_{\alpha}\left(r_{\xi}\right)=0$ (or 1) if the unique $p_{i}^{\xi} \in G$ forces that value. The function f_{α} is in $V\left[G \cap P_{\alpha}\right]$ and the forcing Q_{α} will make the set $f_{\alpha}^{-1}(0)$ a relative F_{σ} subset of \mathbb{R}_{α}. Then f_{α} is the restriction of a Baire- 2 function to \mathbb{R}_{α} and so f is the limit of Baire- 2 functions.

Having proved the result for two-valued functions let $f: \mathbb{R} \rightarrow[0,1]$ be an arbitrary function in $V[G]$. So f can be written as $f(x)=g_{1}(x)+g_{2}(x)+\cdots$ with $g_{n}(x) \in\left\{0,2^{-n}\right\}$. As g_{n} is a two-valued function it can be written as $g_{n}=\lim \left\{g_{\alpha}^{n}: \alpha<\omega_{1}\right\}$ where the functions $\left\{g_{\alpha}^{n}: \alpha<\omega_{1}\right\}$ are Baire- 2 functions. Now $f_{\alpha}=\sum\left\{g_{\alpha}^{n}: 1 \leq n<\omega\right\}$ is a Baire-2 function as it is the uniform limit of Baire-2 functions. And finally, $f=\lim \left\{f_{\alpha}: \alpha<\omega_{1}\right\}$.

Theorem 4. It is consistent with $2^{\omega}=\omega_{2}$ that every real function is the pointwise limit of an ω_{2}-sequence of Baire-2 functions.

Proof. We deduce the statement from the axiom $\mathrm{MA}_{\omega_{1}}$ and $2^{\omega}=\omega_{2}$. Assume that $f: \mathbb{R} \rightarrow[0,1]$ and enumerate \mathbb{R} as $\left\{r_{\alpha}: \alpha<\omega_{2}\right\}$. A well known corollary of $\mathrm{MA}_{\omega_{1}}$ is that in every set of reals of cardinality at most ω_{1} every subset is a relative F_{σ} set (i.e., every set of cardinality at most ω_{1} is a Q -set, see [1]). With the argument as in the proof of Theorem 3 we can find a Baire-2 function f_{α} which agrees with f on $\left\{r_{\beta}: \beta<\alpha\right\}$ for every $\alpha<\omega_{2}$; so f is the limit of the f_{α} 's.

Theorem 5. It is consistent that the pointwise limit of an ω_{2}-sequence of Baire-2 functions is Baire-2 again.

Proof. We add ω_{2} Cohen reals to a model of CH. Let $P=F\left(\omega_{2}\right)$ be the applied notion of forcing, $V[G]$ the enlarged model and $\left\{c_{\alpha}: \alpha<\omega_{2}\right\}$ the

Cohen reals. Assume that $\mathbf{1}_{P}$ forces that $\left\{f_{\alpha}: \alpha<\omega_{2}\right\}$ is a set of Baire- 2 functions converging to $f: \mathbb{R} \rightarrow \mathbb{R}$.

For every $\alpha<\omega_{2}$ there is a countable set $A_{\alpha} \subseteq \omega_{2}$ such that the behavior of f_{α} is completely determined by the restriction of G to A_{α}. Every function f_{α} can be written as $f_{\alpha}=\lim _{m} \lim _{n} g_{m, n}^{\alpha}$, with $g_{m, n}^{\alpha}$ continuous, and let, for q, q^{\prime} rational numbers, $\left\{p\left(\alpha, m, n, q, q^{\prime}, i\right): i<\omega\right\}$ be a maximal antichain of conditions determining the truth value of the statement $g_{m, n}^{\alpha}(q)<q^{\prime}$.

