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Abstract

We apply Hardy-Littlewood’s Tauberian theorem to obtain an estimate
on the harmonic expansion of a complex measure on the unit sphere,
using a monotonicity property for positive harmonic functions.

Let B" = {z € R" : |z| < 1}, n > 2 be the unit ball in R" and S"~! =
OB™ be the unit sphere. From a monotonicity property, we obtain a precise
asymptotic for the spherical harmonic expansion of a complex measure on
S"~1 by applying the Tauberian theorem of Hardy and Littlewood.

It is known [1] that a positive harmonic function « in B"™ can be uniquely

represented by the Poisson kernel P(z,y) and a positive measure u on S"~!
as

1—|xf?

u(z) = Plu)(z) = P(x,n)du(n) = T du(n). (1)

Sn—1 gn—1 ‘.’IJ - ’I7|
In the following we state a monotonicity property for positive harmonic func-
tions as a theorem (Theorem 1), which is the special case 6 = 0 of Theorem
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1.1 in [5]. A corollary (Corollary 2) on asymptotic results follow. Then we
apply the monotonicity and the asymptotic property to obtain an estimate on
the spherical harmonic expansion of a complex measure on S"~! (Theorem 3)
by applying Hardy-Littlewood’s Tauberian Theorem. Two corollaries follow.

Theorem 1. (Theorem 1.1 in [5]) Let u be a positive harmonic function in
B", ¢ € S"1. Then the function

(1 —r)n-t

o)
is decreasing and the function
(14 7)1
ﬁu@"@)

is increasing for 0 < r < 1.

The following is needed to prove our main result in Theorem 3.

Corollary 2. Let u be a positive harmonic function in B"™ defined by a positive
measure i as in (1). Then

lim (1 — )" u(r¢) = 2u({¢})

r—1

lim 20¢) _ 2 du(n).
e

PRrROOF. Applying Theorem 1 to the Poisson kernel we obtain

(1—7’)”1P(T67n)(1—r)”\5(<’n){1, C=1 as 1 — 1.

and

L+7 [r¢ —nl" 0, ¢#n

By the representation (1) and Lebesgue’s dominated convergence theorem,

r—1 r—1

i (1= )" u(r) = i (1 =) [ PCadutn)

—tim(n) [t { O P fauto
= 2u({c}).
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(1+r)"
[r¢ —nl™

14"

Similarly, P(r¢,n) =

monotone convergence theorem,

lim 27¢) gy, L /  P(r¢,m)dp(n)

r—11—7r r—=11—7 Jgno1
. 1 )t
= lim —— 1 ~T 7/ p d
rl_{% (1 ¥ T‘)nfl /Snil Tl_{nl { 1—r (TC777>} M(n)
1 / on 2
= dp(n :/ T dp(n).
201 Ju T W) = [ fe— g )

increases as r — 1. By Lebesgue’s

O

Let H,,(S™"1) denote the complex vector space of spherical harmonics of
degree m. H,,(S™~1) is the restriction to S"~! of the complex vector space
H.,(R™) of homogeneous harmonic polynomials of degree m in R™. It is known

[1] that
. o (ntm—1\ [(n+m-—3
dlmHm(R)( o1 ) ( a1 >,

and that under the inner product (p,q) = [q._. p(z)q(x)do(z), where do is
the normalized Lebesgue measure on S™ !, there exists an orthogonal decom-
position of the Hilbert space of square-integrable functions on S™~!,

L2S™ N = &FHm(S™ ).

By the property of finite dimensional Hilbert space, Y € S™"~1, there exists a
unique Zy,(¢,+) € Hpm(S™™1) (the zonal function of pole ¢ and order m) such
that

palO= [ o ZalCdotn). Vo € Hu(57),

The above leads to a zonal expansion of the Poisson kernel (Theorem 5.33 in

[1)

P(z,¢) = |‘<”|z Z Zm(z,C), VzeB" ceS"l (2

Consequently, any complex measure on S”~! has a spherical harmonic expan-
sion

> pnl pn@) = [ ZulCmdutn) € Hn(S™), G S
m=0 Sn-t
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If f € L?(S" ') and du = fdo, then the spherical harmonic expansion for p
converges to f in £2(S"71). Tt is known [3] that if 1 < p < 2,n > 2 then
there is an ¢ € LP(S™1) with spherical harmonic expansion divergent almost
everywhere. There have been studies of general theory of Cesaro summability
on spherical harmonic expansions of LP functions through estimates (e.g. [2]).
In this paper, we consider spherical harmonic expansion of complex measures
through asymptotics, which is the exact situation applicable by the Hardy-
Littlewood Tauberian theory.

In the following we provide a precise asymptotics for the spherical harmonic
expansion of complex measures on S™1.

