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AN APPLICATION OF THE
HARDY-LITTLEWOOD TAUBERIAN

THEOREM TO HARMONIC EXPANSION
OF A COMPLEX MEASURE ON THE

SPHERE

Abstract

We apply Hardy-Littlewood’s Tauberian theorem to obtain an estimate
on the harmonic expansion of a complex measure on the unit sphere,
using a monotonicity property for positive harmonic functions.

Let Bn = {x ∈ Rn : |x| < 1}, n ≥ 2 be the unit ball in Rn and Sn−1 =
∂Bn be the unit sphere. From a monotonicity property, we obtain a precise
asymptotic for the spherical harmonic expansion of a complex measure on
Sn−1 by applying the Tauberian theorem of Hardy and Littlewood.

It is known [1] that a positive harmonic function u in Bn can be uniquely
represented by the Poisson kernel P (x, y) and a positive measure µ on Sn−1

as

u(x) = P [µ](x) =
∫
Sn−1

P (x, η)dµ(η) =
∫
Sn−1

1− |x|2

|x− η|n
dµ(η). (1)

In the following we state a monotonicity property for positive harmonic func-
tions as a theorem (Theorem 1), which is the special case δ = 0 of Theorem
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1.1 in [5]. A corollary (Corollary 2) on asymptotic results follow. Then we
apply the monotonicity and the asymptotic property to obtain an estimate on
the spherical harmonic expansion of a complex measure on Sn−1 (Theorem 3)
by applying Hardy-Littlewood’s Tauberian Theorem. Two corollaries follow.

Theorem 1. (Theorem 1.1 in [5]) Let u be a positive harmonic function in
Bn, ζ ∈ Sn−1. Then the function

(1− r)n−1

1 + r
u(rζ)

is decreasing and the function

(1 + r)n−1

1− r
u(rζ)

is increasing for 0 ≤ r < 1.

The following is needed to prove our main result in Theorem 3.

Corollary 2. Let u be a positive harmonic function in Bn defined by a positive
measure µ as in (1). Then

lim
r→1

(1− r)n−1u(rζ) = 2µ({ζ})

and

lim
r→1

u(rζ)
1− r

=
∫
Sn−1

2
|ζ − η|n

dµ(η).

Proof. Applying Theorem 1 to the Poisson kernel we obtain

(1− r)n−1

1 + r
P (rζ, η) =

(1− r)n

|rζ − η|n
↘ δ(ζ, η) =

{
1, ζ = η

0, ζ 6= η
as r → 1.

By the representation (1) and Lebesgue’s dominated convergence theorem,

lim
r→1

(1− r)n−1u(rζ) = lim
r→1

(1− r)n−1

∫
Sn−1

P (rζ, η)dµ(η)

= lim
r→1

(1 + r)
∫
Sn−1

lim
r→1

{
(1− r)n−1

1 + r
P (rζ, η)

}
dµ(η)

= 2µ({ζ}).
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Similarly,
(1 + r)n−1

1− r
P (rζ, η) =

(1 + r)n

|rζ − η|n
increases as r → 1. By Lebesgue’s

monotone convergence theorem,

lim
r→1

u(rζ)
1− r

= lim
r→1

1
1− r

∫
Sn−1

P (rζ, η)dµ(η)

= lim
r→1

1
(1 + r)n−1

∫
Sn−1

lim
r→1

{
(1 + r)n−1

1− r
P (rζ, η)

}
dµ(η)

=
1

2n−1

∫
Sn

2n

|ζ − η|n
dµ(η) =

∫
Sn

2
|ζ − η|n

dµ(η).

Let Hm(Sn−1) denote the complex vector space of spherical harmonics of
degree m. Hm(Sn−1) is the restriction to Sn−1 of the complex vector space
Hm(Rn) of homogeneous harmonic polynomials of degree m in Rn. It is known
[1] that

dimHm(Rn) =
(
n+m− 1
n− 1

)
−
(
n+m− 3
n− 1

)
,

and that under the inner product 〈p, q〉 =
∫
Sn−1 p(x)q(x)dσ(x), where dσ is

the normalized Lebesgue measure on Sn−1, there exists an orthogonal decom-
position of the Hilbert space of square-integrable functions on Sn−1,

L2(Sn−1) = ⊕∞0 Hm(Sn−1).

