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Abstract

We present a convergence theorem for the Henstock-Kurzweil inte-
gral of functions taking values in a locally convex topological vector
space, which is sequentially complete with respect to its weak topology.

1 Introduction.

The first simple convergence theorems for HK-integral were shown by Kurzweil
(see [3]) and by McLeod (see [5]). A convergence theorem for HK-integral of
functions taking values in a complete locally convex space was given by Mar-
raffa (see [4, Theorem 5]). We prove another convergence theorem, Theorem
2.4, which is similar to Marraffa’s Theorem. The Banach version of [4, Theo-
rem 5] is used in proving our Theorem 2.4. In spite of that, those theorems are
independent of each other, because in general there are no relations between
the completeness of a locally convex topological vector space and the sequen-
tial completeness of its weak topology. If a locally convex topological vector
space is weakly sequential complete but not complete, then our Theorem has
to be used instead of Marraffa’s Theorem. Do locally convex topological vector
spaces of this type exist? According to Kōmura (see [2, p. 153]), there exist
locally convex topological vector spaces that are reflexive but not complete.
Since a reflexive space is a semi-reflexive space (see [6, p.144]), by Schaefer
(see [6, Th.IV.5.5, p.144]), we see that a reflexive locally convex topological
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vector space is a weakly quasi-complete space (for the quasi-complete spaces
see [6, p.27]). Since a quasi-complete space is a sequentially complete or semi-
complete space (for the sequentially complete or semi-complete spaces see [6,
p.17]), a reflexive locally convex topological vector space is a weakly sequen-
tially complete space. Consequently, there exist locally convex topological
vector spaces that are weakly sequential complete but not complete.

These sorts of different types of convergence theorems for the HK-integral
are based on the concept of HK-equi-integrability (see Definition 1.4).

In this paper (V, τ) is a locally convex topological vector space, which is
Hausdorff (or separated) space. We set P the family of all continuous semi-
norms in this space; for every p ∈ P , Ṽ p denotes the quotient vector space
of the vector space V with respect to the equivalence relation x ∼p y ⇔
p(x − y) = 0; the map φp : V → Ṽ p is the canonical quotient map, thus
φp(x) is the equivalence class of an element x ∈ V with respect to the relation
” ∼p ”; the quotient normed space (Ṽ p, p̃) is called the normed component of
the space V , where p̃(φp(x)) = p(x), for each x ∈ V ; the Banach space (V

p
, p),

which is the completion of the space (Ṽ p, p̃), is called the Banach component
of the space (V, τ);V ′, V ′p , Ṽ ′p and V

′
p are topological duals of (V, τ), (V, p),

(Ṽ p, p̃) and (V
p
, p), respectively.

Assume that an interval S = [a, b] and a function f : S → V are given.
Let π = {(si, Ji); i = 1, 2, ..., n} be a set such that si ∈ S and Ji is a compact
subinterval of S for i = 1, 2, ..., n; this set π is called an HK-partition of S if
the finite sequence (Ji)n

i=1 satisfies the following statements:

1.
⋃n

i=1 Ji = S,

2. si ∈ Ji, for i = 1, 2, ..., n,

3. (Ji)n
i=1 is a finite sequence of pairwise non-overlapping intervals (two

intervals I and J are called non-overlapping if Io∩Jo = φ, where Io and
Jo denote the interiors of I, J respectively).

A positive function δ : S → (0,+∞) is called a gauge on S; an HK-partition
π = {(si, Ji); i = 1, 2, ..., n} in S is called δ-fine (it is denoted by π << δ) if
we have

Ji ⊂ (si − δ(si), si + δ(si)),

for i = 1, 2, ..., n. We set:

S(f, π) =
n∑

i=1

f(si)µL(Ji),
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where π = {(si, Ji); i = 1, 2, ..., n} is an HK-partition of S and µL is the
Lebesgue outer measure in S.

Definition 1.1. A function f : S → V is called HK-integrable in (V, τ) if
there exists a vector If ∈ V satisfying the following property: for every p ∈ P
and ε > 0 there exists a gauge δp(ε) on S, such that inequality

p(S(f, π)− If ) < ε

holds for every HK-partition π in S, such that π << δp(ε). Since the family
P is separated, then the vector If is the only one satisfying the definition and
it is called the HK-integral of the function f in (V, τ). It is denoted

(HK)
∫

S

f = If .

The following theorem guarantees a simple and important relation of HK-
integral in a locally convex spaces and in its components.

Theorem 1.2. A function f : S → V is HK-integrable in (V, τ) if and only
if there exists a vector If ∈ V such that for every p ∈ P the function φp ◦ f is
HK-integrable in the normed component (Ṽ p, p̃) while

(HK)
∫

S

φp ◦ f = φp(If ).

Theorem 1.2 can be easily proved by the Definition 1.1. An application
of Theorem 1.2 is the following result, which is an analogue of [1, Corollary
III.3.2].

Theorem 1.3. Let f : S → V be a function taking values in (V, τ). If f = 0
almost everywhere (with respect to µL), then the function f is HK-integrable
and

(HK)
∫

S

f = 0.

Definition 1.4. A sequence of functions (fn), fn : S → V is called HK-
equi-integrable in (V, τ) if every function fn is HK-integrable in (V, τ) and for
every p ∈ P and ε > 0 there exists a gauge δp(ε) on S, such that inequality:

p(S(fn, π)− (HK)
∫

S

fn) < ε,

holds for every HK-partition π << δp(ε) and for all n ∈ N .
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2 A convergence theorem for Henstock-Kurzweil inte-
gral.