By shrinking the index set and using the Δ-system lemma (p. 49 in [2]) we can assume that our sets form a Δ-system; that is, $A_{\alpha}=A \cup B_{\alpha}$ with the sets $\left\{A, B_{\alpha}: \alpha<\omega_{2}\right\}$ disjoint. We can also assume that $A=\emptyset$ (by passing to the model $V[G \cap F(A)])$. Using CH again and again shrinking the index set we can also assume that the above structures on the sets B_{α} are isomorphic. This means that if $\alpha<\beta<\omega_{2}$ are given, then the isomorphism of the ordered sets $\pi:\left(B_{\alpha},<\right) \rightarrow\left(B_{\beta},<\right)$ naturally extends to an isomorphism π^{\prime} between the parts of P with supports in B_{α} and B_{β}, respectively such that $\pi^{\prime}\left(p\left(\alpha, m, n, q, q^{\prime}, i\right)\right)=p\left(\beta, m, n, q, q^{\prime}, i\right)$ holds for all values of m, n, q, q^{\prime}, and i.

If $x \in V[G]$ is a real, then there is a countable set $T(x) \subseteq \omega_{2}$ such that x is determined in $V[G \cap F(T(x))]$. By the disjointness assumption the set $d(x)=\left\{\alpha<\omega_{2}: T(x) \cap B_{\alpha} \neq \emptyset\right\}$ is countable. We claim that if $\alpha, \beta \notin d(x)$, then $f_{\alpha}(x)=f_{\beta}(x)$. In any case, the value of $f_{\alpha}(x)$ is determined in the model $V\left[G \cap F\left(T(x) \cup B_{\alpha}\right)\right]$ while the value of $f_{\beta}(x)$ is likewise determined in the model $V\left[G \cap F\left(T(x) \cup B_{\beta}\right)\right]$. This implies that the status of $f_{\alpha}(x)=f_{\beta}(x)$ is determined in $V\left[G \cap F\left(T(x) \cup B_{\alpha} \cup B_{\beta}\right)\right]$. Assume that our claim fails and so $p \|-f_{\alpha}(x) \neq f_{\beta}(x)$ for some condition $p \in F\left(T(X) \cup B_{\alpha} \cup B_{\beta}\right)$. If we now select $\alpha^{\prime}, \beta^{\prime}$ in such a way that $B_{\alpha^{\prime}}, B_{\beta^{\prime}}$ are disjoint from $T(x)$, and $\left\{\alpha^{\prime}, \beta^{\prime}\right\} \cap\{\alpha, \beta\}=\emptyset$, then there is an automorphism $\pi: P \rightarrow P$ which is the identity on $P \mid T(x)$ and carries B_{α} to $B_{\alpha^{\prime}}, B_{\beta}$ to $B_{\beta^{\prime}}, \pi(p)$ is compatible with p. As the structures are isomorphic $\pi(p) \|-f_{\alpha^{\prime}}(x) \neq f_{\beta^{\prime}}(x)$. This way, working in $V\left[G \cap F(T(x)]\right.$, we can find ω_{2} such pairs $\left\{\left\{\alpha_{\xi}^{\prime}, \beta_{\xi}^{\prime}\right\}: \xi<\omega_{2}\right\}$ with the corresponding isomorphisms

$$
\pi_{\xi}: F\left(T(x) \cup B_{\alpha} \cup B_{\beta}\right) \rightarrow F\left(T(x) \cup B_{\alpha_{\xi}} \cup B_{\beta_{\xi}}\right) .
$$

Then

$$
p_{\xi}=\pi_{\xi}(p) \|-f_{\alpha_{\xi}}(x) \neq f_{\beta_{\xi}}(x)
$$

If we show that ω_{2} of conditions p_{ξ} are in G, then we get that $f_{\alpha}(x)$ does not stabilize in $V[G]$, and so we reach a contradiction. So assume that some $q \leq p$ forces that $\left\{\xi<\omega_{2}: p_{\xi} \in G\right\}$ is of cardinal $\leq \omega_{1}$. We can as well assume that q forces that $\sup \left\{\xi<\omega_{2}: p_{\xi} \in G\right\}=\gamma$ for some $\gamma<\omega_{2}$. Then there is some
$\xi>\gamma$ such that p_{ξ} is compatible with q and so a common extension forces a contradiction.