By the property of finite dimensional Hilbert space, ∀ζ ∈ Sn−1, there exists a
unique Zm(ζ, ·) ∈ Hm(Sn−1) (the zonal function of pole ζ and order m) such
that

pm(ζ) =
∫
Sn−1

pm(η)Zm(ζ, η)dσ(η), ∀pm ∈ Hm(Sn−1).

The above leads to a zonal expansion of the Poisson kernel (Theorem 5.33 in
[1])

P (x, ζ) =
1− |x|2

|x− ζ|n
=
∞∑
m=0

Zm(x, ζ), ∀x ∈ Bn, ζ ∈ Sn−1. (2)

Consequently, any complex measure on Sn−1 has a spherical harmonic expan-
sion

∞∑
m=0

pm(ζ), pm(ζ) =
∫
Sn−1

Zm(ζ, η)dµ(η) ∈ Hm(Sn−1), ζ ∈ Sn−1.



520 Yifei Pan and Mei Wang

If f ∈ L2(Sn−1) and dµ = fdσ, then the spherical harmonic expansion for µ
converges to f in L2(Sn−1). It is known [3] that if 1 ≤ p < 2, n > 2 then
there is an φ ∈ Lp(Sn−1) with spherical harmonic expansion divergent almost
everywhere. There have been studies of general theory of Cesàro summability
on spherical harmonic expansions of Lp functions through estimates (e.g. [2]).
In this paper, we consider spherical harmonic expansion of complex measures
through asymptotics, which is the exact situation applicable by the Hardy-
Littlewood Tauberian theory.

In the following we provide a precise asymptotics for the spherical harmonic
expansion of complex measures on Sn−1.

Theorem 3. Let µ be a complex Borel measure on the unit sphere Sn−1 . Let∑∞
m=0 pm(ζ) be the spherical harmonic expansion of µ. Then

N∑
m=0

pm(ζ) ∼ 2
(n− 1)!

µ({ζ}) Nn−1 as N →∞. (3)

The proof of Theorem 3 is an application of the well-known Hardy-Littlewood
Tauberian Theorem [4] stated below.

Hardy-Littlewood Tauberian Theorem. Assume that
∑∞
m=0 amx

m con-
verges on |x| < 1. Suppose that for some number α ≥ 0,

∞∑
m=0

amx
m ∼ A

(1− x)α
as x↗ 1

while

mam ≥ −Cmα, m ≥ 1,

then

N∑
m=0

am ∼
A

Γ(α+ 1)
Nα.

Another known result crucial in our proof is stated below as Lemma 4, which
is a modified version of Corollary 5.34 in [1].
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Lemma 4. Let µ be a complex measure on Sn−1 and u(x) = P [µ](x) as in
(1). Then there exist pm ∈ Hm(Rn), m = 0, 1, 2, · · · such that

u(x) =
∞∑
m=0

pm(x), x ∈ Bn

and the series converges absolutely and uniformly on compact subsets of Bn.
Furthermore, there is a positive constant C such that

|pm(x)| ≤ C|µ(Sn−1)|mn−2|x|m, m = 0, 1, 2, · · · .

If x = |x|ζ, then pm(ζ) is given by

pm(ζ) =
∫
Sn−1

Zm(ζ, η)dµ(η) ∈ Hm(Sn−1).