The main result in this paper is Theorem 2.4. The following lemmas prepare
the proof of this theorem. The Lemmas 2.1 and 2.2 can be proved in a similar
manner as the analogous results in Banach spaces (see [1, Theorem III.5.2]
and [1, Proposition IV.1.1]).

Lemma 2.1. If (V, τ) is the sequentially complete, the sequence (fn),fn :
S → V is HK-equi-integrable in (V, τ) and converges point-wise to a function
f : S → V in (V, τ), then the function f is HK-integrable and

lim
n→∞

(HK)
∫

S

fn = (HK)
∫

S

f.

Lemma 2.2. If a function f : S → V is HK-integrable in (V, τ), then for
every v′ ∈ V ′ the real function v′ ◦ f is KH-integrable and

(HK)
∫

S

v′ ◦ f = v′((HK)
∫

S

f).

Lemma 2.3. If (V, τ) is the sequentially complete with respect to the weak
topology σ(V, V ′), the sequence (fn),fn : S → V is HK-equi-integrable in (V, τ)
and converges point-wise to the function f : S → V in the weak topology, then
there exists If ∈ V such that the equality

lim
n→∞

v′((HK)
∫

S

fn) = v′(If ),

holds for every v′ ∈ V ′.

Proof. The locally convex topologically vector space (V, σ(V, V ′)) is Haus-
dorff (see [7, Corollary IV.6.1, p.107]). Let denote by P ′ the family of all
continuous semi-norms in (V, σ(V, V ′)). Since P ′ ⊂ P , the sequence (fn) is
HK-equi-integrable in (V, σ(V, V ′)) and converges to the function f in this
space. Thus, we are in conditions of Lemma 2.1. Hence there exists If ∈ V
such that:

lim
n→∞

p′((HK)
∫

S

fn − If ) = 0,

for every p′ ∈ P ′. Therefore, we obtain:

lim
n→∞

v′((HK)
∫

S

fn) = v′(If ),

for every v′ ∈ V ′, because |v′(.)| ∈ P ′.
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Now, we are ready to present the main theorem.

Theorem 2.4. If (V, τ) is the sequentially complete with respect to the weak
topology σ(V, V ′), the sequence of the functions (fn),fn : S → V is HK-equi-
integrable in (V, τ) and converges to f : S → V in the weak topology, then f
is HK-integrable in (V, τ) and

lim
n→∞

(HK)
∫

S

fn = (HK)
∫

S

f,

in the weak topology.

Proof. Let p be any continuous semi-norm in (V, τ). Since the sequence (fn)
converges to f in (V, τ) in the weak topology, then the sequence (φp ◦ fn)
converges to φp ◦f in the normed component (Ṽ p, p̃) with respect to the weak
topology. Consequently the sequence (φp ◦ fn) also converges to the functions
φp ◦ f in the Banach component (V

p
, p) with respect to the weak topology.

Thus, we have the sequence (φp ◦ fn) is HK-equi-integrable in (Ṽ p, p̃) and
converges to φp ◦ f in (V

p
, p) with respect to the weak topology. According

to the Banach version of [4, Theorem 5], the function φp ◦ f is HK-integrable
in (V

p
, p) and the equality

lim
n→∞

v′p((HK)
∫

S

φp ◦ fn) = v′p((HK)
∫

S

φp ◦ f),

holds for every v′p ∈ V
′
p, and since every v′p ∈ V

′
p is the continuous extension

of an element ṽ′p ∈ Ṽ ′p , it follows that the equality

lim
n→∞

ṽ′p((HK)
∫

S

φp ◦ fn) = v′p((HK)
∫

S

φp ◦ f) (1)

holds for every ṽ′p ∈ Ṽ ′p , where v′p is continuous extension of ṽ′p.
By applying Lemma 2.2, for every φp ◦ fn, we obtain

ṽ′p((HK)
∫

S

φp ◦ fn) =(HK)
∫

S

(ṽ′p ◦ (φp ◦ fn))

=(HK)
∫

S

v′p ◦ fn,

where v′p = ṽ′p ◦ φp, and by another application of Lemma 2.2, we obtain that
for every fn,

(HK)
∫

S

v′p ◦ fn = v′p((HK)
∫

S

fn)
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and consequently we obtain

ṽ′p((HK)
∫

S

φp ◦ fn) = v′p((HK)
∫

S

fn) (2)

Hence, inserting the right-hand-side of (2) into (1), we get

lim
n→∞

v′P (((HK)
∫

S

fn) = v′p((HK)
∫

S

φp ◦ f) (3)

Also, according to Lemma 2.3, there exists If ∈ V such that the equality

lim
n→∞

v′p((HK)
∫

S

fn) = v′p(If ) = ṽ′p(φp(If )) (4)

holds for every v′p ∈ V ′p . Hence, inserting the right-hand-side of (4) into (3),
we obtain

ṽ′p(φp(If )) = v′p((HK)
∫

S

φp ◦ f),

for every ṽ′p ∈ Ṽ ′p , where v′p is continuous extension of ṽ′p. Consequently,

v′p(φp(If )) = v′p((HK)
∫

S

φp ◦ f),

for every v′p ∈ V
′
p and according to [7, Cor.IV.6.2, p.108], this means that

(HK)
∫

S

φp ◦ f = φp(If ) ∈ Ṽ p.

Therefore, by Theorem 1.2, the function f is HK-integrable and

(HK)
∫

S

f = If .
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