We now make a further extension of $V[G]$ by adding countably many (to be more exact, $\left|B_{\alpha}\right|$ many for any $\alpha<\omega_{2}$) Cohen reals. This makes it possible to construct a further Baire-2 function, $f_{\omega_{2}}$ in the following way. Let the index set of the extra Cohen reals be $B_{\omega_{2}}=\left[\omega_{2}, \omega_{2}+\nu\right)$ where $\nu=\left|B_{\alpha}\right|$ (any α) is either ω or some natural number. We define $f_{\omega_{2}}$ as the $B_{\omega_{2}}$ counterpart of any f_{α}. That is, choose some $\alpha<\omega_{2}$, set $\pi: B_{\alpha} \rightarrow B_{\omega_{2}}$ a bijection. Let π^{\prime} be the corresponding isomorphism between the parts of P with supports in B_{α} and $B_{\omega_{2}}$. Define $f_{\omega_{2}}=\lim _{m} \lim _{n} g_{m, n}^{\omega_{2}}$ where the continuous functions $g_{m, n}^{\omega_{2}}$ are determined by the conditions $p\left(\omega_{2}, m, n, q, q^{\prime}, i\right)=\pi^{\prime}\left(p\left(\alpha, m, n, q, q^{\prime}, i\right)\right)$ for the suitable values of m, n, q, q^{\prime}, i.

Using our previous claim, if $x \in V[G], \alpha \notin d(x)$, then $f_{\alpha}(x)=f_{\omega_{2}}(x)$. That is, our function $f \in V[G]$ is extended to a Baire-2 function in the further extension. We show that then f is already Baire- 2 in $V[G]$ (and this concludes the proof). It is well known that a function is Baire-2 if and only if all the level sets are of the form $\bigcap_{i} \bigcup_{j} F_{i, j}$ for some closed sets $F_{i, j}$; so it suffices to show the following claim.

Assume that V is a model of set theory, $X \subseteq \mathbb{R}, P$ is a countable notion of forcing, and in V^{P} there is a set $H=\bigcap_{i} \bigcup_{j} F_{i, j}$ with $F_{i, j}$ closed, such that $X=H \cap \mathbb{R}^{V}$. Then there is such a set already in V.

Assume that $\mathbf{1}_{P}$ forces that $H, F_{i j}$ satisfy the requirements. We argue that $X=\left\{x: \forall p \forall i \exists p^{\prime} \leq p \exists j, p^{\prime} \|-x \in F_{i, j}\right\}$. Indeed, if $x \in X$, then $1 \|-x \in H$; so for every $p \in P$ and $i<\omega$ there are some $p^{\prime} \leq p$ and $j<\omega$ that $p^{\prime} \|-x \in F_{i, j}$. On the other hand, if $x \notin X$, then there are $p \in P$ and $i<\omega$ that $p \|-x \notin F_{i, j}$. But then no $p^{\prime} \leq p$ can force with some $j<\omega$ that $x \in F_{i j}$.

Having proved the above formula for X as the indicated unions and intersections are countable, we only need to show that the sets $\left\{x: p^{\prime} \|-x \in F_{i, j}\right\}$ are closed (for fixed p^{\prime}, i, j). Indeed, if $x_{n} \rightarrow x$ and $p^{\prime} \|-x_{n} \in F_{i, j}$ for every n then if $G \subseteq P$ is some generic set with $p^{\prime} \in G$, then in $V[G]$ the convergence $x_{n} \rightarrow x$ still holds, and $F_{i j}$ is a closed set containing every x_{n}, containing therefore x as well. That is, p^{\prime} forces $x \in F_{i, j}$.

References

[1] D. H. Fremlin, Consequences of Martin's axiom, Cambridge Univ. Press, 1984.
[2] K. Kunen, Set Theory. An Introduction to Independence Proofs, NorthHolland, 1980.
[3] A. W. Miller, Descriptive Set Theory and Forcing, Lecture Notes in Logic, 4, Springer, 1995.
[4] W. Sierpiński, Sur les suites transfinies convergentes de fonctions de Baire, Fund. Math., 1(1920), 132-141.

[^0]: Key Words: transfinite limits of Baire functions
 Mathematical Reviews subject classification: 03E35, 26A21
 Received by the editors October 29, 1997
 *Research of the author was partially supported by the Hungarian National Science Research Grant No. T 019476.