Theorem 3. Let i be a complex Borel measure on the unit sphere S~ ! . Let
> oo Pm(C) be the spherical harmonic expansion of . Then

N
> pal0) ~ oo MU N e N @)
m=0 ’

The proof of Theorem 3 is an application of the well-known Hardy-Littlewood
Tauberian Theorem [4] stated below.

Hardy-Littlewood Tauberian Theorem. Assume thaty =, ama™ con-
verges on |x| < 1. Suppose that for some number o > 0,

= A
Z amxm ~ ﬁ as x /‘ 1
m=0 ( - l‘)

while
ma,, > —Cm®, m>1,

then
N
S A e
= P(a+1)

Another known result crucial in our proof is stated below as Lemma 4, which
is a modified version of Corollary 5.34 in [1].
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Lemma 4. Let u be a complex measure on S"~1 and u(x) = Plu](x) as in
(1). Then there exist pm € Hpm(R™), m =0,1,2,--- such that

= me(x), x € B"
m=0

and the series converges absolutely and uniformly on compact subsets of B™.
Furthermore, there is a positive constant C' such that

pm(@)] < Clu(S"Hlm"2[a™, m=0,1,2,---

If v = |x|¢, then pw(C) is given by

PO = [ ZulCdutn) € M (57

PrROOF. Our proof of Lemma 4 is a modified version of the proof of Corollary
5.34 in [1] in terms of measures. By Theorem 5.33 of [1], the Poisson kernel
expansion by zonal harmonics (2) converges absolutely and uniformly on K x
S"~1 for every compact set K C B™. So for any = € B”,

u(a:)z/sn1 (z,¢)du(¢ Z/Sn1 m (2, Q)du(¢ me

where

Pm() = /S Zn(2.Qdp(C),  w€ B,

Since py,(x) € Hpm(R™)., so for z = |z|n, we have Z,,(z,¢) = |2|™Zm(n, Q).
Furthermore, it is known that [1]

| Zm (1, €)| < dim M,y (R™) = <”+m 1) B <n+m3>

n—1 n—1

By Pascal’s triangle,
n+m-—2 n+m-—3
di m(R™) =
ot = (75 7) ()
1 n+2m—2Y\ (n+m—3)!
- (n—2)! (m—1)! °

m
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Applying Stirling’s formula,

dim H,, (R™) 2
—
mn—2 (n—2)!

as m — oo.
Therefore there exists C' = C(n) > 0 such that |Z,,(z,¢)] < Cm"~2 and

on@) < | [ 12, 0lau0)| < Clus™Hjm21al

This completes the proof of Lemma 4. O

Below is the proof of our main result.

PROOF OF THEOREM 3. From the above results, for x = ¢, ¢ € S"7!, we
can write

u(@) = Plu)(z) = Y pm() = Y pm()r™,
m=0 m=0

and the last series converges for |r| < 1 by Lemma 4. The complex Borel
measure y can be decomposed as

p=Re(n) +i IM(p) = (11 — p2) +i(ps — p1a)

where pj, 7 = 1,2,3,4 are positive Borel measures. Applying Lemma 4 and
Corollary 2 to the p;’s and combining the resulting expansions, we have

me(ormw(f/i(i)cn}zl as r /1
m=0
Taking real and imaginary parts we have
S R
S Retpn (O~ S
m=0

and

3 tmom() 7 ~ HEEEEE s e

By Lemma 4, there exists a positive constant C' so that

pm(Q)] < Cm" =2
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It follows that
m Re{pm(Q)} > =Cm™ ', mIm{pn(¢)} > —Cm" .

Applying Hardy-Littlewood Tauberian Theorem with @ = n—1 we obtain (3).
This completes the proof of Theorem 3. O

Corollary 5. Let yi be a complex Borel measure on S™ L. If u({¢}) > 0 for
some ( € S"~! then the spherical expansion series of p is divergent:

Z pm(C) = +o0.

If w({C}) = 0 then

N

> pl¢) = o(N" ).

m=0

When the dimension of the space n = 2, the spherical expansion corre-
sponds to Fourier series, and Theorem 3 has the following form which is a well
known classical result.

Corollary 6. Let pu be a complex Borel measure on S'. Let

) T
E ame@mé)’ Ay = / e—zmé)du(evﬂ)

—Tr

be the Fourier series of . Then

N
Z ame™? ~ 2u({e})N as N — oo.
m=—N

PRrROOF. In R? the zonal functions are given by

Zm(eiO’eid)) _ eim(97¢) + efim(67¢>)

for m > 0, and Zy(e?, e'?) = 1. So Corollary 6 follows from Theorem 3.  [J

7
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