Proof. Our proof of Lemma 4 is a modified version of the proof of Corollary
5.34 in [1] in terms of measures. By Theorem 5.33 of [1], the Poisson kernel
expansion by zonal harmonics (2) converges absolutely and uniformly on K ×
Sn−1 for every compact set K ⊂ Bn. So for any x ∈ Bn,

u(x) =
∫
Sn−1

P (x, ζ)dµ(ζ) =
∞∑
m=0

∫
Sn−1

P (x, ζ)Zm(x, ζ)dµ(ζ) =
∞∑
m=0

pm(x)

where
pm(x) =

∫
Sn−1

Zm(x, ζ)dµ(ζ), x ∈ Bn.

Since pm(x) ∈ Hm(Rn)., so for x = |x|η, we have Zm(x, ζ) = |x|mZm(η, ζ).
Furthermore, it is known that [1]

|Zm(η, ζ)| ≤ dimHm(Rn) =
(
n+m− 1
n− 1

)
−
(
n+m− 3
n− 1

)
By Pascal’s triangle,

dimHm(Rn) =
(
n+m− 2
n− 2

)
+
(
n+m− 3
n− 2

)
=

1
(n− 2)!

(
n+ 2m− 2

m

)
(n+m− 3)!

(m− 1)!
.
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Applying Stirling’s formula,

dimHm(Rn)
mn−2

→ 2
(n− 2)!

as m→∞.

Therefore there exists C = C(n) > 0 such that |Zm(x, ζ)| ≤ Cmn−2 and

|pm(x)| ≤
∣∣∣∣∫
Sn−1

|Zm(x, ζ)|dµ(ζ)
∣∣∣∣ ≤ C|µ(Sn−1)|mn−2|x|m.

This completes the proof of Lemma 4.

Below is the proof of our main result.

Proof of Theorem 3. From the above results, for x = rζ, ζ ∈ Sn−1, we
can write

u(x) = P [µ](x) =
∞∑
m=0

pm(x) =
∞∑
m=0

pm(ζ)rm,

and the last series converges for |r| < 1 by Lemma 4. The complex Borel
measure µ can be decomposed as

µ = Re(µ) + i IM(µ) = (µ1 − µ2) + i(µ3 − µ4)

where µj , j = 1, 2, 3, 4 are positive Borel measures. Applying Lemma 4 and
Corollary 2 to the µj ’s and combining the resulting expansions, we have

∞∑
m=0

pm(ζ)rm ∼ 2µ({ζ})
(1− r)n−1

as r ↗ 1

Taking real and imaginary parts we have

∞∑
m=0

Re {pm(ζ)} rm ∼ 2 Re {µ({ζ})}
(1− r)n−1

as r ↗ 1

and
∞∑
m=0

Im {pm(ζ)} rm ∼ 2 Im {µ({ζ})}
(1− r)n−1

as r ↗ 1.

By Lemma 4, there exists a positive constant C so that

|pm(ζ)| ≤ Cmn−2
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It follows that

m Re {pm(ζ)} ≥ −Cmn−1, m Im {pm(ζ)} ≥ −Cmn−1.

Applying Hardy-Littlewood Tauberian Theorem with α = n−1 we obtain (3).
This completes the proof of Theorem 3.

Corollary 5. Let µ be a complex Borel measure on Sn−1. If µ({ζ}) > 0 for
some ζ ∈ Sn−1 then the spherical expansion series of µ is divergent:

∞∑
m=0

pm(ζ) = +∞.

If µ({ζ}) = 0 then
N∑
m=0

pm(ζ) = o(Nn−1).

When the dimension of the space n = 2, the spherical expansion corre-
sponds to Fourier series, and Theorem 3 has the following form which is a well
known classical result.

Corollary 6. Let µ be a complex Borel measure on S1. Let
∞∑

m=−∞
ame

imθ, am =
∫ π

−π
e−imθdµ(eiθ)

be the Fourier series of µ. Then

N∑
m=−N

ame
imθ ∼ 2µ({eiθ})N as N →∞.

Proof. In R2 the zonal functions are given by

Zm(eiθ, eiφ) = eim(θ−φ) + e−im(θ−φ)

for m > 0, and Z0(eiθ, eiφ) = 1. So Corollary 6 follows from Theorem 3.
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